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ABSTRACT
The goal of Complex Event Processing (CEP) systems is to
efficiently detect complex patterns over a stream of primitive
events. A pattern of particular significance is a sequence,
where we are interested in identifying that a number of prim-
itive events have arrived on the stream in a predefined order.
Many popular CEP systems employ Non-deterministic Fi-
nite Automata (NFA) arranged in a chain topology to detect
such sequences. Existing NFA-based mechanisms incremen-
tally extend previously observed prefixes of a sequence until
a match is found. Consequently, each newly arriving event
needs to be processed to determine whether a new prefix is
to be initiated or an existing one extended. This approach
may be very inefficient when events at the beginning of the
sequence are very frequent.

We address the problem by introducing a lazy evaluation
mechanism that is able to process events in descending order
of selectivity. We employ this mechanism in a chain topol-
ogy NFA, which waits until the most selective event in the
sequence arrives and then adds events to partial matches ac-
cording to a predetermined order of selectivity. In addition,
we propose a tree topology NFA that does not require the
selectivity order to be defined in advance. Finally, we exper-
imentally evaluate our mechanism on real-world stock trad-
ing data, demonstrating a performance gain of two orders
of magnitude, with significantly reduced memory resource
requirements.
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1. INTRODUCTION
Complex Event Processing (CEP) is an emerging field

with important applications for real-time systems. The goal
of CEP systems is to detect predefined patterns over a stream
of primitive events. Examples of applications of CEP sys-
tems include financial services [13], RFID-based inventory
management [29], and click stream analysis [26]. A pattern
of particular interest is a sequence, where we are interested
in detecting that a number of primitive events have arrived
on the stream in a given order.

As an example of a sequence pattern, consider the follow-
ing:

Example 1. A securities trading firm would like to ana-
lyze a real-time stream of stock price data in order to identify
trading opportunities. The primitive events arriving on the
stream are price quotes for the various stocks. An event of
the form xn

p=y denotes that the price of stock x has changed
to y, where n is a running counter of the events for stock x
(an event also includes a timestamp, omitted from the nota-
tion for brevity’s sake). The trading firm would like to detect
a sequence consisting of the events ap=p1, bp=p2, and cp=p3

occurring within an hour, where p1 < p2 < p3.

Modern CEP systems are required to process growing
rates of incoming events. In addition, as this technology be-
comes more prevalent, languages for defining complex event
patterns are becoming more expressive. A popular approach
is to compile patterns expressed in a declarative language
into Non-deterministic Finite state Automata (NFAs), which
are in turn used by the event processing engine. Wu et al.
[30] proposed the SASE system, which is based on a language
that supports logic operators, sequences and time windows.
The authors describe how a complex pattern formulated us-
ing this language is translated into an NFA consisting of a
finite set of states and conditional transitions between them.
Transitions between states are triggered by the arrival of an
appropriate event on the stream. At each point in time, an
instance of the state machine is maintained for every prefix
of the pattern detected in the stream up to that point. In ad-
dition, a data structure referred to as the match buffer holds
the primitive events constituting the match prefix. Gyll-
strom et al. [22] propose additional operators for SASE,
such as iterations and aggregates. Demers et al. [13, 14] de-
scribe Cayuga, a general purpose event monitoring system,
based on a CEL language. It employs non-deterministic au-
tomata for event evaluation, supporting typical SQL oper-
ators and constructs. Tesla [11] extends previous works by
offering fully customizable policies for event detection and



consumption. NextCEP [27] enables distributed evaluation
using NFAs in clustered environments.

An NFA detects sequences by maintaining at every point
in time all the observed prefixes of the sequence until a
match is detected. As an example, consider the following
stream of events: a1

p=3,a2
p=5,a3

p=8,b1p=7,b2p=13,c1p=9. In this
case, after the first three events have arrived, {a1}, {a2}
and {a3} are match prefixes for the pattern described in
Example 1. All these prefixes must be maintained by the
NFA at this point in time, since all of them may eventually
result in a match. After the first five events have arrived,
the NFA must maintain five match prefixes (all combinations
of a events and b events except for {a3b1}). Finally, after
the last event is received, the NFA detects two sequences
matching the pattern, {a1b1c1} and {a2b1c1}.1

NFA based matching mechanisms are most commonly im-
plemented by constructing partial matches according to the
order of events in the sequence (i.e., every partial match
is a prefix of a match). We refer to this prefix detection
strategy as an “eager” strategy, since every incoming event
is processed upon arrival in order to determine whether it
starts a new prefix or extends an existing one. When the
first events in a sequence pattern are very frequent, the NFA
must maintain a large number of match prefixes that may
not lead to any matches. Since the number of match pre-
fixes to be kept can grow exponentially with the length of
the sequence, such an approach may be very inefficient in
terms of memory and computational resources.

In this paper we propose a new NFA based matching
mechanism that overcomes this drawback. The proposed
mechanism constructs partial matches starting from the most
selective (i.e., least frequent) event, rather than from the
first event in the sequence. In addition, partial matches are
extended by adding events in descending order of selectiv-
ity (rather than according to their order in the sequence).
This not only minimizes the number of partial matches held
in memory, but also reduces computation time, since there
are fewer partial matches to extend when processing a given
event.

Our proposed solution relies on a lazy evaluation mecha-
nism that can either process an event upon arrival or store
it in a buffer, referred to as the input buffer, to be processed
at a later time if necessary. To enable efficient search and
retrieval of events from the input buffer, a new edge prop-
erty called scoping parameters is introduced. In addition, we
present two new types of NFA that make use of the input
buffer and scoping parameters to detect sequence patterns;
we call these types a chain NFA and a tree NFA.

A chain NFA requires specifying the selectivity order of
the events in the sequence. For example, to construct an
automaton for detecting the sequence a, b, c, it is necessary
to specify that b is expected to be the most frequent event,
followed by a, which is expected to be less frequent, followed
by c, which is expected to be the least frequent.

1The consumption policy is important for the semantics of
an event definition language. It specifies how to handle a
particular event once it is included in a match, i.e., whether
it can be reused for other matches, or should be discarded.
For the purpose of our discussion in this work, we assume
a reuse consumption policy, which means that an event in-
stance can be included in an unlimited number of matches
[16].

A tree NFA also employs lazy evaluation, but it does not
require specifying the selectivity order of the events in the
sequence. Instead, it computes the selectivity order at each
step in an ad hoc manner.

We experimentally evaluate our mechanism on real-world
stock trading data. The results demonstrate that the tree
NFA matching mechanism improves run-time performance
by two orders of magnitude in comparison to existing solu-
tions, while significantly reducing memory requirements. It
is also shown that for every stream of events, a tree NFA is
at least as efficient as the best performing chain NFA.

The remainder of the paper is organized as follows. Sec-
tion 2 describes related work. Section 3 briefly describes the
eager NFA evaluation framework. It also provides the termi-
nology and notations used throughout the paper. In Section
4 we introduce the concepts and ideas of lazy evaluation, ac-
companied by intuitive explanations and examples. Formal
definitions presented there prepare the ground for the rest
of the paper. In Section 5 we proceed to describe how a lazy
chain NFA can be constructed using given frequencies of the
participating events. We present a lazy tree NFA in Section
6. Section 7 contains the experimental evaluation. Section
8 summarizes the paper.

2. RELATED WORK
The detection of complex events over streams has become

a very active research field in recent years [12]. The earli-
est systems designed for solving this problem fall under the
category of Data Stream Management Systems. Those sys-
tems are based on SQL-like specification languages and focus
on processing data coming from continuous, usually multi-
ple input streams. Examples include NiagaraCQ [10], Tele-
graphCQ [9] and STREAM [21]. Later, the need to analyze
event notifications of interesting situations – as opposed to
generic data – was identified. Then, complex event process-
ing systems were introduced. One example of an advanced
CEP system is Amit [2], based on a strongly expressive de-
tection language and capable of processing notifications re-
ceived from different sources in order to detect patterns of
interest. SPADE [17] is a declarative stream processing en-
gine of System S. System S is a large-scale, distributed data
stream processing middleware developed by IBM. It pro-
vides a computing infrastructure for applications that need
to handle large scale data streams. Cayuga [7, 13, 14] is a
general purpose, high performance, single server CEP sys-
tem developed at Cornell University. Its implementation
focuses on multi-query optimization methods.

Apart from the SASE language, on which our mechanism
is based, many other event specification languages were pro-
posed. SASE+ [22] is an expressive event processing lan-
guage from the authors of SASE. This language extends the
expressiveness of SASE by including iterations and aggre-
gates. CQL [5] is an expressive SQL-based declarative lan-
guage for registering continuous queries against streams and
updatable relations. It allows creating transformation rules
with a unified syntax for processing both information flows
and stored relations. CEL (Cayuga Event Language) [7, 13,
14] is a declarative language used by the Cauyga system,
supporting patterns with Kleene closure and event selection
strategies, including partition contiguity and skip till next
match. TESLA [11] is a newer declarative language, at-
tempting to combine high expressiveness with a relatively
small set of operators, achieving compactness and simplic-



ity. Even though our work focuses exclusively on sequence
patterns, extensions to other operators are possible, includ-
ing those added by the aforementioned languages.

Unlike most recently proposed CEP systems, which use
non-deterministic finite automata (NFAs) to detect patterns,
ZStream [24] uses tree-based query plans for the representa-
tion of query patterns. The careful design of the underlying
infrastructure and algorithms makes it possible for ZStream
to unify the representation of sequence, conjunction, dis-
junction, negation, and Kleene closure as variants of the join
operator. While some of the ideas discussed in this work are
close to ours, it is not based on state automata and employs
matching trees instead.

Several works mention the concept of lazy evaluation in
the context of event processing. In [4], the authors describe
“plan-based evaluation,” where, similarly to our work, tem-
poral properties of primitive events can be exploited to re-
duce network communication costs. The focus of their pa-
per is on communication efficiency, whereas our goal is to
reduce computational and memory requirements. [15] dis-
cusses a mechanism similar to ours, including the concept
of buffering incoming events into an intermediate storage.
However, the authors only consider a setting in which the
frequencies of primitive events are known in advance and do
not change. An optimization method based on postponing
redundant operations was proposed by [31]. This work fo-
cuses on optimizing Reuse Consumption Policy queries by
dividing evaluation into a shared part (pattern construction)
and a per-instance part (result construction). The main
goal of the authors is to improve the performance of Kleene
closure patterns and solve the problem of imprecise times-
tamps. In comparison, our work focuses solely on sequence
pattern matching.

The concept of lazy evaluation has also been proposed
in the related research field of online processing of XML
streams. [8] describes an XPath-based mechanism for filter-
ing XML documents in stream environments. This mecha-
nism postpones costly operations as long as possible. How-
ever, the goal in this setting is only to detect the presence or
absence of a match, whereas our focus is on finding all pos-
sible matches between primitive events. In [20], a technique
for lazy construction of a DFA (Deterministic Finite Au-
tomaton) on-the-fly is discussed. This work is motivated by
the problem of exponential growth of automata for XPath
pattern matching. Our work solves a different problem of
minimizing the number of runtime NFA instances rather
that the size of the automaton itself. In addition, while
there is some overlap in the semantics of CEP and XPath
queries, they were designed for different purposes and allow
different types of patterns to be defined.

3. EAGER EVALUATION
In this section we present a subset of the SASE language

for defining sequence patterns. SASE itself is thoroughly dis-
cussed in [3]. We formally describe the eager NFA matching
mechanism, how a given sequence is compiled into an NFA,
and how this NFA is used at runtime to detect the pattern.
Here we also introduce the notations and terminology to be
used in later sections.

3.1 Specification Language
Most CEP systems enable users to define patterns using a

declarative language. Common patterns supported by such

languages include sequences, conjunctions, disjunctions, and
negation of events. As described in Section 3.2, patterns
expressed in these languages will be compiled into a state
machine for use by the detection mechanism.

The SASE language combines a simple, SQL-like syntax
with a high degree of expressiveness, making it possible to
define a wide variety of patterns. The semantics and ex-
pressive power of the language are precisely described in a
formal model. In its most basic form, SASE event definition
is composed of three building blocks: PATTERN, WHERE
and WITHIN.

Each primitive event in SASE has an arrival timestamp,
a type, and a set of attributes associated with the type.
An attribute is a data item related to a given event type,
represented by a name and a value. Attributes can be of
various data types, including, but not limited to, numeric
and categorical.

The PATTERN clause defines the pattern of simple events
we would like to detect. Each event in this pattern is repre-
sented by a unique name and a type. The only information
it provides is with regard to the types of participating events
and the relations between them. In this work we limit the
discussion to sequence patterns. A sequence is defined using
the operator SEQ(A a, B b,...), which provides an ordered
list of event types and gives a name to each event in the
sequence.

The WHERE clause specifies constraints on the values of
data attributes of the primitive events participating in the
pattern. These constraints may be combined using Boolean
expressions. We assume, without loss of generality, that this
clause is in the form of a CNF formula.

Finally, the WITHIN clause defines a time window over
the entire pattern, specifying the maximal allowed time in-
terval (in some predefined time units) between the arrival
timestamps of the first primitive event and the last one.
This time interval is denoted by W .

As an example, consider the pattern presented in Exam-
ple 1. There is a single event type, which we will denote
by E. This event type has two data attributes: a categori-
cal attribute called “ticker,” which represents the stock for
which the event has occurred, and a numerical attribute
called “price,” which is the price of the stock. Assuming the
stocks a, b, and c are MSFT, GOOG and AAPL respec-
tively, this pattern can be declared in SASE, as depicted in
Figure 1.

PATTERN SEQ(E a, E b, E c)
WHERE (a.ticker = MSFT) AND (b.ticker=GOOG)
AND (c.ticker = AAPL) AND (a.price < b.price) AND
(b.price<c.price)
WITHIN 4 hours

Figure 1: SASE specification of a pattern from Ex-
ample 1

3.2 The Eager Evaluation Mechanism
In this subsection we formally describe the structure of the

eager NFA and how it is used to detect patterns. Formally,
an NFA is defined as follows:

A = (Q,E, q1, F ) ,

where:



• Q is a set of states;

• E is a set of directed edges, which can be of several
types, as described below;

• q1 is an initial state;

• F is a final accepting state.

An edge is defined by the following tuple:

e = (qs, qd, action, name, condition) ,

where qs is the source state of an edge, qd is the destination
state, action is always one of those described below, name
may be any of the event names specified in the PATTERN
block, and condition is a Boolean predicate that has to be
satisfied by an incoming event in order for the transition to
occur.

Evaluation starts at the initial state. Transitions between
edges are triggered by event arrivals from the input stream.
The runtime engine runs multiple instances of an NFA in
parallel, one for each partial match detected up to that
point. Each NFA instance is associated with a match buffer.
As we proceed through an automaton towards the final state,
we use the match buffer to store the primitive events consti-
tuting a partial match. It is always empty at q1, and events
are gradually added to it during the evaluation. This is done
by executing an appropriate edge action.

The action associated with an edge is performed when the
edge is traversed. It can be one of the following (the actions
listed below are simplified versions of the ones defined for
SASE [3]):

• take – consumes the event from the input stream and
adds it to the match buffer.

• ignore – skips the event (consumes an event from an
input stream and discards it instead of storing it in
any kind of buffer).

A condition on an edge reflects the conditions in the WHERE
part of the input pattern. It may reference the currently ac-
cepted event name, as well as events in the match buffer.

If during the traversal of an NFA instance the final state
is reached, the content of the associated match buffer is re-
turned as a successful match for the pattern. If during eval-
uation the time constraint specified in the WITHIN block
is violated, the NFA instance and the match buffer are dis-
carded.

Figure 2 illustrates the NFA compiled for the pattern in
Figure 1. Note that the final state can only be reached
by executing three take actions; hence, successful evaluation
will produce a match buffer containing three primitive events
comprising the detected match.

The match buffer should be thought of as a logical con-
struct. As discussed by Agrawal et al. [3], there is no need
to allocate dedicated memory for each match buffer, since
multiple match buffers can be stored in a compact manner
that takes into account that certain events may be included
in many buffers.

Note that there may be several edges leading from the
same state and specifying the same event type, whose con-
ditions are not mutually exclusive (i.e., an event can satisfy
several conditions). In this case, an event will cause more
than one traversal from a given state. If an event triggered
the traversal of n edges, the instance will be replicated n−1

times. On each of the resulting n instances a different edge
will be traversed. As an example, consider the situation de-
scribed in Figure 3. In 3a, there is some instance of an NFA
from Figure 2 with an event m in its match buffer, currently
in state q2 (we mark the current state of an instance with
bold border). In 3b, an event g, g.ticker = GOOG has ar-
rived. This event triggers the traversal of two edges, namely
the outgoing take edge and the outgoing ignore edge. As a
result, one new instance will be created to allow both traver-
sals to occur.

3.2.1 Eager Sequence NFA Structure
This section describes the structure and construction of an

NFA that detects a sequence pattern of n primitive events.
A sequence pattern will be compiled into a chain of n+ 1

states, with each of the first n states corresponding to each
primitive event in the sequence, followed by a final state F .
Each state, except for the last one, has an edge leading to
itself for every event name (referred to as self-loops) and
an edge leading to the next state (referred to as connecting
edges).

The self-loops for all event names have an ignore action.
The edge leading from the kth state to the next one has a
take action with the event name of the kth event in the se-
quence. The purpose of the self-loops is to allow detection of
all possible combinations of events. This is achieved by ex-
ploiting non-deterministic behavior as illustrated by Figure
3.

To describe the conditions on the edges, we define an aux-
iliary predicate, known as the timing predicate, and denoted
by pt. Let tmin denote the timestamp of the earliest event
in the match buffer, and now() denote the current time. If
the match buffer is empty, tmin holds the current time. The
timing predicate checks whether the match buffer still ad-
heres to the timing constraint, i.e., all primitive events are
located within the allowed time window W . More formally,
pt = (tmin > now()−W ). The condition on self-loops is pt.
The conditions in the WHERE part are translated to the
conditions on the connecting edges as follows:

1. For each clause of the CNF, let i denote the index of
the latest primitive event it contains (in the specified
order of appearance in the pattern).

2. The condition on the edge connecting the ith state
with the following state is a conjunction of all the CNF
clauses with the index i and the timing predicate.

For example, consider constructing a sequence NFA for the
pattern in Figure 1. The edge from q1 to q2 will only contain
a part of the global condition on a, the next edge will specify
the constraint on b and the mutual constraint on a and b,
and, finally, the final edge towards the accepting state will
validate the constraint on c and the mutual constraint on c
and b.

Figure 2 demonstrates the result of applying the construc-
tion process described above on the pattern in Figure 1.

3.2.2 Runtime Behavior
As described above, the pattern detection mechanism con-

sists of multiple NFA instances running simultaneously, where
each instance represents a partial match. Each NFA instance
contains the current state and a match buffer. Upon startup,
the system creates a single instance with an empty match



Figure 2: NFA for Example 1

Figure 3: Non-deterministic evaluation of NFA for Example 1. (a) The sole NFA instance is currently at
the second evaluation stage, with a single event in its match buffer. (b) A new event g arrives, and now the
NFA instance can either (1) accept the new event as a part of the potential match and proceed to the next
step, or (2) ignore it (by traversing a self loop) and keep waiting for a future event of the same name. The
problem is solved by duplicating the instance and applying both moves.

buffer, whose current state is the initial state. Every event
received on the input stream will be applied to all NFA in-
stances. If the timing predicate is not satisfied on a given
instance (i.e., the earliest event in the match buffer is not
within the allowed time interval), the instance and the asso-
ciated match buffer will be discarded. Otherwise, an event
will either cause a single edge traversal on an unconditional
ignore edge, or also an additional traversal on a take edge.
In the former case the event will be ignored. In the lat-
ter case the instance will be duplicated, and both possible
traversals will be executed on different copies.

4. LAZY EVALUATION
In this section we present our main contribution, the lazy

evaluation mechanism.
First, we will demonstrate the need for such a mechanism

and show its effectiveness using the continuation of Exam-
ple 1. Consider a scenario where on a certain day primitive
events corresponding to a and b (MSFT and GOOG respec-
tively) are very frequent, while events corresponding to c
(AAPL) are relatively rare. More specifically, assume that
within a time window t we receive 100 instances of MSFT
stock events, denoted a1

p1 ,...,a100
p100 , followed by 100 instances

of GOOG stock events, denoted b1p101 ,...,b100p200 , followed by a
single instance of an AAPL stock event, denoted c1p201 . In

addition, let us assume that there is only a single bipi event
such that pi < p201. In such a case, an eager NFA will eval-
uate the condition a.price < b.price 10,000 times, and the
condition b.price < c.price for every pair of a and b that
satisfied the first condition (up to 10,000 times). We may

substantially reduce the number of evaluations if we defer
the match detection process until the single event for AAPL
has arrived, then pair it with appropriate GOOG events, and
finally check which of these pairs match a MSFT event. In
this case we need to perform 100 checks of b.price < c.price,
and an additional 100 checks of a.price < b.price, resulting
in a total of 200 evaluations in comparison to at least 10,000
evaluations in the eager strategy. In addition, note that at
every point in time, we hold a single partial match, as op-
posed to the eager mechanism, which may hold up to 10,000
partial matches.

The lazy evaluation model is able to take advantage of
varying degrees of selectivity among the events in the se-
quence to significantly reduce the use of computational and
memory resources. For the purpose of our discussion, selec-
tivity of a given event name will be defined as an inverse of
the frequency of arrival of events that can be matched to this
name. We present the required modifications to the eager
NFA model so that it can efficiently support lazy evaluation.

The idea behind lazy evaluation is to enable instances to
store incoming events, and if necessary, retrieve them later
for processing. To support this, an additional buffer, re-
ferred to as the input buffer, is associated with each NFA
instance, and an additional action, referred to as store, is
defined. When an edge with a store action is traversed, the
event causing the traversal is inserted into the input buffer.
The input buffer stores events in chronological order. Those
events can then be accessed during later evaluation steps,
using a modification on the take edge that we will define
shortly.



An additional feature of lazy evaluation is that a sequence
is constructed by adding events to partial matches in de-
scending order of selectivity (rather than in the order speci-
fied in the sequence). From now on, we will refer to the order
provided in the input query as the sequence order, and to
the actual evaluation order as the selectivity order. As an
example, consider the pattern from Example 1 again. As-
sume we wish to construct a lazy NFA that first matches
b, then c, and finally a. In this case, our sequence order is
a, b, c while our selectivity order is b, c, a.

Since events may be added to the match buffer in an or-
der that is different from the sequence order, it is necessary
to specify to which item in the sequence they match. To
support this, the take action is modified to include an event
name that will be associated with the event it inserts into
the match buffer (the names are taken from the definition in
the PATTERN block). The notation take(a) denotes that
the name a will be associated with events inserted by this
take action. In the above example, to construct a lazy NFA
using the selectivity order b, c, a, we will assign take(b) edge
to its first state, take(c) to its second state and take(a) to
the third and final state.

Finally, the model must include a mechanism for efficient
access to events in the input buffer. For that purpose, we
change the semantics of the take action. Whereas in the
eager NFA model an event accepted by this type of edge is
always taken from the input stream, in the lazy NFA model
we extend this functionality to also trigger a search inside
the input buffer, which returns events to be examined for a
current match. If the result of this search, combined with
events appearing in the input stream, contains more than
a single event with the required name, the sequence will
be evaluated non-deterministically by spawning additional
NFA instances.

Note that invoking a full scan of the entire input buffer on
each take action of each NFA instance would be inefficient
and redundant. It is not required since, in general, only a
certain range of events in the input buffer are relevant to a
given take edge. Searching for a potentially matching event
in any other interval is unnecessary and will not result in a
match.

We will demonstrate the above observation using the fol-
lowing example. Consider again the pattern from Example
1. We will show the necessity of limiting the search interval
on two different selectivity orders: a, b, c and c, a, b.

1. Evaluate the sequence a, b, c using selectivity order a, b, c.
For the first outgoing edge detecting a, no constraints
can be defined and the event can be taken either from
the input buffer or the input stream. Note however
that, since at this stage the input buffer will contain
no a instances, in fact only the input stream should be
considered. At the next state and the next outgoing
edge detecting b, we are only interested in events fol-
lowing the particular instance of a (which was detected
at the previous state and is now located in the match
buffer). By definition of the input buffer, however,
at this stage it can only contain b events that arrived
before a. Hence, there is no need to scan the input
buffer, but only to wait for the arrival of b from the
input stream. The same holds for c, which is detected
at the take edge from the third to the final state.

2. Evaluate the sequence a, b, c using selectivity order c, a, b.
For the first outgoing edge detecting c, no limitations
can be formulated. It will only take events from the
input stream, since the input buffer is empty. For the
second outgoing take edge detecting a, we are limited
to events preceding the already accepted c instance.
Consequently, any a event arriving on the input stream
will be irrelevant due to sequence order constraints. As
for the input buffer, only the events that arrived be-
fore c are to be considered. Finally, examine the third
edge detecting b. Since we are searching for an event
which is required to precede an already arrived c, any
possible match can only be found in the input buffer
and not in the input stream. Moreover, since the pat-
tern requires a to precede b, not all b events located
in the input buffer are to be returned and evaluated,
but only those succeeding the accepted a instance and
preceding the accepted c instance located in the match
buffer.

Figure 4 illustrates the two examples above.

Figure 4: Scoping Parameters Example

Since the relevant range of events is always known in ad-
vance, the redundant operations can be avoided by providing
a way to specify it for any such edge. To this end, we modify
the definition of a take edge to include a pair of scoping pa-
rameters. Scoping parameters specify the exact behavior of
an edge, defining the beginning and the end of the relevant
scope respectively. For the purpose of this discussion, scope
is defined as a time interval (possibly open and including
future time) in which the event expected by a given edge is
required to arrive. The scoping parameters specify whether
the source of events considered by this edge should be the
input buffer or the input stream. If the data should be re-
ceived from the input buffer, the scoping parameters also
indicate what part of the input buffer is applicable.

More formally, the scoping parameters of an edge e are
denoted by e(s, f), where s is the start of the scope and f is
the end of the scope. The values of both parameters can be
either event names or special keywords start or finish. When
the value of some scoping parameter is an event name, an
event with an appropriate name is examined in the match
buffer, and its timestamp is used for deriving the actual
scope as described below.

The parameter s can accept one of the following values:

• The reserved keyword start: in this case, events are
taken from the beginning of the input buffer. This
scoping parameter is applicable if no event preceding
the event taken by this edge according to sequence
order has already been handled by the NFA.

• A name of a primitive event: in this case, only events
matched to names succeeding the corresponding event



from the match buffer in the sequence order are read
from the input buffer.

The parameter f can accept one of the following values:

• A name of a primitive event: in this case, only events
matched to names preceding the corresponding event
from the match buffer in the sequence order are read
from the input buffer,

• The reserved keyword finish: in this case, events are
also received from the input stream.

We will demonstrate the definitions above on examples from
the beginning of the section, illustrated also in Figure 4.

1. Evaluation of the sequence a, b, c using selectivity order
a, b, c. For the first edge detecting a, the scoping pa-
rameters will be e1 (start, finish). For the next edge
detecting b, the scoping parameters will be e2 (a, finish).
Finally, for the following edge detecting c, the scoping
parameters will be e3 (b, finish).

2. Evaluation of the sequence a, b, c using selectivity order
c, a, b. For the first edge detecting c, the scoping pa-
rameters will be e1 (start, finish). For the next edge
detecting a, the scoping parameters will be e2 (start, c).
Finally, for the following edge detecting b, the scoping
parameters will be e3 (a, c).

To summarize, a combination of s and f defines the time
interval for valid events for the given take edge, based on
timestamps of events. This interval can also be unlimited
from each of its sides. If unlimited from the left, all events
in the input buffer are considered until the right delimiter.
If unlimited from the right, all events in the input buffer are
considered, starting from the left delimiter, and events from
input stream (i.e., arriving as a take operation takes place)
are considered as well.

The following sections will explain how scoping parame-
ters are calculated for different types of lazy NFA.

5. CHAIN NFA
In this section we will formally define the first of two new

NFA types, the chain NFA.
The chain NFA utilizes the constructs of the lazy evalua-

tion model, evaluating events according to a selectivity order
given in advance. It consists of n + 1 states, arranged in a
chain. Each of the first n states is responsible for detecting
one primitive event in the pattern, and the last one is the
accepting state. The states are sorted according to the given
selectivity order, which we will denote by sel.

We will also denote by ei the ith event in sel and by qi
the corresponding state in the chain. The state qi will have
an outgoing edge take(ei), a store edge for all events which
are yet to be processed (succeeding ei in sel), and an ignore
edge for all already processed events (preceding ei in sel).

More formally, let Ei denote the set of outgoing edges of
qi. Let Precord (e) denote all events preceding an event e
in an order ord. Similarly, let Succord (e) denote all events
succeeding e in ord. Then, Ei will contain the following
edges:

• eignore
i = (qi, qi, ignore, Precsel (ei) , true): any event

whose name corresponds to one of the already taken
events is ignored.

• estorei = (qi, qi, store, Succsel (ei) , true): any event that
might be taken in one of the following states is stored
in the input buffer.

• etakei = (qi, qi+1, take, ei, condi ∧ InScopei): an event
with the name ei is taken only if it satisfies the condi-
tions required by the initial pattern (denoted by condi)
and is located inside the scope defined for this edge
(denoted by a predicate InScopei).

The chain NFA will thus be defined as follows:

A = (Q,E, q1, F, ) ,

where:

Q = {qi|1 ≤ i ≤ n} ∪ {F}

E =

n⋃
i=1

Ei

Figure 5 demonstrates the chain NFA for the pattern
shown in Figure 1. For simplicity, ignore edges are omit-
ted, as are InScopei predicates.

Figure 5: Chain NFA for Example 1

We will now define how scoping parameters for take edges
of the chain NFA are calculated. Given a set E of events, let
Latestord (E) be the latest event in E according to ord, and,
correspondingly, let Earliestord (E) be the earliest event in
E according to ord. Finally, let seq denote the original se-
quence order as specified by the input pattern.

The scoping parameters for a take edge etakei accepting a
primitive event ei will be defined as follows:

s
(
etakei

)
=

{
Latestsel (Precsel (ei) ∩ Precseq (ei))

start

if Precsel (ei) ∩ Precseq (ei) 6= ı̈¿ 1
2

otherwise

f
(
etakei

)
=

{
Earliestsel (Precsel (ei) ∩ Succseq (ei))

finish

if Precsel (ei) ∩ Succseq (ei) 6= ı̈¿ 1
2

otherwise

A formal proof of the equivalence of the eager NFA and
the chain NFA was omitted due to space considerations. The
correctness of this claim implies that any eager sequence
NFA can be modified into a chain NFA using any selectivity
order without affecting the language it accepts.

6. TREE NFA
Chain NFA described in the previous section may signif-

icantly improve evaluation performance, provided we know
the correct order of selectivity. As shown in the examples
above, the more drastic the difference between the arrival
rates of different events, the greater the potential improve-
ment.

There are, however, several drawbacks which severely limit
the applicability of chain NFA in real-life scenarios. First,
the assumption of specifying the selectivity order in advance



is not always realistic. In many cases, it is hard or even im-
possible to predict the actual selectivity of primitive events.
Note that the described model is very sensitive to wrong
guesses, as specifying a low-selectivity event before a high-
selectivity event will yield many redundant evaluations and
overall poor performance. Second, even if it is possible to set
up the system with a correct selectivity order, we can rarely
guarantee that it will remain the same during the run. In
many real-life applications the data is highly dynamic, and
arrival rates of different events are subject to change on-the-
fly. Such diversity may cause an initially efficient chain NFA
to start performing poorly at some point. Continual changes
may come, for example, in the form of bursts of usually rare
events.

To overcome these problems we introduce the notion of ad
hoc selectivity. Instead of relying on a single selectivity order
specified at the beginning of the run, we determine the cur-
rent selectivity on-the-fly and modify the actual evaluation
chain according to the order reflecting the current frequen-
cies of the events. Our NFA will thus have a tree structure,
with each of its nodes (states) “routing” the incoming events
to the next “hop” according to this dynamically changing
order. By performing these “routing decisions” at each eval-
uation step, we guarantee that any partial match will be
evaluated using the most efficient order possible at the mo-
ment.

To implement the desired functionality, we require that
each state have knowledge regarding the current selectivity
of each event name. We will use the input buffer introduced
above to this end. By its definition, the input buffer of
a particular NFA instance contains all events that arrived
from the input stream within the specified time window.
For each event name, we will introduce a counter containing
the current number of events matched with this event name
inside the buffer. This counter will be incremented on each
insertion of a new event with the corresponding name and
decremented upon its removal.

Matching the pattern requires at least one event corre-
sponding to each event name to be present in the input
buffer. Hence, we will add a condition stating that no evalu-
ation will be made by a given instance until all the counters
are greater than zero. Only when all of the event coun-
ters are greater than zero does it make sense to determine
the evaluation order, since otherwise the missing event(s)
may not arrive at all and the partial matching process will
be redundant. After the above condition is satisfied, we
can derive the exact selectivity order based on the currently
available data by sorting the counters.

The above calculation will be performed by each state on
each matching attempt, and the resulting value will be used
to determine the next step in the evaluation order. In terms
of NFA, this means that a state needs to select the next state
for a partial match based on the current contents of the input
buffer. To this end, a state has several outgoing take edges
as opposed to a single one in chain NFA. Each edge takes a
different event name and the edges point to different states.
We will call the NFA employing this structure a tree NFA
and will formally define this model below.

Figure 6 illustrates a tree NFA for the pattern in Figure
1. For simplicity, ignore edges are omitted.

In formal terms, a tree NFA is structured as a tree of depth
n−1, the root being the initial state and the leaves connected
to the accepting state. Nodes located at each layer k; 0 ≤

Figure 6: Tree NFA for Example 1

k ≤ n−1 (i.e., all nodes in depth k) are all states responsible
for all orderings of k event names out of the n event names
defined in the sequence. Each such node has n− k outgoing
edges, one for each event name which does not yet appear in
the partial ordering this node is responsible for. Those edges
are connected to states at the next layer, responsible for all
extensions of the ordering of this particular node to length
of k + 1. The only exceptions to this rule are the leaves,
which have a single outgoing edge, connected directly to the
final state.

For instance, in the example in Figure 6, layer 0 contains
the initial state q0, layer 1 contains states q1, q2, q3, and layer
2 contains the states q12, q13, q21, q23, q31, q32.

More formally, the states for a tree NFA are defined as
follows. Let Ok denote the ordered subsets of size k of the
event names e1, · · · , en. Let

Qk = {qord|ord ∈ Ok}

denote the set of states at the layer k (note that Q0 = {q0}).
Then the set of all states of the tree NFA is

Q =

n−1⋃
k=0

Qk ∪ {F}

q0 = q�.

To describe the edges and their respective conditions, some
preliminary definitions are needed.

First, we will complete the definitions required for the
scoping parameters. Since each state qord corresponds to
some evaluation order prefix ord, we will set orde = ord
for each outgoing edge e of qord. As mentioned earlier, it is
enough for orde to be a partial order ending with ê. In other
words, each take edge in the tree derives the corresponding
scope for its target event name from the order used for reach-
ing this edge.



Similarly to the chain NFA, the predicate InScopeord (e)
will denote that an event e is located within the correspond-
ing scope (s (qord, e) , f (qord, e)).

Let ce denote the value of the counter of events associ-
ated with the name e in the input buffer. Let se (qord) =
min ({ce|e /∈ ord}) denote the most selective (i.e., most in-
frequent) event in the input buffer during the evaluation
step in which qord is the current state. Finally, we will de-
fine the predicate pne (qord) (non-empty) as the condition
on the input buffer of state qord to contain at least a single
instance of each primitive event not appearing in ord and
another predicate pse (qord, e) to be true if and only if an
event e corresponds to event type se (qord). Let Eord denote
the set of outgoing edges of qord. Then, Eord will contain
the following edges:

• eignore
ord = (qord, qord, ignore, ord, true): any event whose

name corresponds to one of the already taken events
(appearing in the ordering this state corresponds to)
is ignored.

• For each primitive event e /∈ ord:

– estoreord,e = (qord, qord, store, e,¬pne (qord) ∨ ¬pse (qord, e)):
when either the pne or pse condition is not satis-
fied, the incoming event is stored into the input
buffer.

– etakeord,e = (qord, qord,e, take, e, pne (qord) ∧ pse (qord, e) ∧ conde ∧ InScopeord (e)):
if the contents of the input buffer satisfy the pne

and pse predicates and an incoming event with a
name e (1) satisfies the conditions required by the
initial pattern (denoted by conde); and (2) is lo-
cated within the scope defined for this state, it is
taken into the match buffer and the NFA instance
advances to the next layer of the tree.

• For states in the last layer (where |ord| = n), the take
edges are of the form
estoreord,e = (qord, F, take, e, pne (qord) ∧ conde ∧ InScopeord (e)).

The set of all edges for tree NFA is defined as follows:

E =
⋃

{ord|qord∈Q}

Ei,

and the NFA itself is defined as follows:

A = (Q,E, q1, F, ) ,

where Q and E are as defined above.
It can be observed that a tree NFA contains all the pos-

sible chain NFAs for a given sequence pattern, with shared
states for common prefixes. Thus, the execution of a tree
NFA on any input is equivalent to the execution of some
chain NFA on that input. The conditions on tree NFA edges
are designed in such a way that the most selective event is
chosen at each evaluation step. Hence, this chain NFA is
always the one whose given selectivity order is the actual
selectivity order as observed from the input stream. An ex-
ample can be seen in Figure 6. Nodes and edges marked in
bold illustrate the evaluation path for an input stream sat-
isfying count(AAPL) ≤ count(GOOG) ≤ count(MSFT ),
i.e., corresponding to the selectivity order c,b,a.

The scoping parameters for a tree NFA are calculated the
same way as for a chain NFA, as described in Section 5.2

2Contrary to the chain NFA, the tree NFA does not have
a predefined selectivity order sel to be used for calculating

6.1 Implementation Issues
When implementing the tree NFA, the number of states

might be exponential in n. To overcome this limitation,
we propose to implement lazy instantiation of NFA states
– only those states reached by at least a single active in-
stance will be instantiated and will actually occupy memory
space. After all NFA instances reaching a particular state
are terminated, the state will be removed from the NFA as
well. Even though the worst case complexity remains expo-
nential in this case, in practice there will be fewer changes
in the event rates than there will be new instances created.
This conclusion is supported by our experiments, which are
explained in the following section.

7. EXPERIMENTAL EVALUATION
We evaluated the performance of chain and tree NFA in

comparison to the eager model. Our metrics for this com-
parison and analysis of both evaluation mechanisms are the
runtime complexity and the memory consumption.

As a measure of runtime complexity, we counted how
many times a condition on an edge is evaluated. For in-
stance, consider the pattern from Example 1 and two succes-
sive streams of events: a1

p=3,b1p=7,c1p=9 and a1
p=3,b2p=13,c1p=9.

The evaluation of the first stream will cost us exactly three
operations (validation of conditions on edges q1 → q2, q2 →
q3 and q3 → F ), while the second stream will cost only two
(q1 → q2 and q2 → q3), since the condition on q2 → q3 is
not satisfied and the evaluation stops at that point.

We measured memory consumption by two metrics, corre-
sponding to the two kinds of data stored by the NFA during
runtime. The first metric was the peak number of simulta-
neously active NFA instances, and the second was the peak
number of buffered events waiting to be processed. Note
that those metrics are not completely independent, as an
NFA instance also includes a match buffer and an input
buffer containing stored events.

All NFA models under examination (eager, chain and tree)
were implemented in Java and integrated into the FINCoS
framework [25]. FINCoS, developed at the University of
Coimbra, is a set of benchmarking tools for evaluating the
performance of CEP systems.

All experiments were run on a HP 2.53 Ghz CPU and 8.0
GB RAM. We used the real-world historical data of stock
prices from the NASDAQ stock market, taken from [1]. This
data spans a 5-year period, covering over 2100 stock iden-
tifiers with prices updated on a per minute basis. Each
primitive event is of type ’Stock’ and has the following at-
tributes: stock identifier (ticker), timestamp, and current
price. We also assumed that each event has an attribute
specifying to which sector the stock belongs, e.g., hi-tech,
finance or pharmaceuticals.

In order to support efficient detection of the pattern de-
scribed below, preprocessing was applied to this preliminary
data. For each event, h-1 chronologically ordered previous
prices of the respective stock were added as new attributes,
constructing a history of h successive stock prices.

the scoping parameters. Instead, for an edge etakeord,e we will
substitute sel with the partial order ord. This order is the
effective selectivity order applied on the current input.



During all measurements, the detection pattern for the
system was specified as follows: a sequence of three stock
identifiers was requested, with each stock belonging to some
predefined category. In addition, we required consecutive
stocks in the sequence to be highly correlated (i.e., the Pear-
son correlation coefficient between stocks price histories was
above some predefined threshold). The correlation was cal-
culated for each pair of events based on a history list each
event carries, built as described above. The final stock in a
sequence was required to be a Google stock, the first stock
belonged to the hi-tech sector, and the second stock be-
longed to the finance sector. The time window for event
detection was set to the length of the price history.

Using the previously described SASE language, the afore-
mentioned pattern can be declared in the following way:

PATTERN SEQ(Stock a, Stock b, Stock c)
WHERE (a.ticker∈Finance) AND (b.ticker∈Hi-
Tech) AND (c.ticker = GOOG) AND
(Corr (a.history, b.history)>T) AND
(Corr (b.history, c.history)>T)
WITHIN h

In the described pattern, events a and b share approxi-
mately equal frequencies, which also fluctuated slightly over
time, making each of the event types slightly more dominant
part of the time. Event c, on the other hand, is significantly
less frequent. One parameter of interest that affects the
overall efficiency of the presented evaluation models is the
relative frequency of c with respect to a and b, which we
will denote as fc. The lower the value of fc, the larger the
expected performance gain of our proposed lazy evaluation
mechanisms. The value of fc is controlled by modifying the
input stream, either duplicating or filtering out c events.

In our first experiment, we compared the runtime com-
plexity and memory consumption of the eager sequence NFA,
all the possible chain NFAs, and the tree NFA.

Figure 7: Comparison of NFAs by number of oper-
ations (logarithmic scale) for sequence a,b,c

Figure 7 describes the number of computations performed
by each NFA as a function of fc. The following observations
can be made:

1. Eager NFA shows the same, very poor performance for
any value of fc.

2. Lazy chain NFAs constructed with c as the second or
the third event (namely abc, bac, acb and bca) display
equally suboptimal performance because detecting the

pattern using these orders implies creation and manip-
ulation of large numbers of NFA instances, just as with
eager NFA.

3. Lazy chain NFAs constructed with c as a first event,
namely cba and cab, perform one to three orders of
magnitude better. This exactly matches our expec-
tations, as starting the evaluation process only when
the rarest event arrives allows us to significantly re-
duce the number of instances, and hence the number
of calculations.

4. Tree NFA demonstrates slightly better performance
than that of the best chain NFA (cab in our case). This
minor improvement is due to the changes in the rela-
tive frequencies of a and b events, to which tree NFA
was able to adapt as a result of its dynamic structure.

As the ratio of c events to all events grows and approaches
1, all the graphs are expected to eventually converge to the
upper value. This is because, when all events in a pattern
share the same frequency, no selectivity order is optimal (or,
interchangeably, all orders are equally optimal), and thus
changing the evaluation order will not improve performance.

In our next experiment we evaluated patterns with the
most selective event c placed at the beginning or in the
middle, producing the target sequences c,b,a and a,c,b. We
used the same set of conditions as in the previous exper-
iment. The results of the performance evaluation of the
system when invoked on those patterns are shown in Figure
8. The main observation is that the performance of any lazy
NFA is independent of the sequence order, as selectivity or-
ders ending with c will always perform poorly, whereas those
starting with c will show better results. The only notable
difference is the performance of eager NFA, which signifi-
cantly improves on the c,b,a pattern. The reason is that in
this case the sequence order is also the most efficient selec-
tivity order. It can be seen that, for any pattern, the tree
NFA remains superior.

Now we proceed to the memory consumption comparison.
As mentioned above, there are two different kinds of data
stored by the NFA: instances and incoming primitive events.
As presented in our theoretical analysis results, eager NFA
tends to keep significantly larger numbers of instances in
memory simultaneously than does lazy NFA. As for primi-
tive events, lazy NFA stores them in the input buffer, while
eager NFA keeps most of them inside the match buffers of the
pending instances. Hence, memory requirements for buffer-
ing of events are virtually identical for all NFA types. This
theoretical observation was also supported by our experi-
ments. Therefore, in order to compare memory consump-
tion, only the peak number of instances held simultaneously
in memory should be considered.

Figure 9 demonstrates the peak number of instances gen-
erated by the different types of NFAs discussed above when
detecting the sequence a,b,c on inputs of various sizes. Only
some of the chain NFA graphs are shown. Other automata
produced outputs very similar to one of the displayed ones
and were omitted for the sake of clarity. It can be observed
that:

1. Lazy chain NFAs with c as a first event require mem-
ory for a smaller number of instances than the other
NFAs. This is because evaluation in these automata
occurs only upon arrival of a c event, at which point



Figure 8: Comparison of NFAs by number of op-
erations (logarithmic scale) for sequences c,b,a and
a,c,b

Figure 9: Comparison of NFAs by memory con-
sumption for sequence a,b,c

the whole match is already located in the input buffer.
Hence, there is no need to wait for additional input
from the stream and evaluation ends almost immedi-
ately in most cases.

2. Lazy chain NFAs corresponding to selectivity orders
starting with a consume significantly more memory,
which is comparable to the memory consumed by the
eager NFA. As the previous graph shows, NFAs based
on those orders use many instances simultaneously.
The number of such instances is proportional to that of
eager NFA; hence, they use approximately equivalent
memory in terms of NFA instances.

3. Lazy chain NFAs corresponding to selectivity orders
starting with b display better, yet still do not achieve
optimal memory utilization due to selectivity of mu-
tual conditions between a and b.

4. Memory consumption of the tree NFA is comparable
to that of the most efficient chain NFA, also in keeping
with our theoretical analysis.

In our last experiment we compared the performance of
the NFAs discussed above on data with dynamically chang-
ing frequencies of all primitive events. For this experiment
alone, synthetic data was used, generated using the FIN-
CoS framework [25]. An artificial stream was produced in
which the rarest event was switched after each 100,000 in-
coming events. Then, all NFAs were tested against this
input stream, while after each 10,000 incoming events the
number of computations was measured.

Figure 10 demonstrates the results. As in the previous
graph, some of the chain NFAs were omitted due to very
similar results. The x-axis represents the number of events
from the beginning of the stream. It can be thought of as
the closest estimate to the time axis. The y-axis represents
the number of computations per 10,000 events.

Figure 10: Comparison of NFAs by number of oper-
ations on highly dynamic input (logarithmic scale)
for sequence a,b,c

This figure illustrates the superiority of the tree NFA over
its competitors and its high adaptivity to changes in event
selectivity. At any single point there is one selectivity order
that is the most efficient given the current event frequen-
cies. The performance gain of the chain NFA based on that
order over the other chain NFAs reaches up to two orders
of magnitude. However, as soon as the event frequencies
change, this NFA loses its advantage. On the other hand,
the tree NFA shows consistent improvement over all chain
NFAs regardless of the input selectivity.

8. CONCLUSIONS
This paper presented a lazy evaluation mechanism for effi-

cient detection of complex sequence patterns. Unlike previ-
ous solutions, our system does not process the events in or-
der of their arrival, but rather according to their descending
order of selectivity. Two NFA topologies were proposed to
implement the above concept. The chain NFA requires the
selectivity order of the events in the sequence to be known
in advance. The tree NFA utilizes an adaptive approach by
computing the actual selectivity order on-the-fly. Our exper-
imental results showed that both chain NFA and tree NFA
achieve significant improvement over the eager evaluation
mechanism in terms of performance and memory consump-
tion.
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