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Abstract

Physical memory is the most expensive resource in today’s cloud computing platforms.

Cloud providers would like to maximize their clients’ satisfaction by renting precious

physical memory to those clients who value it the most. But real-world cloud clients are

selfish: they will only tell their providers the truth about how much they value memory

when it is in their own best interest to do so. Under these conditions, how can providers

find an efficient memory allocation that maximizes client satisfaction?

This research presents Ginseng, the first market-driven framework for efficient

allocation of physical memory to selfish cloud clients. Ginseng incentivizes selfish

clients to bid their true value for the memory they need when they need it. Ginseng

continuously collects client bids, finds an efficient memory allocation, and re-allocates

physical memory to the clients that value it the most.

In this research, an approach for a new type of application for efficient memory

allocation in a dynamic memory cloud computer is suggested. The efficiency of the

approach is demonstrated through a special developed benchmark called Memory

Consumer and a modification of a widely used caching application called Memcached.

An approach for notifying the guest in advance that its memory allocation is going to

change is also presented. It is shown that by letting the guest prepare for a memory

change, the performance can be improved. Higher memory usage without OS interference

was enabled by changing the OS default configuration. It is demonstrated that in the

not-overcommitted system, higher performance was achieved.

An experimental environment was developed to test Ginseng under different work-

loads, simulate it under different conditions, and compare the results to determine

system efficiency. Ginseng was shown to achieve a ×6.2–×31.5 improvement in aggre-

gate client satisfaction, or ×1.6 in the application performance when compared with

state-of-the-art approaches for cloud memory allocation. It achieved 83%–100% of the

optimal aggregate client satisfaction.
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Abbreviations and Notations

P : Performance. Any way to measure the performance of an application, per

unit of time.

V : Valuation. The estimated benefit from the performance for a guest. Mea-

sured in $
hour .

U : Utility. The results from the subtraction of all costs from the valuation.

Measured in $
hour .

p : Unit price. The price of unit of memory per hour. Measured in $
MB·hour .

[r, q] : Allowed ranges. A series of allowed memory ranges which are sent by the

bidder as part of the auction protocol.

b : Bid. A composition of unit-price and allowed ranges. bi =

(pi, ri1, qi1, . . . , ri,mi , qi,mi).

qmax : Memory for auction. The amount of memory that is proposed for auction.

Measured in MB.

sw : Social welfare. A basic game-theoretic measurement which determines the

overall player satisfaction for an allocation. sw(a) =
∑

i Vi(ai).

sc : Social cost. A generalization of the social welfare which is defined with the

affine maximizer mechanisms. A function which represents the aggregate

social satisfaction an arbitrary allocation.

m0 : Bare memory. Amount of memory allocation which is guaranteed to the

player without participating in the auction.

q′(t) : Extra allocation. The allocation obtained by the allocation rule, that

maximizes the social cost function, and will be allocated to the players.

m(t) : Allocated memory. The total allocation for the player in round t, m(t) =

m0 + q′(t).

p′(t) : Payment. The payment obtained by the payment rule, and expresses the

exclusion compensation principle.

p0 : Memory exchange penalty parameter. Determines how much memory

exchange is expansive.

3



OC : Memory Overcommitment. The ratio between needed memory and

available physical memory.

VM : Virtual Machine. Also referred to as the guest, a software implementation

of a machine (computer) that executes programs like a physical machine.

l : Load. A measure of the application load. Measured in concurrent requests.

m : Memory. Amount of memory. Measured in MB.

(·)i : Indexing of guests.

(·)j : Indexing of allowed ranges.

α : Reclaim Factor. The percent of memory the host reclaims from the guests

between auctions.

base : Base memory. Used with reclaim-factor, represent time depended bare

memory, according to the last auction results, basei(t) = α ·m0i + (1− α) ·
mi(t− 1).
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Chapter 1

Introduction

Virtual machine environments are usually adopted by cloud service providers. Memory

is one among several resources provided to the clients, to whom we refer as guests.

Examples for selling resources are given in [LS99] for network bandwidth, and in

[PHS+09] for CPU and disk I/O. The memory resource might be considered the most

important: it is expensive, and may not be expanded beyond the machine’s physical

limit. Additionally, memory is allocated differently than other resources and deserves

special treatment: it has a long response time and a non-linear relation to performance.

Unlike physical hardware, virtual machine environments are flexible. The virtualiza-

tion manager, to which we refer as host or hypervisor, may employ different memory

allocation or memory overcommitment mechanisms.

When the hypervisor allocates the guests more memory than is physically available

to it, we call this memory overcommitment. Since the guests are processes inside the

host, their memory is actually allocated only when it is written. In this case, when the

guests try to write to more memory than the host actually has, the host will swap their

memory to disk, resulting in degraded performance.

Nowadays, the most common overcommitment techniques are deduplication and

dynamic memory allocation. Deduplication, by which similar memory pages are shared

among guests, is best when the guests are similar and static. Dynamic memory allocation

techniques such as memory ballooning or C-Groups are best for a setup in which the

running guests are heterogeneous and dynamically loaded.

In static memory allocation systems, at a given moment, some guests might be idle

and have spare unused allocated memory, while other guests might be loaded and need

more memory. Modifying the guests’ memory allocation can increase the portion of

used memory of the whole system, thus making it more efficient and improving the

aggregate performance. Since the load of the system is usually dynamic, the memory

allocation mechanism must be dynamic too.

Infrastructure-as-a-Service (IaaS) cloud computing providers rent computing re-

sources to their clients. As competition between providers gets tougher and prices start

going down, providers will need to continuously and ruthlessly reduce expenses, primarily

5



by improving their hardware utilization. Physical memory is the most constrained and

thus precious resource in use in cloud computing platforms today [Mag08, HGS+11,

GHDS+11, HZPW09, NKG10, Wal02]. One way for providers to significantly reduce

their expenses is by using less memory to run more client guest virtual machines on the

same physical hosts.

Whereas today cloud computing clients buy a supposedly-fixed amount of physical

memory for the lifetime of their guests, nothing stops their provider from overcommitting

this memory. Clients today have no idea and no way to discern how much physical

memory they are actually getting. Clients would much prefer to have full visibility

and control over the resources they receive [OZN+12, ABYST12]. They would like to

pay only for the physical memory they need, when they need it [GGW10, AFG+10].

By granting clients this flexibility, providers can increase client satisfaction. Therefore,

finding an efficient allocation of physical memory on each cloud host—an allocation

that gives each guest virtual machine precisely the amount of memory it needs, when it

needs it, at the price it is willing to pay—poses benefits for clients, whose satisfaction is

improved, and for providers, whose hardware utilization is improved.

Previous physical memory allocation schemes assumed fully cooperative client guest

virtual machines, where the host knows precisely what each guest is doing, how much

benefit additional memory would bring to it, and the importance of that guest’s workload

to the client [HGS+11, GHDS+11, HZPW09, NKG10]. However, when it comes to

commercial cloud providers and their paying IaaS clients, none of these assumptions

are realistic. Real-world clients act rationally and selfishly. They are black boxes with

private information such as their performance statistics, how much memory they need

at the moment, and what it is worth to them. Rational, selfish black-boxes will not

share this information with their provider unless it is in their own best interest to do so.

When white-box models are applied to selfish guests, the guests have an incentive to

manipulate the host into granting them more memory than their fair share. For example,

if the host gives memory to those guests that will benefit more from it, each guest

will say it benefits from memory more than any other guest. If the host gives memory

to those guests that perform poorly with their current allocation, each guest will say

it performs poorly. If the host allocates memory on the basis of passive black-box or

grey-box measurements [Lit11, Mag08, JADAD06, Wal02] such as page faults, guests

have an incentive to bias the measurement results, e.g., by inducing unnecessary page

faults. Furthermore, black-box methods compare the guests only by technical qualities

such as throughput and latency, which are valued differently by different guests under

different circumstances.

In this work we address the cloud provider’s fundamental memory allocation problem:

How should it divide the physical memory on each cloud host among selfish black-box

guests? A reasonable meta-approach would be to give more memory to guests who

would benefit more from it. But how can the host compare the benefits of additional

memory for each guest?

6



1.1 Research Contributions

The contributions of this research are described below.

1.1.1 Ginseng

Ginseng is a market-driven memory allocation framework for allocating memory effi-

ciently to selfish black-box virtual machines. Ginseng is the first cloud platform to

optimize overall client satisfaction for black box guests.

1.1.2 Memory Progressive Second Price (MPSP) auction

The MPSP auction is a game-theoretic market-driven incentive compatible, Pareto

efficient and fair mechanism to handle completely black boxed clients. The MPSP

induces auction participants to bid (and thus express their willingness to pay) for

memory according to their true economic valuations (how they perceive the benefit

they get from the memory, stated in monetary terms). In Ginseng, the host periodically

auctions memory using the MPSP auction. Guests bid for the memory they need as

they need it; the host then uses these bids to compare the benefit that different guests

obtain from physical memory, and to allocate it to those guests which benefit from

it the most. The host is not manipulated by guests and does not require unreliable

black-box measurements.

Ginseng is the first full implementation of a single-resource Resource-as-a-Service

(RaaS) cloud [ABYST12]. It is ready for a world of dynamic-memory applications—

applications that can improve their performance when given more memory on-the-fly

over a large range of memory quantities and can return memory to the system when

needed. Dynamic-memory applications are still scarce.

1.1.3 New Approaches to Dynamic Memory Cloud Applications

We present a new programming approach to be used inside a guest in cloud computers

with dynamic memory management. The dynamic application produces greater benefit

from the allocated memory, and is capable of freeing the memory before it is taken in

order to avoid thrashing. We developed a modified version of Memcached, a widely-used

key-value storage cloud caching application, as well as Memory Consumer, a synthetic

dynamic memory benchmark. Our experiments proved that dynamic applications

perform better in our environment.

1.1.4 Explicit Hinting about Upcoming Memory Allocation Changes

We implemented and tested a mechanism which hints the application running inside the

guest about an upcoming memory change. By doing so, we successfully make abrupt

and large changes in the guest memory without causing thrashing, which slows the

system down and degrades performance.

7



Our approach is similar to that proposed in [Vor13], and is by far more efficient

than the change rate limitations used in [Wal02, Wan09, GHDS+11, HGS+11], in which

the memory degradation is dependent on the OS memory management system, which

should be aware of and respond to memory pressure.

1.2 Achievements

Ginseng achieves a ×6.2 improvement in aggregate client satisfaction for Memory

Consumer and ×31.5 improvement for Memcached, and improvement of up to ×1.6 in

the performance, when compared with state-of-the-art approaches for cloud memory

allocation. Overall, it achieves 83%–100% of the optimal aggregate client satisfaction.

1.3 Related Work

White-Box Memory Overcommitment Systems

Memory overcommitment can improve the performance and profits of cloud service

providers. This is the reason for recent studies and projects in the area. In this

section we will introduce some of the state-of-the-art systems in the field of memory

overcommitment.

Nathuji et al. [NKG10] present QClouds, a hypervisor framework that controls

resource allocation in order to improve the system QoS. Q-Clouds monitors virtualized

hardware and uses QoS reports from cooperative agents running on the guests. In

this way, it controls the resources in a closed loop. They consider resources such as

CPU caches, memory bandwidth and I/O paths, obtained from a prescribed static pool

called “headroom.” All guests are first profiled on a “staging server,” which uses a least

mean square algorithm to produce a static linear relation between QoS and resource

allocation in the interference-free environment. Guests also define Q-state, a discrete

relationship between the QoS and the guest’s willingness-to-pay. With this information,

a relationship between allocation and revenue is constructed. The real-time resource

allocation for best performance is found by solving a linear minimization problem

constructed by substituting the gathered real-time information into guests’ profiles

and Q-states. They experimentally demonstrated the influence of headroom size on

performance. The size shouldn’t be too small or too large, so that enough resources will

be available for good performance in a normal run, and so that resources can be added

when the guest is loaded.

Hines et al. [HGS+11] present Ginkgo, a performance-driven MOC management

system. As in Q-Clouds, the guests’ performance-to-memory-allocation model is first

profiled, this time as a non-linear function. This static information of the interference-

free environment is used to make memory allocation decisions. Gingko monitors each

guest for the running application performance and load, and for allocated memory. The
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collected data is processed with mathematical and heuristic algorithms, in order to

determine the performance as a non-linear function of application load and allocated

memory. By collecting the correlated functions and using real-time information, a linear

optimization problem is created. Solving the problem with linear programming methods

results in an estimation of the best memory allocation, which is then implemented with

memory balloons. When compared to a non-overcommitted system, Ginkgo was shown

to save up to 73% of physical memory, with no more than 7% degradation in application

performance.

Palada et al. [PHS+09] present a program called Autocontrol. The program controls

the CPU and disk I/O of a guest and automatically adapts to dynamic workload changes,

in order to achieve application SLOs. The system was built to control a scalable number

of nodes, with two resolution levels: AppController, which controls an application

within a node, and NodeController, which controls a node. At the application level,

performance is controlled to reach a sufficient target value. They locally approximate

the nonlinear behavior of application performance as linear. The present performance is

estimated as a correlation of past performance and past and present resource allocation,

with an adaptive correlation parameter. The adopted optimization model maximizes

the performance. It is also minimizes the change in resource allocation, by adding it as

a penalty term. The developed algorithm is general and, theoretically, has multi-input-

multi-output (MIMO) support. In practice, AutoControl was tested only on controlling

the CPU and disk I/O, and optimizing application throughput or average response time.

Heo et al. [HZPW09] studied dynamic memory allocation in Xen virtual machines,

in addition to a development of memory and CPU controller. The controller controls

the memory according to the memory utilization in the VM and the CPU according

to the application performance. CPU sharing and memory usage were measured by

sampling the /proc file system and were controlled by the Xen credit scheduler and

Xen balloon driver respectively. They found a correlation of memory allocation and

performance by testings in a sterile environment. The response time of a guest running a

memory access application was measured while changing the workload and the memory

allocation of the guest. It was shown that the response time was constant with memory

utilization below 90%, but when memory utilization crossed the 90% mark, the response

time rose significantly. Thus, the memory allocation control system was built such that

the guest will utilize approximately 90% of the memory. The authors’ demonstrated

that all the hosted applications achieved their SLOs without creating CPU or memory

bottlenecks. The performance was found to be satisfying, but the improvement of

aggregate performance was not evaluated.

Vorontsov [Vor13] proposes the mempressure control group (CGroup), a control-

group-based subsystem that notifies the application running in the CGroup about

the memory pressure it is under. Its first API was three notification levels (“low”,

“medium”, “OOM”) that described the memory pressure of the CGroup. In [Vor13], a

new API is proposed, in order to enable the kernel to request that the CGroup’s user
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space applications free specific amounts of memory (by using an event file descriptor,

eventfd()) before it reclaims the memory. The applications are able to tell the kernel

how much memory they couldn’t free. This mechanism allows both the kernel and the

CGroup’s applications avoid swapping.

Litke [Lit11] developed and tested Memory Overcommitment Manager (MOM), an

application that manages memory overcommitment on KVM hosts, using libvirt. Data

about the host and active guests is gathered, organized and evaluated. After evaluation

in a configurable policy, guests’ memory is controlled using memory ballooning and

KSM, according to one of two policies proposed by the author. The first is to control

memory balloons by checking swapping of host and guests. Initially, the guests are given

the highest possible memory allocation, as defined in their libvirt’s maxmem parameter

(which controls the balloon driver). The guests and host are periodically monitored, and

when memory pressure is detected in the host, memory is taken from the guests back to

the host. Now the host has enough memory, and the memory pressure is experienced

instead by the guests, who try to alleviate it. The assumption is that the guests will be

more efficient than the host in dealing with memory pressure, since they know better

which memory should be swapped. The second policy is to control the KSM daemon,

which merges identical duplicated pages. Since running the KSM daemon does incur

some overhead, it is disabled by default. Since the KSM daemon increases the amount

of free memory, it is invoked only when the free memory is below a defined threshold,

and disabled again when it is above another defined higher threshold. MOM is partially

effective: in [Lit11], two workloads were examined, one (Memknobs) showing 20%

improvement in the aggregate throughput, while in the other (Cloudy), the mechanism

caused increased disk utilization and had no effect on the overall throughput. MOM

was evaluated with its first balloon control policy in this research, and its performance

is presented as a reference to the developed system.

Gray-Box Overcommitment systems

Gray-box methods make decisions according to samples from the guest environment

but can be fooled by a selfish guest, and like white-box methods, ignore the client’s

valuation of performance.

Magenheimer [Mag08] used the guests’ own performance statistics to guide over-

commitment. Jones, Arpaci-Dusseau, and Arpaci-Dusseau [JADAD06] inferred in-

formation about the unified buffer cache and virtual memory by monitoring IO and

inferring major page faults. Zhao and Wang [Wan09] monitored use of physical pages.

Waldspurger [Wal02] randomly sampled pages to find unused pages to reclaim, and

introduced the “idle memory tax”, which resembles our reclaim factor, to be described

in section 2.1.2.
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Black-Box Techniques

Gupta et al. [GLV+08] did not require any guest cooperation for their content based

page sharing. Wood et al. [WTLS+09] allocated guests to physical hosts according to

their memory contents. Gong, Gu and Wilkes [GGW10] and Shen et al. [SSGW11] used

learning algorithms to predict guest resource requirements. Sekar and Maniatis [SM11]

argued that all resource use must be accurately attributed to the guests who use it so

that it can be billed.

Guest Hint Techniques

Schwidefsky et al. [SFM+06] used guest hints to improve host swapping. Milos et

al. [MMHF09] incentivized guests to supply sharing hints by counting a shared page as

a fraction of a non-shared page.

General Resource Allocation for Monotonically Rising, Concave Valu-

ation Functions

Kelly [Kel97] used a proportionally fair allocation: clients bid prices, pay them, and

get bandwidth in proportion to their prices. His allocation is optimal for price taking

clients (who do not anticipate their impact on the price they pay). Popa et al. [PKRS11]

traded off proportional fairness with starvation prevention.

Lazar and Semret [LS99] introduced the divisible good progressive second price

(PSP) auction, and found an ε-Nash equilibrium for the requested resources under

complete information.

Maillé and Tuffin [MT04a] extended the PSP to multi-bids, thus saving the auction

rounds needed to reach equilibrium. Their guests disclosed a sampling of their resource

valuation function to the host, which computed the optimal allocation according to

these approximated valuation functions. One such single auction has the complexity of

a single PSP auction, times the number of sampling points. They also showed that the

PSP’s social welfare converges to theirs [MT04b]. Non-concave or non-monotonically

rising functions require more sampling points to express them with the same accuracy,

thus increasing the multi-bid auction’s complexity. Though a multi-bid auction is more

efficient for static problems, it loses its appeal in dynamic problems, which require

repeated auction rounds anyhow.

Other drawbacks of the multi-bid auction are that the guest needs to know the

memory valuation function for the full range; that frequent guest updates pose a burden

to the host; and that the guest cannot directly explore working points which currently

seem less than optimal. (It can do so indirectly by faking its valuation function.)

Chase et al. [CAT+01] allocated CPU time assuming client valuations of the resource

are fully known, concave, and monotonically increasing.
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Google’s GSP auction uses a limited bidding language and is not a VCG auc-

tion [EOS07].

Urgaonkar, Shenoy, and Roscoe [USR09] overbooked bandwidth and CPU cycles

given full profiling information but did not address memory.

Ghodsi et al. [GZH+11], Dolev et al. [DFH+12] and Gutman and Nisan [GN12]

considered allocating multiple resources to strategic guests whose private information is

the relative quantities they require of the resources.

Auctions With Non-concave Valuations

Bae et al. [BBB+08] observed that non-concave valuations are common in the wireless

industry and supported a single bidder with a non-concave valuation function.

Dobzinski and Nisan [DN10] presented truthful polynomial time approximation

algorithms for multi-unit auctions with k-minded valuations. They only assumed

that the valuations are non-decreasing (because they allow free disposal—shedding of

unneeded goods), and did not require them to be concave, but allowed the guests to

make queries before bidding.
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Chapter 2

System Description

2.1 The MPSP Auction

Ginseng auctions memory on cloud computer platforms. It uses the MPSP mechanism,

which is considered as an affine maximizer, and has the important property of incentive

compatibility. This property determines that the player’s best interest is to bid the true

value of the good. This mechanism is a modification of Lazar and Semret’s bandwidth

auction [LS99], and we call it MPSP. The modification can handle non-concave and

non-increasing valuation functions of the bidders, and it reduces the costly memory

exchange.

Bare Memory

Each guest i is set up permanently with the bare minimal physical memory it requires

to operate, denoted as m0i (see section 2.3.1). This memory is charged for separately

by a constant hourly fee. All the auctioning is done for memory on top of the bare

allocation, and the final memory which guest i obtains is defined as:

mi(t) = m0i + q′i(t) ,

where q′ = {q′i} is the set of extra allocations obtained through the auction.

VCG

VCG [Vic61, Cla71, Gro73] auctions optimize social welfare by incentivizing even selfish

participants with conflicting economic interests to inform the auctioneer of their true

valuation of the auctioned items. They do so by the exclusion compensation principle,

which means that each participant is charged for the damage it inflicts on other

participants’ social welfare, rather than directly for the items it wins. VCG auctions

are used in various settings, including Facebook’s repeated auctions [LPLT12, Heg10].

Various auction mechanisms, some of which resemble the VCG family, have been

proposed for divisible resources, in particular for bandwidth sharing [LS99, MT04a,
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Kel97]. For practical reasons, bidders in those auctions do not communicate their

valuation for the full range of auctioned goods. One of these VCG-like auctions is Lazar

and Semret’s Progressive Second Price (PSP) auction [LS99]. None of the auctions

proposed so far for divisible goods, including the PSP auction, are suitable for auctioning

memory, because memory has two characteristics that set it apart from other divisible

resources: first, the participants’ valuation functions may be non-concave; second,

transferring memory too quickly between two participants leads to waste.

2.1.1 An Affine Maximizer

An affine maximizer is a type of general social choice function that is a generalization

of the VCG mechanism. The general form of an affine maximizer mechanism is defined

by an allocation rule, and a payment rule.

The allocation rule guarantees that the resulting allocation, q′ = {q′i}, will

maximize the social cost function. Social cost is a game-theoretic term which describes

a function that expresses the social satisfaction from an allocation, as follows:

q′ = argmax
a∈A′

{
∑
i

ωiVi(a) + ca} , (2.1)

where a = {ai} is a set of allocations for the set of corresponding bids, A′ ⊆ A is subset

of all possible allocations, A, ωi is a constant weight of bid i, Vi is the valuation of

bidder i, and ca is arbitrary constant that is dependent only on the allocation.

We would like the allocation rule to find the Pareto efficient allocation—there is no

other allocation in which no player benefits less, and at least one player benefits more:

scmax = {sca | ∃i : a ∈ A, u ∈ A \ {a},

{
Vja > Vju j = i

Vja ≥ Vju ∀j 6= i
}. (2.2)

This property is a necessary condition for maximizing the social cost function.

Additionally, we would like the allocation rule to be fair, not preferring one guest

over another [WJC+10]. An ex-post fair auction—fair even after the allocation was

made—is better than an ex-ante fair auction, which is fair by expectation value, but

may be unfair once a random choice is made in the auction.

The payment rule defines how the payment unit-price, p′, is calculated, conforming

with the exclusion compensation principle, by which the player compensates society for

its existence. A mechanism will be considered an affine maximizer only if its payment

rule is of the general form:

p′i(a) =
1

q′i
{hi(V−i)−

∑
j 6=i

ωj
ωi
Vj(a) +

1

ωi
ca} , (2.3)

where hi(V−i) is an arbitrary function that does not depend on Vi, commonly extracted

using the Clarke pivot rule, which is solving the same optimization problem without
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bid i. The result condition on this type of payment is that the payment unit-price is

limited by the the player’s bid unit-price 0 ≤ p′i ≤ pi, and thus the player is guaranteed

not to pay a higher unit-price than its proposal.

The player’s utility is defined by the difference between its valuation of the memory

and the amount it is charged:

Ui = Vi(q
′
i)− p′iq′i . (2.4)

2.1.2 Memory Waste

Since guest valuations change over time, auctions must expire and allow resources to be

put up for auction again. Repeated bandwidth auctions (rounds) can be analyzed as

stand-alone auctions because the benefit from increased bandwidth is immediate. In

contrast, the benefit from winning more memory is not immediate.

Memory is often used for caching. To utilize increased cache sizes, guests need to

retain the memory used for caches for long-term use, to increase the likelihood of cache

hits.

Rapid exchanges are repeating allocation patterns involving guest and host be-

havior [BCI+07], where resources are transferred back and forth between guests. If

subsequent memory auctions result in rapid exchanges, then increasing auction frequency

will yield less benefit for guests; memory they rented but did not yet have time to use is

wasted. Hence, unlike in bandwidth auctions, memory auctions should not be analyzed

separately. Instead the auctioneer should control the amount of memory exchanging

hands in each auction round to balance memory waste with the time required to respond

to changing guest valuations.

We would like the MPSP mechanism to be able to control the amount of exchanged

memory in the system, preventing changes that would not have significant influence on

the social cost and allowing necessary ones.

2.1.3 The Linear Maximizer

In the conventional bandwidth auction the bidder bids with a (p, q) tuple, p is the unit

price it is willing to pay, and q is the quantity it is willing to buy. This bidding language

results in a linear valuation function: Vi(a) = pi · ai.

The subset A′ defines the valid allocations, by which the allocation of bid i must

agree with the quantity it is willing to by: ai ≤ qi, and the sum of all allocations must

be limited by the amount of memory being proposed for auction, qmax:
∑

i ai ≤ qmax.

The affine maximizer equation (2.1) can be seen as an optimization problem, and
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can be simplified to the form:

q′ = argmax
a

∑
i

piai

s.t. ai ≤ qi ∀i∑
i

ai ≤ qmax .

(2.5)

We refer to this optimization problem as the linear maximizer. The payment formulation

for the linear maximizer described above is:

p′i(a) =
∑
j 6=i

pj(q
′′
ij − q′j) , (2.6)

where q′′i is the solution of the linear maximizer problem without bid i.

Incentive Compatibility of the Linear Maximizer

The linear maximizer bidding language limitations prevent players from revealing their

whole valuation function. Thus, in the linear maximizer, as in Lazar and Semret’s PSP

auction [LS99] and in Maillé and Tuffin’s multi bid auction [MT04a], the bids cannot

be defined as truthful, in the classic game-theoretical sense.

Lazar and Semret claim that the bids in the PSP auction are truthful and the

mechanism is incentive compatible, despite the linear bidding language. Furthermore,

Maillé and Tuffin define that in their limited “multi-bid” bidding language , a list

of (p, q) tuples, a truthful bid is when the bid prices equal to the player’s marginal

valuations. Accordingly, we define that a truthful bid is when the player reveals a point

on its valuation function, as follows:

(pi, qi) is truthful ⇔ pi · qi = Vi(qi) . (2.7)

As described in [LS99], due to the exclusion compensation principle, by which

the payment is calculated, the player’s best interest is to submit a bid with values

representing its true valuation. The player would not be interested in increasing or

decreasing the unit price for a desired amount of goods, and would not request a larger

or smaller quantity of goods for a specific unit price.

The client’s interest is to submit a bid that would maximize its utility, but with a

high enough unit-price such that it would also have a good change to be accepted to the

auction. It might consider bids with higher utility versus bids with higher unit-price.

Implementation of the Linear Maximizer

The optimization problem for the linear maximizer presented in equation (2.5), can be

solved by the simple algorithm presented in algorithm 2.1.
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Algorithm 2.1 Allocation for the highest social cost of the linear maximizer mechanism

Sort the bids by decreasing pi.
rem← qmax

for i = 1 . . . n do
q′i ← min{qi, rem}
rem← rem− q′i

end for

This algorithm returns the set q′ which maximizes the linear maximizer equation

and satisfies the conditions. It runs in complexity of O(n log n), where n is the number

of bids, because of the guests sorting.

The payment for each bid, presented in equation (2.6), is calculated by solving the

same problem again, for each bid, in complexity of O(n2 log n).

The total complexity of the algorithm is O(n2 log n).

Tie Breaking

Guests are sorted by the unit-prices they bid when they queue for memory. When

two or more bids are identical, the tie must be broken, preferably fairly and Pareto-

efficiently. In Lazar and Semret’s bandwidth auction [LS99], PSP, bids of this kind were

rejected from the auction, Leaving the players responsible for not bidding the same

value. Since our auction is a sealed bid auction, in which a player does not see the other

players’ bid, we cannot allow such a rule.

A steady state is when the auction’s personal results (a guest’s won goods and

payment) turn out the same in subsequent auctions in response to the same strategy.

A Nash equilibrium is a steady state in which guests stick to their bids if they know

what other guests plan to bid. Breaking ties by excluding guests prevents ties in Nash

equilibrium. However, in dynamic, real-life scenarios, guest bids are not always in Nash

equilibrium, especially if guests do not continuously inter-communicate. Hence, we

sought alternatives to this tie-breaking method, which we find unsuitable for memory

auctions.

We considered three Pareto-efficient options. The first was to divide the memory

among all the tied guests [AM85], but this approach is also NP-hard, because the

forbidden ranges may turn solving it into solving a knapsack problem. The second

option was to prefer guests according to a random shuffle which is ex-ante fair before

each round. The third option was to prefer the current memory holder [Wan09], which

is only ex-ante fair before the tie is formed, but is the most efficient tie breaker.

We opted for combining the latter two approaches in the MPSP auction. The tie

breaking procedure prefers guests whose previous allocation, q′i(t− 1), was higher. This

kind of tie breaking was set in order to reduce the costly memory exchange in the

system. If the previous allocations were equal to each other, q′i(t− 1) = q′j(t− 1), we

set the preference to be random, which grants the algorithm the fairness property. In
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Practice, it does not matter in this case which guest will be allocated.

Example

Let’s consider a case, as presented in figure 2.1, in which the received bids are b1 = (0.8, 3),

b2 = (1, 1), b3 = (0.6, 2), and the memory for auction is qmax = 2. The bids will be

sorted by descending p values: {b2, b1, b3}, and will be allocated in order until the

auction memory runs out. As can be seen in figure 2.1(a), the allocation for the bidders

will be: q′ = {1, 1, 0}. Let’s examine the payment for bid b1. The allocation is repeated

again, this time with bids {b2, b3}, as can be seen in figure 2.1(b), and the result will be

q′′1 = {1, 0, 1}, (setting 0 for b1). The payment according to the payment rule will be:

p′1 =
1

q′1
{p2[q′′12 − q′2] + p3[q

′′
13 − q′3]} =

1

1
{1[1− 1] + 0.6[1− 0]} = 0.6 .

It can be seen that indeed we got 0 ≤ p′1 ≤ p1.
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(b) Payment

Figure 2.1: Example for linear maximizer algorithm. In figure 2.1(a) the allocation
rule is shown. We can see the bids sorted by descending p vaule, and allocated by order
with the memory for auction, qmax. In figure 2.1(b) the payment calculation for bid 1 is

shown.

2.1.4 Handling Valuation Functions

The valuation function Vi are the player’s valuation of memory, and is handled by the

MPSP algorithm as an arbitrary function. Nevertheless, it is important to see the

mechanism through the player’s point of view, and address its concerns for different

types of valuation functions.

The Player’s Memory Valuation

The memory valuation function, which also describes how much the guest is willing to

pay for different memory quantities, is a composition of two functions:

V (m, l) = Vp(P (m, l)) .
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The function P (m, l) describes the performance the guest can achieve given a certain

load and memory quantity. Performance is a guest-specific metric that differs between

guests. It might be measured in hits per second for a web server, transactions per

second for a database, trades per second for a high-frequency-trading system, or any

other guest-specific metric.

The function Vp(P ) is the guest’s valuation of performance function. It describes

the benefit that the client derives from a given level of performance from a given guest.

This function is different for each client and is private information of that client.

The linear maximizer provides a solution for players who are willing to bid with

the presented (pi, qi) tuple. Let’s consider the guest’s utility function, presented in

equation (2.4), since the algorithm allows allocation of a player with a lower allocation

than its full allocation, q′i ≤ qi, and since the payment unit-price can be equal to the

proposed unit price, p′i = pi, the utility will be positive only when the player valuation

agrees with:

Vi(ai) ≥ piai , ∀ai ≤ qi . (2.8)

If this condition fails, and the player is not fully allocated, the player’s utility becomes

negative, which means that it is loosing.

This condition restricts the valuation function to be concave and monotonically

rising, a restriction that the players would not accept. Even if the performance memory

function, P (q), is concave and monotonically rising, which is a reasonable but not

always true assumption, (for example, a fixed heap application, is reasonable case

for non-concave performance function), the valuation function can easily violate this

restriction (for example, when V (P ) ∝ P 2).

Allowed Ranges

Auction protocols which assume monotonically rising concave valuation functions either

interpret a bid of unit price and quantity (p, q) as willingness to purchase exactly q

units of memory for unit price p or as willingness to buy up to q units at price p. In the

first case, the bidding language is limited to exact quantities. In the second case, if the

valuation function is non-concave, the guest may get a quantity that is smaller than the

one it bid for, and pay for it a unit price it is not willing to pay. If the function is not,

at the very least, monotonically rising, it may even get a quantity it would be better off

without.

The PSP auction [LS99] optimally allocates a divisible resource if and only if all the

valuation functions are monotonically rising and concave. If at least one guest function

is not monotonically rising, or not concave, bidding the true valuation of the requested

memory quantity is no longer the player’s best interest, and the mechanism is no longe

incentive compatible. Additionally, the chosen allocation does not necessarily maximize

the guests’ social welfare.

We propose a generalization of the bidding language, to handle non-concave or
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even non-monotonically rising valuation functions, by forbidding memory ranges in the

submitted bid, bi,

bi = (pi, ri,1, qi,1, . . . , ri,m, qi,m) , (2.9)

where (rij , qij) is the jth allowed range of player i. The original bid can be transformed

to the general form as follows: (pi, qi) → (pi, 0, qi). The first allowed range, in which

j = 0, is added to the bid that is received from the player, and represents the zero

allocation acceptance range, ri,0, qi,0 ≡ 0.

By using this bidding language we allow the player to forbid allocations where

Vi(ai) < piai, and avoid negative utility. Additionally, we keep the linear bidding lan-

guage, with its advantages. This new bidding language changes only the affine maximizer

subset of possible allocations, A′, and thus doesn’t hurt the incentive compatibility

property. The subset of possible allocations becomes:

∃j | ai ∈ [rij , qij ] ∀i∑
i

ai ≤ qmax .
(2.10)

The payments are calculated as in the linear maximizer solution. For each player i,

we determine the highest social cost allocation without the player’s participation in the

auction, q′′i , and use equation (2.6) to determine its payment unit-price. Since all we

have done is to modify the subset of possible allocations, A′, all the described properties

of the payment remain.

Implementation with Allowed Ranges

The algorithm for finding the best allocation for the linear maximizer can be applied to

the modified bidding language, as long as the last allocation, that might not be equal

to the full allocation, ai < qi,mi , falls in an allowed range, ai ∈ [rij , qij ]. The algorithm

for the allocation is shown in algorithm 2.2. The q0 variable is the preallocation vector,

used by the recursive algorithm. Those values are allocated to the guests regardless

of the allocation rule. If they sum up to a higher value than the auctioned memory,

the procedure returns a vector of zero allocation for all bidders, and thus it will not be

chosen.

The allocation algorithm either returns a valid allocation, or information about an

invalid allocation. In the case of a valid allocation, no farther search is required, and the

node becomes a leaf in the search tree. The allocation is invalid when the last invalid

allocation, ai, of player i, who refer to as the borderline guest, falls in the forbidden

region: ai ∈ [qi,j−1, ri,j ]. In this case the node becomes a branch, and the search for the

highest social cost function is forwarded to two children. Those children can be seen as

splitting the bid i at the memory value of rij , as follows (see also figure 2.2):

1. Preallocation. The preallocation of bid i, q0,i, is increased by rij (it is initiated
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Algorithm 2.2 Allocation for the highest social cost of the linear maximizer with
allowed ranges mechanism

function alloc(p, r, q, qmax, q0)
Sort the bids by decreasing pi.
r ← {0}+ r . Add the zero range
q ← {0}+ q
rem← qmax −

∑
i q0,i

if rem < 0 then
return {0}

end if
for i = 1 . . . n do

ai ← min{qi,n, rem}
if 6 ∃j | ai ∈ [rij , qij ] then

return (i, argminj∈[1,mi],rij≥rem{rij})
end if
rem← rem− ai
ai ← ai + q0,i

end for
return a

end function

[r1, q1] [r2, q2]

left

Split Case

Split point

Previous
preallocation

Preallocation

preallocated [r2, q2] [r1, q1]

Chopped

Figure 2.2: A diagram showing the 2-tree split of the recursive algorithm. If the
remaining memory to be allocated is between two allowed ranges, two options are

considered. One is to preallocate the minimal value of the allowed range above, and the
other is to discard all above ranges.
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with 0 in the root node). The bid is then converted to have only the ranges above

and with respect to rij : bi ← (pi, ri,j − ri,j , qi,j − ri,j , . . . , ri,mi − ri,j , qi,mi − ri,j).

2. Trimming. The bid remains only with the memory ranges below the split point,

rij : bi ← (pi, ri1, qi1, . . . , ri,j−1, qi,j−1).

This branching changes the way we treat the borderline guest’s jth forbidden range.

Before the branching, we first computed the allocation, and only then verified this

forbidden range was not violated. After the branching, this forbidden range is an explicit

constraint. Each branched node returns the allocation with the higher social welfare

value among its children. The recursion algorithm is described in algorithm 2.3.

Algorithm 2.3 A recursive algorithm that finds the allocation of highest social cost in
a 2-tree, in which invalid allocation split the search in preallocated bid and in trimmed
bid. The first call for the function is with q0,i = 0 and scmin = 0

function rec alloc(p, r, q, qmax, q0, scmin)
results← alloc(bids, qmax, q0)
if results is not a split then

a← results
sc←

∑
i piai

return a, sc
end if
i, j ← results
Ri ← ri, Qi ← qi, Q0 ← q0

. Preallocation
ri ← Rij −Rij , . . . , Rim −Rij
qi ← Qij −Rij , . . . , Qim −Rij
q0i ← Q0i +Rij
ap, scp ← rec alloc(p, r, q, q0, qmax, scmin)

. Trimming
ri ← Ri,1, . . . , Ri,j−1
qi ← Qi,1, . . . , Qi,j−1
q0i ← Q0i

at, sct ← rec alloc(p, r, q, q0, qmax,max{scp, scmin})
. Return the better allocation

if scp ≥ sct then
return ap, scp

else
return at, sct

end if
end function

Correctness

Since the MPSP auction with the forbidden ranges belongs to the affine maximizer’s

social cost functions, it is has the property of incentive compatibility. All that remains
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to show is that the recursive algorithm finds the allocation which maximizes the social

cost function, given in equation (2.5), subject to the conditions in equation (2.10).

The algorithm builds a 2-tree: every node in the tree is either a leaf or a branch with

two children. We will show that scanning the tree is sufficient to find a globally optimal

allocation. Every branch node divides the optimization space to two disjoint cases of

potentially valid allocations. Together with the invalid case, in which a guest gets a

quantity within its forbidden range, the unification of these cases is exactly the full

range of values the borderline guest can have. If a globally optimal allocation belongs

in this node, it must be in at least one of its children. Hence, scanning the full tree will

find the optimal allocation.

We can additionally prove that it is unnecessary to branch in an invalid node with a

sc value that is lower than a known valid sc value. We define a pseudo-divisible allocation

as an allocation of the entire memory quantity Q to guests G according to their order

of valuations (unit price), regardless of forbidden ranges. This allocation sc value is at

least as high as that of any other more constrained allocation of Q to G (constraints

can only lower the sc value). Hence, if the pseudo-divisible allocation is valid, it can be

set as a leaf, because more constrained allocations cannot yield a higher sc value. If it

is invalid, and its sc value is lower than the value of the best previous allocation, it can

be dismissed.

Complexity

The MPSP algorithm with the forbidden ranges solves an NP-hard problem. Its time

complexity is O(n2 · 2m), where n is the number of guests and m is the number of all

the forbidden ranges in all the bids. To find an optimal allocation, at most 2m divisible

allocations are attempted, each taking O(n) to compute. The sorting is O(n log n), but

it is done only once, hence does not influence the overall complexity. For the payment

calculation, O(n) allocations need to be computed.

However, for real life performance functions, a few forbidden ranges are enough to

cover the non-concave regions, additionally this number could be limited by the auction

rules. Given the small number of guests on a physical machine, the algorithm’s run-time

is reasonable (less than one second using a single hardware thread in our experiments).

For concave functions, the complexity is reduced to O(n2), as in the PSP auction [LS99].

Therefore, the MPSP auction enjoys almost the same computational efficiency and

exactly the same Pareto-efficiency of results as the PSP algorithm, while incentivizing

quests to bid their true valuations for the memory quantities they bid for, even for

guests with forbidden ranges.

Example

Let’s consider a case, as presented in figure 2.3, in which the received bids are b1 =

(1, 0, 2), b2 = (0.6, 0, 3, 5, 6), b3 = (0.4, 0, 2), and the memory for auction is qmax = 6. The
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bids will be sorted by descending p and remain in the same order, and will be allocated

in that order until the auction memory runs out. As can be seen in figure 2.3(a), bid 1

will get a full allocation of 2 GB, and the remaining 4 GB fall in the forbidden range of

bid 2: [3, 5]. In this case we split b2, with split information of (i, j) = (2, 2), and search

within the two children:

• Preallocation. As can be seen in figure 2.3(b), bid 2 gets a preallocation of

5 GB. We can see that the bid with the highest p, bid 1, is only allocated

after the preallocation of bid 2. We can also see that bid 2 is now reduced to

b2 = (0.6, 5 − 5, 6 − 5) = (0.6, 0, 1). In this case, the allocation, a = {1, 5, 0},
is valid, and no further search is required. The social cost of that allocation is

scp = 1 · 1 + 5 · 0.6 = 4

• Trimming. As can be seen in figure 2.3(c), bid 2 is reduced to the ranges below

the split location: b2 = (0.6, 0, 3). In this case, the allocation, a = {2, 3, 1}, is

valid, and no further search is required. The social cost of that allocation is

sct = 2 · 1 + 3 · 0.6 + 1 · 0.4 = 4.2

The highest social cost of the 2-tree search is the trimming allocation, and thus this

would be the chosen one.

2.1.5 Memory Exchange Penalty

Memory, unlike other resources, cannot be time shared between guests in a virtual

machine, and exchanging it rapidly has its price (see section 2.1.2). We exploit the

general definition of the affine maximizer, as presented in equation (2.1), in order to

reduce the exchange of memory.

We suggest to define the arbitrary constant, ca, as a penalty term which is propor-

tional to the amount of memory exchange from the last allocation, and reduces the

social cost for higher memory exchange values:

ca = −p0 ·
∑
i

max{0, ai − q′i(t− 1)} . (2.11)

When inserting equation (2.11) to the affine maximizer formula presented in equa-

tion (2.1), we obtain:

q′ = argmax
a
{
∑
i

piai − p0 ·
∑
i

max[0, ai − q′i(t− 1)]} . (2.12)

We can manipulate this equation, such that the penalty term will be seen as splitting

the bid i, in q′i(t− 1), where the part with ranges above the split point will have a unit
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Figure 2.3: Example for MPSP with allowed ranges. In figure 2.3(a) the bids are
shown, arranged by descending p value, where bid 2 has one forbidden range. In
figure 2.3(b) we can see how bid 2 gets preallocated with 5 GB, only after the

preallocation, the bid with the highest p value is placed. In figure 2.3(c) we can see how
bid 2 gets trimmed, as it only has its lower allowed range.
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price which is reduced by p0, as follows:

q′ = argmax
a

∑
i

{pi ·min[ai, q
′
i(t− 1)]+

(pi − p0) ·max[0, ai − q′i(t− 1)]} .
(2.13)

The summation is done over i; each guest contributes to the social cost function the

expression which is inside the summation. We have shown in equation (2.13) that the

expression can be split into two arguments. Let’s consider each one of them and show

how to convert the bid into two — one parent and one child — bids.

1. Parent. The first argument, pi ·min[ai, q
′
i(t−1)], corresponds to a bid with a unit

price of pi and allocation that is limited by q′i(t− 1). This limitation is equivalent

to the case that the bid contained memory ranges up to the q′i(t− 1). Thus, the

argument can be replaced with pi · a−i , if the bid was defined by:

r−i = {ri | ri ≤ q′i(t− 1)}

q−i = {qi | qi ≤ q′i(t− 1)} ∪ {q′i(t− 1)}

b−i = (pi, r
−
i1, q

−
i1, . . . , r

−
i,m−i

, q−
i,m−i

) .

(2.14)

The maximal allocation for b−i is q−
i,m−i

≤ q′i(t − 1). Thus, we ensure that a−i =

min[ai, q
′
i(t−1)], and have the following equivalence: pi ·min[ai, q

′
i(t−1)] ≡ p−i ·a

−
i .

2. Child. The second argument, (pi−p0) ·max[0, ai− q′i(t−1)], corresponds to a bid

with a unit price of pi − p0 and allocations that is not negative, and additionally,

has allocations that are lowered by q′i(t− 1). If we convert bid i, to a bid with a

unit price lowered by p0, and memory ranges decreased by q′i(t− 1), and trim the

decreased above zero, as follows:

r+i = {q′i(t− 1)} ∪ {ri | ri ≥ q′i(t− 1)}

q+i = {qi | qi ≥ q′i(t− 1)}

b+i = (pi − p0, r+i1, q
+
i1, . . . , r

+

i,m+
i

, q+
i,m+

i

) ,

(2.15)

we will achieve the following equivalence: (pi− p0) ·max[0, ai− q′i(t− 1)] ≡ p+i ·a
+
i .

Implementation of Memory Exchange Penalty

In order to use the memory exchange penalty term, and still employ the MPSP 2-

tree search algorithm, as presented before, we employ a method of converting bid i’s

contribution to the social cost function, pi ·min[ai, q
′
i(t−1)]+(pi−p0)·max[0, ai−q′i(t−1)],

into a social cost of two bids, as presented in equations (2.14) and (2.15).

By splitting all the bids, and taking the set of all bids, b = b− ∪ b+, we can see that

equation (2.13) with the conditions of the allowed ranges in equation (2.10), and an
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additional condition to keep the parent-child relation, is reduced to:

q′ = argmax
a

∑
i

piai

s.t.

∃j | ai ∈ [rij , qij ] ∀i∑
i

ai ≤ qmax

a−i 6= q−
m−i
⇒ a+i = 0 .

(2.16)

Note, from the last condition, that the parent-child relation must be maintained, since

a child can be allocated only if the parent was fully allocated.

When encountering an invalid allocation, the search is split into a preallocation of a

bid and trimming of a bid. Then, we must reconsider the branching rules:

1. Preallocation. The preallocation rule is valid both for a parent and a child, and

we treat them as regular bids.

2. Trimming. Trimming a child bid is valid. Nevertheless, when a parent is being

trimmed, its child must be removed (or, more easily, converted to an empty bid),

to validate the additional last condition in equation (2.16).

Determining p0

The penalty parameter, p0, is very important, It determines how restrictive the system

will be, and it can influence the social welfare or even freeze the memory state. Making

it a constant number is not practical, because players can change their valuation during

the game, and the order of magnitude of the currently played bids can be changed.

Additionally, it cannot depend on the current valuations, since it will exclude the social

cost function from the affine maximizer’s family.

We proposed to make the penalty parameter proportional to the minimal accepted

bid of the last auction. This value represents the bids that were relevant in the last

round. It is limited by the maximal accepted bid from above and zero from below.

Correctness and Complexity

The only difference between the new problem and the one solved in the allowed ranges

implementation is the additional condition of the parent-child relation. We have shown

in section 2.1.2 that the 2-tree recursive algorithm searches within all possible allocations

of m bids that can maximize the social cost function.

It is clear that without the parent-child condition, the same algorithm searches for

all possible allocations of the new 2 · n bids. Adding the new condition might invalidate

some of the allocations that are found in the 2-tree recursive algorithm. The ranges
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do not change, and thus the algorithm will search for all valid possible allocations.

Additional search options will be invalid because of the addition of the parent-child

relation rule, as presented in equation (2.16). When the search branches, the new

trimming rule will ensure that trimming a parent will produce a valid allocation.

The complexity of the new algorithm is the same, since the number of allowed ranges,

m, remained the same, and the number of players was multiplied by two, 2 · n.

28



Example

Let’s consider a case, as presented in figure 2.4, in which the received bids are b1 =

(1, 0, 2), b2 = (0.8, 0, 4), b3 = (0.6, 0, 4), the memory for auction is qmax = 6, the

allocation for the last round is q′(t− 1) = {1, 2, 3}, and the penalty constant is p0 = 0.3.

We can see in figure 2.4(a) that without the penalty term, as presented in the linear

maximizer algorithm, the resulting allocation would have been: q′ = {2, 4, 0}.
In figure 2.4(b) we see the result of splitting the bids according to the last allocated

memory and the penalty constant. Each bid has a parent bid, the one with the higher

p value, and a child bid. The sorted new set of bids is shown in figure 2.4(c), and it can

be seen that the allocation this time is: q′ = {2, 2, 2}.
Without this algorithm, 3 GB are moved from player 3, and with it only 1 GB are

moved, thus demonstrating the algorithm’s effectiveness.
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(c) Sort and allocation

Figure 2.4: Example for MPSP with memory exchange penalty. In figure 2.4(a) the
original bids are shown. In figure 2.4(b) we can see the bids, after splitting each bid

into a parent and a child. In figure 2.4(c) we can see the new bids sorted to be
allocated, the result allocation is different from the allocation of the original bids, thus

memory exchange reduction is demonstrated.
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2.1.6 Alternative Researched Mechanisms

In additional to the memory exchange penalty term, two other techniques for reducing

the memory exchange were researched. The first is the reclaim factor, and the second is

conditional allocation.

Reclaim Factor

In this mechanism, the guest initial state in each round depends on its won extra

memory in the previous round, and depends on the decay constant, 0 < α ≤ 1, we refer

to as reclaim-factor. In each round, the auctioneer reclaims α of each guest’s extra

memory for a new auction,

basei(t) = α ·m0i + (1− α) ·mi(t− 1) ,

and the memory allocation is the won auction memory on top of the base memory and

not on top of the bare memory, as presented in the MPSP auction,

mi(t) = basei + q′i(t) .

The guest continues to rent the rest of the extra memory it won in previous auctions

at the prices for which it won it. The host can change the reclaim factor between

auctions. It can increase it to improve the system’s responsiveness when the memory

pressure rises or is expected to rise (e.g., a new guest is launched), or when guests

change bids fast, indicating fast valuation changes. Otherwise, it can decrease it to

decrease the potential memory waste.

Accounting becomes more complicated when using the reclaim factor. In each round,

a guest may win a memory chunk : a memory quantity with an attached rental unit-price.

Over time, guests come to hold memory chunks of different sizes with different unit

prices. The host holds this information as a list, sorted by unit price. The list is updated

at the end of the auction round in two stages: first, α of the guest’s extra memory is

released (the cheapest chunks or parts thereof). Then, if the guest won memory quantity

q′i in the auction, a memory chunk of size q′i, with a unit price of p′i is added to the list.

The purpose behind of this mechanism is to maintain a steady state in the system.

In practice, a lot of noise was created, and the system behavior was not clear due to its

influence. Eventually we preferred to shelve the idea.

Conditional Allocation

Conditional allocation is a rough and quick patch that was examined before the use

of the penalty term, in order to delay change of memory allocation. In this technique,

two constants were defined; Csc, which is the percentage by which the current social

cost must be higher than the previous social cost, and Cp is the maximal change in the
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guest unit price values below which a preservation of the previous allocation is allowed.

With those constant, we defined the three following conditions:
sc(t− 1) > sc(t) · (1− Csc)

|pi(t− 1)− pi(t)| < Cp ∀i
qmax(t− 1) = qmax(t)

,

where t is the current auction round, t− 1 is the previous auction round. The previous

social welfare is calculated according to an allocation that agrees with the current

allowed ranges and according to the current unit price. If the all of the conditions pass,

the previous allocation remains according to the current allowed memory range, and

the bills are recalculated according to the current unit prices.

This technique gave good results when truthful players were playing in the auction.

Nevertheless, using it discards the incentive compatibility property of the mechanism,

and truthful bids can no longer be assumed.

2.2 System Overview

The developed system, described in figure 2.5, is composed of a cloud server, running a

number of virtual machines (VMs) that can be referred to as guests. The server OS,

referred to as the host or hypervisor, also runs a process called Ginseng. This process

manages memory allocation to the guests according to the results of periodic auctions

in which the guests can participate in order to win extra memory, on top of their basic

predefined allocation.

Application

Balloon Driver

P(m,l)

Vp(p)

Adviser

Bidder

Balloon Controller

Host Guest

Ginseng 

Guest Monitors

Auctioneer

Server

Figure 2.5: Ginseng system architecture diagram. Ginseng runs on the host, and
communicates through TCP/IP with an agent running inside the guests, and controlling
the balloon driver inside the guest. This agent controls the guest’s memory. The agent
monitors the tested application, in order to serve bids which will maximize its utility.

31



2.3 Host Side Design

Ginseng runs as a process on the host OS and auctions memory between guests by peri-

odically running an MSPS auction algorithm. It uses the MPSP incentive compatibility

property, by which the guest’s best interest is to bid the true valuation of the memory.

and calculate the allocation for highest social cost accordingly. Ginseng announce a new

auction, collects the bids from the guests, and notifies the guests of the auction’s results.

It communicates with the guests via the TCP/IP communication protocol described in

section section 2.3.2. The auction flow and rules are described in sections 2.1 and 2.3.1

respectively.

Ginseng uses balloons [Lit11] to change the memory allocation of guests according

to the auction’s results. However, it does not specifically depend on balloons, but

only requires that the host support some underlying mechanism for memory borrowing.

Ginseng was implemented for cloud hosts running the KVM hypervisor [KKL+07].

2.3.1 The Auction Flow

In the MPSP auction, memory allocations change every round. The guest rents the

memory for the full duration of one round. Here we describe one MPSP auction round,

indexed t.

Time constants

Three time scales are involved in the usability of memory borrowing and therefore the

limits to the experiments we conducted: the typical time that passes before the change in

physical memory begins to affect performance, Tmem; the time between auction rounds,

(or other decision making), Tauction; a typical time scale in which conditions (e.g., load)

change, Tload. Useful memory borrowing requires Tload >> Tmem. This condition is also

necessary for on-line learning of memory valuation. To evaluate Tmem, we performed

large step tests, making abrupt sizable changes in the physical memory and measuring

the time it took the performance to stabilize.

Each auction period is a predefined value, Tauction, measured in seconds. In realistic

setups providers should set Tauction < Tload. Therefore, we set Tauction to 12 seconds. In

each 12-second auction round the host waited 3 seconds for guest bids and then spent 1

second computing the auction’s result and notifying the guests. The guests were then

allowed 8 seconds to prepare in case they lost memory.

Initialization

Not all of the guest’s memory is achieved by winning an auction: each guest is guaranteed

to be allocated with a minimal, predefined, memory amount denoted as m0. This

approach is similar to QClouds’ [NKG10] Q0, which is the minimal QoS a guest is
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ensured to have, and that Ginkgo [HGS+11] ensures minimal SLA. The difference is that

Ginseng provide basic resources and does not interfere with the guests’ performance.

In Ginseng, this m0 memory is used by the guest as the basic memory for the OS and

minimal memory for the application. The host must demand high prices on this memory,

so the guest will ask for the real minimum memory that it requires. In section 5.1.4 we

discuss the host revenue from the m0 memory, and from the extra memory, which is the

amount of memory on top of the m0 memory.

Auction Announcement

Each round, Ginseng announces a new auction. But first it needs to calculate the initial

conditions of the auction round. Ginseng computes the auction memory, qmax, the total

memory that will be proposed for auction, and is the maximal amount of memory each

guest can bid for:

qmax = mtotal −
∑
i

m0i −mhost ,

where mtotal is the total amount of physical memory in the system, and mhost is the

amount of memory the host reserves for its own use.

Ginseng informs each guest i on the upcoming auction. It sends the m0i memory,

the auction memory, qmax, the auction’s closing time, after which bids are ignored, and

the auction round, which is used as a unique ID to clarify the context of corresponding

bid and notification messages.

Bid Collection

Interested guests bid for memory. Agent i’s bid is composed of a unit price pi—price per

MB per hour (billing is still done per second according to exact rental duration) and a list

of desired ranges : mutually exclusive, closed ranges of desired memory quantities [rij , qij ]

for j = 1 . . .mi, sorted in ascending order, such that ri,1 ≤ qi,1 ≤ . . . ≤ ri,mi ≤ qi,mi).

The bid means that the guest is willing to rent any memory quantity within the desired

range list, in addition to its current basic holdings basei(t), for a unit price pi.

We refer to the memory ranges between the desired ranges as forbidden ranges:

[qi,j−1, rij ] for j = 1 . . .mi. Desired and forbidden ranges are shown in figure 2.6.

Collection The host asynchronously collects guest bids. It considers the most recent

bid from each guest. Since the guests are committed to send the bid with the corre-

sponding auction ID, only those with the correct one are taken into account in the

following bid processing stage. Guests that did not bid lose the auction automatically.

A guest that persists in not bidding gradually loses its extra memory, until it is left

with its m0 memory.
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Desired Ranges

 r1                     q1               r2          q2      q3

Forbidden Ranges

Extra memory over base

Figure 2.6: A bidding language example for strategy (p, [r1, q1], [r2, q2], [r3, q3]). The
first forbidden range does not exist (r1 = 0). The last desired range is only a point

(r3 = q3).

Processing

Allocation and Payments The host computes the allocation and payments accord-

ing to the MPSP auction protocol described in section 2.1. For each guest i, it computes

how much memory it won, q′i, and at what unit price, p′i.

Notification

The host informs each guest i of its personal results p′i, q
′
i. To improve the performance

of guest learning algorithms, to be described in section 2.4.4, the host also announces

information that guests can work out anyhow, about borderline bids : the lowest accepted

bid’s unit-price and the highest rejected bid’s unit-price. It also notifies the guest if

another guest submitted a bid with the same unit-price. By doing so, Ginseng helps

the guest to avoid tie situations. The last data in the notification is the time of the

upcoming memory change.

Ginseng gives the guests an adjustment period before it changes their memory

allocation. The purpose of this period is to allow each guest’s agent to notify its

applications of the upcoming memory changes, and then allow the applications time to

gracefully reduce their use of memory, if necessary. The applications are free to choose

when to start reducing their memory consumption, according to their memory-release

agility. This early notification approach makes it possible for the guest operating systems

to gracefully tolerate sudden large memory changes and spares applications the need to

monitor second-hand information on memory pressure.

Adjusting and Moving Memory

After an adjustment period following the announcement, the host actually takes memory

from those who lost it and gives it to those who won.

2.3.2 Auction API

As part of Ginseng, a client-server protocol is implemented. Since Ginseng was based

on MOM (see section 2.5.1), in which the host is the client and the guests run the
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server, Ginseng is the client and constantly tries to connect to a port in the guest. If a

connection is created, the auction messages are transferred:

1. Welcome message

When a guest starts running on a Ginseng host, Ginseng tries to communicate

with it by sending it a welcome message to a defined port. We discovered that

the balloon driver causes an allocation difference, ∆M , in which the guest sees

a lower memory allocation (the MemTotal field in /proc/meminfo system file)

than the host allocated it. We also discovered that this allocation difference is

constant as long as the guest lives. Moreover, If the maximal memory amounts

vary, so will the differences in allocation: larger maximal memory results in a

larger allocation difference—around 200 to 300 MB for a maximal memory of

10000 MB and around 50 MB for maximal memory of 2000 MB.

The guest must deal with this kind of problem. Thus, in the welcome message,

the host sends the guest the current memory allocation, the guest uses this data

to calculate the allocation difference and respond to the host with the new desired

bare memory. From this point on, the guest knows it has to request ∆M more

memory than it needs, and when the host notifies the guests of an upcoming

memory allocation it will get ∆M less.

2. Announcement

Ginseng sends an announce message to the guest, announcing a new memory

auction:

• Auction round: the auction round number, also used as the auction ID.

• Auction memory, qmax(t): the amount of memory for auction in the following

round.

• Bare memory, m0i(t): per-guest information that reminds the guest of its

bare memory.

• Closing time: the time that the auction will be closed for new or updated

bids.

The guests should respond to this message with a reply containing their bidding

information:

• Auction round: the round number, which is used as an ID for the auction

that the bid is related to, in order to prevent any misunderstanding between

the host and the guest.

• Unit price: the amount of money that the guest is willing to pay for one MB

of extra memory per hour.
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• Bid ranges: a list of tuples representing the desired extra memory values in

ranges that the guest is willing to get.

3. Notification

After all the bids are received and the results calculated, Ginseng notifies the

guests of the results of the auction. The notification message contains the following

fields:

• Auction round: the auction ID that the notification is related to.

• Bill: the amount of money that the guest was billed.

• Memory, mi(t): the total memory that will be allocated to the guest,

mi(t) = m0i + q′i(t) .

• Unit price: the unit price that the guest paid for the extra memory it won.

• Tie: a boolean that indicates whether the guest asked for the same unit price

as another participating guest.

• Actuation time: when Ginseng will actuate the memory controller and apply

the memory change; gives the guest an opportunity to prepare for a reduction

in memory.

• Minimal accepted unit price: the minimal unit price bid in the auction for

which any extra memory was won.

• Maximal rejected unit price: the maximal unit price that did not win any

extra memory.

The last three fields are only used to help the guest improve its bid, and are not

necessary.

2.4 Guest Side Design

Each guest runs an application that is supposed to produce the maximal utility. This

application is monitored and controlled with an application tier, which we call the

bidder(see section 2.4.1). The bidder also sends bids to and receives information from

Ginseng according to the auction API (see section 2.3.2).

The bidder has several entities that help it bid, as shown in figure 2.7: the adviser

(see section 2.4.2), which calculates the best bid according to the given state; the profiler

(see section 2.4.3), which predicts the program performance according to the desired

memory (the function P (l,m)); and the estimator (see section 2.4.4), which estimates

the unit price that the won memory will cost (p′(q′)).
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2.4.1 Bidder

The bidder queries the application for its current state. In our case it asks for the

load. It also queries the OS for the memory state. It then passes to the adviser the

information of the application, information from Ginseng on the upcoming auction and

the last auction results. After the adviser calculates the bid, the bidder sends the bid

back to Ginseng’s auctioneer. A scheme of the bidder’s interactions can be seen in

figure 2.7.

Application Bidder
l

OS
m

Ginseng

bid

AD

Adviser

 bid

Profiler Estimator

l,m[j]

P[j]

m[j]

p’[j]

l,m,AD

Figure 2.7: A scheme of the Bidder’s interactions, with the OS, application and
Adviser. l denotes load state; m is memory state; m[i] is an array of desired memory
states; P [i] is an array of predicted performance correlated to the memory states; p′[i]

is an array of estimated unit prices; AD is auction data

2.4.2 Adviser

Our implementation is a simple adviser that bids a truthful bid with the highest chances

to win the auction. Since the adviser was not the main concern of our research, it

is relatively simple, but can be made more sophisticated if need be, by incorporating

elements of machine learning and signal processing to make better bids and improve

the system performance.

Performance and Valuation Function

The guest must decide on a performance-valuation relation, similar to the implementation

on the host side in Qclouds [NKG10] where the guests define “Q-states”, a discrete

relationship between the QoS and the guest’s willingness-to-pay. For example, if the

performance P is measured by transactions per second, and any transaction might be

evaluated as 20$, then the valuation function is V (P ) = 20$ · P

The Adviser Algorithm

The adviser calculates a bid according to a given guest state, which contains a prediction

for the average load, l, the base memory, m, and the amount of memory offered for
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auction qmax (see section 2.3.1).

The adviser first creates a vector of q values, representing memories above the base

memory, as follows:

qi = (i+ 1) ·∆q , max
i
{qi} ≤ qmax ,

where ∆q is predefined value determines the advising resolution.

The valuation Vi for each qi can be calculated with the profiler performance interpo-

lation function P (l,m), and the valuation as function of performance V (P ):

Vi = V (P (l,m+ qi)) .

The unit price pi can be calculated using the no bid valuation V0 = V (P (l,m)) as

the slope between the q = 0 point to the bidding point on the valuation function (see

example in figure 2.8):

pi =
Vi − V0
qi

.

The utility Ui is calculated using the estimated unit price from the estimator, p′i, as

follows:

Ui = max{Vi − p′i · qi, 0} .

A target unit price ptar is calculated by the average of the last minimal accepted

unit prices in the last 10 auctions. Those values are part of the auction API. They are

stored by the adviser when received from the bidder as part of the auction data. The

adviser then calculates the best possible unit price, p∗, by the following three steps:

1. Keep only points where pi ≥ ptar, because those have the best chances to win the

next auctions. If none of the points agree with that condition, the adviser chooses

the highest value available:

p∗ = max
i
{pi} .

2. Choose the highest utility points the guest can have:

U∗ = {j | Uj = max
i
{Ui}} .

3. If there is more than one point left after the previous filtering, the adviser chooses

the highest unit price that was left, in order to give the guest the best chance to

win the next auction. The utilities of all the points are the same and the unit

price will, in any case, not be defined by the chosen unit price of the guest, but

by the unit prices that were rejected in the auction:
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p∗ = max
i∈U∗
{pi} .

The chosen unit price p∗ is then used to calculate the allowed ranges. The allowed

ranges are all the q values where pi ≥ p∗, and they are calculated by interpolating

between adjusted pi values to create a list of tuples representing the ranges. The adviser

returns the p∗, and the allowed ranges to the bidder.

2.4.3 Profiler

The profiler is a mathematical unit, whose purpose is to take the data collected offline

with the testbed process, and convert it to performance as a continuous and smooth

function of load and memory. Once the profiler is loaded, it processes the raw testbed

data into the P (l,m) function in order to be used by the adviser.

The data is loaded into a matrix Pij and two vectors, li and mj . The profiler is also

given a valuation function V (P ). When the adviser asks the profiler for the valuation

of a point (l,m), the profiler interpolates the performance 2D function using a bivariant

spline approximation (with predefined knot values). If the point is higher than the

maximal known load or memory, saturation is assumed. The calculated performance

value is then translated to valuation using the defined valuation function V (P ) and

returned to the adviser.

2.4.4 Estimator

The estimator is used to estimate the estimated unit-price as a function of memory, p′(q),

from previous auction results. The estimator is configured with an array of estimation

memory points, qi, and data validity maximal time, amax. A list of bill lists, bi, is used

to save history data for memory range closest to qi. Each data item holds the bill and

the round.

History Maintenance

After each round r, the auction results that are saved in the estimator are the won

memory q, and the won bill b. Then, a bill, bij , is added to the bi list:

bij =
q · b
qi
| q ∈

[
qi−1 + qi

2
,
qi + qi+1

2

)
,

which gives an approximated bill to the qi point.

Estimation

The estimation is done for a bid point q, and round r. The estimator first erases all data

whose age is smaller than the allowed predefined age, in the group: {bij | rij < r − amax}.
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Figure 2.8: An example of valuation, and the corresponding unit price function.

Then an estimation of the bill, b′i, for each bid point qi is calculated according to a

weight which is relative to the inverse of the age:

wij =
1

r − rij
,

b′i =

∑
j wij · bij∑
j wij

.

The memory weighting is calculated according to the distance from the bid value q

as follows. Different weighting functions can be chosen, such that the closest qi to q,

the higher its weight. We chose the following function:

ui =

{
1

|qi−q| if q 6= qi

1 otherwise
.

The following bounds are then estimated:

• Upper bound:

B̄ =
∑
i

{ ui · b′i
min{qi, q}

}/
∑
i

ui .

• Upper bound by extra p:

B̄p′ =
∑
i

{
ui ·

(
b′i
q

+
q − qi
q
·
b′i − b′i−1
qi − qi−1

)}
/
∑
i

ui .

• Lower bound:

B =
∑
i

{
ui · b′i

max{qi, q}

}
/
∑
i

ui .
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Then, the unit price estimation is calculated by averaging the lower bound and

minimal upper bound, taking into account pmin, the maximal rejected unit price of the

last auction, which is part of the auction API:

p′ =
min{B, pmin}+ min{B̄, B̄p′ , pmin}

2
.

This evaluation gives an estimation of the unit price such that data which is older

or whose qi is farther from q will have less influence on the estimated value.

2.5 Implementation

In this section, the implementation of system is described, demonstrating how the

described rules and flow were inserted into the MOM architecture. Implementation is

described both for the host side, which implements the auctioneer, and the guest side,

which implements the bidder.

2.5.1 MOM Architecture

Ginseng’s code is based on MOM [Lit11]. In the MOM implementation, the control-

ling system is composed of three main components called guest manager, policy and

controllers.

• Guest Manager. The guest manager is responsible for collecting updated

statistical data. It attaches a thread called the guest monitor to each guest, which

is alive as long as the guest is running. The guest manager periodically queries

the guest monitors for updated data. Each guest monitor then invokes a set of

collectors which collect data on the guest. This information might be accessible to

a process running on the host, or received by communicating with a cooperative

agent running inside the guest.

• Policy. The policy is invoked periodically, and determines control parameters by

inspecting the data of the guest manager, in order to achieve better performance.

The policy is an abstraction of a unit that makes decision which will be implemented

in the nearby future, according to data that was collected in the recent past.

• Controllers. The controllers implement the control decisions that the policy

determined.

2.5.2 Auctioneer - Host-side Policy Implementation

Ginseng has uses MOM as basic control mechanism in order to enable the MPSP auction

on the host by defining its own set of collectors, set of controllers, and its own policy.
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Collectors

Collectors asynchronously collect data on the guests and host in order to make policy

decisions. Ginseng, which is a black box system, doesn’t need any information on the

running guest, or the host.

Collectors were implemented only for experiment purposes. Information about the

host memory, page faults and CPU were collected by querying the /proc/meminfo,

/proc/vmstat and /proc/stat and more data on the guest internals was collected by

communicating with the agent, known as bidder (see section 2.4.1), which is already

running on the guest.

• Memory-stat collector

The memory data is collected by querying /proc/meminfo and /proc/vmstat

system files, and calculating the following values:

– The total available memory, which is written in the MemTotal row in

/proc/meminfo.

– The unused memory, which is written in the MemFree row in /proc/meminfo.

– The cached pages and buffers, which are written in the Buffers and Cached

rows in /proc/meminfo.

– The total free memory, which is calculated as the sum of unused, cached and

buffers.

– Minor and major page faults, which are calculated by subtracting two ad-

jacent samplings of the pgfault and pgmajfault rows, respectively, in

/proc/vmstat.

– Swap in and out, which are calculated by subtracting two adjacent samplings

of the pswpin and pswpout rows, respectively, in /proc/vmstat system file.

• CPU usage collector

CPU usage is obtained from the system file /proc/stat. In that file, there is a

line for each running CPU and one line for the average of all CPUs. In each line

there are 7 values, measured in jiffies, corresponding to: (1) user mode processing

time, (2) nice user mode processing time, (3) kernel mode processing time, (4) idle

time, (5) time spent waiting for I/O to complete, (6) time spent servicing IRQ

interrupt and (7) time spent servicing soft IRQ interrupts. The sum of all those

numbers is the total CPU time. For each line, two values were calculated:

– The CPU usage, calculated by subtracting the sum of items 1 to 3 in two

adjacent samples and dividing by the subtraction of two samplings of the

total CPU time.

– The I/O percent, calculated by subtracting item 5 in two adjacent samples

and dividing by the subtraction of two samplings of the total CPU time.
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The collected data is used to make controlling decisions. Those decisions are made

by the policy, which is introduced in the following subsection.

Policy

The Ginseng algorithm is implemented in the policy stage of the MOM model. The

algorithm consists of three main stages:

1. Announcing stage. In this stage, the announcer calculates the guest base

memory and the memory for auction and sends the data to the guests. It is also

responsible for collecting the bids from the guests.

2. Auction stage. The auctioneer processes the bids from the guests according to

the MPSP algorithm and calculates the allocations and payments for the auction

period.

3. Notification stage In this stage, the notifier (see section 2.5.2) notifies the guests

of the auction results.

Announcer

The announcer announces an auction according to the Ginseng auction API: the auction

round number (an identifier), the amount of memory to be sold in the announced

auction, and for each guest, its next base memory allocation. For convenience the

host also declares the reclaim factor used in the base memory calculation. Then, the

auctioneer waits a defined period for the bids from the guests and then closes the auction

bid submission.

Auctioneer

Here the allocation and payment calculation is described, according to the MPSP

algorithm, described in section 2.1.

The array, bids, represents the guests’ bids, such that bids[i].p is the unit price

that guest i is willing to pay, pi, and bids[i].qrs points to a list of tuples of the

allowed ranges of guest i: bids[i].qrs[j] is the range (r, q)ij , which defines the range

[rij , qij ].

For each guest i, the unit price is checked for correctness: pi ≥ 0, and the correctness

of the allowed ranges: rij ≤ qij , qij ≤ ri,j+1, rij ≥ 0. If the bid fails the check, a default

bid is given: pi = 0, (r, q)i = [(0, 0)].

As described in section 2.1.2, the bids are then shuffled, sorted descending by the

last allocation of each corresponding guest, and then sorted by descending pi value. The

last sort is the most significant.

The allocation and bills are calculated using the main function

calc alloc bills(bids, q max). It gets the bids list, bids, and the memory for
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auction, q max, as its input. The highest sc allocation vector, mi, according to the

allocation rule, is then calculated using the function: alloc(bids, q max), which will

be discussed later. The bill vector, billi, is calculated for each guest i as follows: If

mi = 0, then billi = 0. Otherwise, the highest sc allocation must be calculated without

guest i, and with the same auction memory: alloc(bids[\{i}], q max). The bill is

then calculated according to the payment rule, as the sum of valuations the other guests

didn’t get because guest i won the memory mi.

The function alloc returns the output of a recursive function rec alloc(bids,

q max, prealloc, SW min), and its purpose is to return the allocation with the highest

sc. The bids and q max are the received parameters, the prealloc is a recursive

parameter, referring to an array of an amount of memory that will be initially allocated

to the guest, initiated to zeros. SW min is also a recursive parameter indicating the

maximal sc that was already calculated, and it is a lower bound to limit the recursive

calls.

The function uses another function, alloc(bids, total, prealloc), described

in algorithm 2.2 which initially allocates all the guests with the memory in prealloc

and then goes over the guests (sorted as mentioned before) and allocates for each guest i

the maximal maxj {qij} value it requested. If the remaining memory, rem, is not enough,

that is, rem < maxj{qij}, it allocates the remaining memory only if it is within any

allowed range rem ∈ [rij , qij ]. If the remaining memory for allocation is not the maximal

request or not in an allowed range, the recursion splits into a 2-tree and considers two

optional routes, as shown in figure 2.2. The split point, which is the amount of memory

in which we split guest i, is defined as:

msplit = min
j
{rij ≥ rem} .

.

If no split information was received after calculating the allocation with alloc, the

allocation is valid, has the highest sc, and can be returned. If split information was

received, the recursion continues in two different directions:

• Preallocation: The split guest i is given (an additional) preallocation of the split

point msplit. Because of that preallocation, rij must be subtracted from its bid

ranges and the ranges below rij vanish.

• Trimming: The split guest i remains with the allowed ranges below and equal to

the split point.

The recursion parameter, sc min, is updated every time an allocation is calculated.

In each node, if the sc of the first allocation is lower than the already known sc min,

the recursion returns and doesn’t split the tree. The recursion returns the allocation

with the highest sc value.
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Notifier

The notifier sends the auction results back to the client, according to the Ginseng

auction API. The notifier sends the auction round as an identifier for the results, the

allocated memory, the bill, the unit price of the won memory and some more information

about the last auction: a boolean tie parameter (indicates whether the guest had the

same unit price as another guest), the minimal accepted unit price, and the maximal

rejected unit price.

Controllers

The balloon actuator allocates the new memory to the guests according to the MPSP

auction policy decisions.

2.5.3 Bidder - Guest-Side Implementation

Guests utilize an economic learning agent to rent more or less physical memory. Each

guest’s agent acts on its behalf according to its valuation-of-memory function within the

framework of the MPSP protocol. The guest is free to use any agent it wishes provided

it speaks Ginseng’s API.

The bidder is also based on MOM’s controlling abstraction. It is also invokes a set

of collectors in order to know the current state of the application and OS. Periodically

an advising policy is invoked and determines the needed resources and allowable unit

price that will improve the performance or utility. By running a server, a guest can

receive data about the current auction rules and previous auction results, and submit

its bid for the following auction according to the adviser’s decisions.

Collectors

The bidder employs several collectors, all of which, other than the load collector are for

experimental purposes.

• Load collector. The load collector queries the application for current load status.

This is the only collected data that is used by the adviser to make the bid decision.

• Memory statistics collector. The memory statistics collector is the same one

used in the host side (see section 2.5.2).

• CPU usage collector The CPU usage collector is the same one used in the host

side (see section 2.5.2)

• Program CPU usage. The program CPU usage collector collects CPU usage

of specific processes: the bidder and the tested application. The CPU usage

information of each process can be found in the /proc/[pid]/stat system files,

according to the PID of the process. In each file there is a series of numbers, the
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14th and 15th values of which correspond to CPU time spent in user mode and in

kernel mode respectively, measured in jiffies. Dividing the subtraction of the sum

of those two numbers in two adjacent samples, with subtraction of two adjacent

samples of the total CPU time (from the CPU usage collector), results in the CPU

usage of the process.

Server

The server serves host messages. It updates the bidder data when receiving auction

messages from the host’s announcer or notifier and sends the bid to the bid-collector,

according to the adviser’s last suggestion.

2.6 Dynamic Memory Cloud Computer

Existing applications and out-of-the-box OS configurations are not suitable for a dy-

namic memory cloud computer like the one we have developed. In section 2.6.1, the

requirements for dynamic memory applications are described. These are applications

that can produce maximum performance according to the current available memory

of the OS and are able to free memory on demand. In section 2.6.2 an approach

of hinting the guest before changing its memory is described and its advantages are

explained. A special OS configuration that enables high memory usage without OS

interference is described in section 2.6.3. We claim in this section that implementing

these approaches in a dynamic cloud computer without memory overcommitment can

increase its performance.

2.6.1 Dynamic Memory Applications

In dynamic cloud environments, applications should know how much memory they have,

use it when it is available and free it when it is taken. Applications hat do not meet

these requirements are not suitable for our system. Here we explain why many existing

applications do not meet our requirements. The requirements themselves are detailed

below.

In [HZPW09], performance was measured as a function of the memory allocation

and it was shown that the performance behaves as a step function of the memory

allocation: the performance was negligible up to the point where the heap size was a

certain percent of the allocated memory; above that point, the performance rose and

remained constant no matter how much memory was allocated. We blame this step

function behavior on the static Java heap model. Once the memory allocation was too

small to fit the constant Java heap and the OS memory, the OS swapped parts of the

heap, and the performance severely decreased. Graphs with similar behavior are also

presented in [GHDS+11, HGS+11]
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Most programs today will behave similarly since they are not aware of the available

memory in the OS. They are not programmed to be used in a dynamic memory cloud

computer. Their performance does not improve when the there is more memory available

and, when memory is scarce, they do not reduce their memory signature. They trust the

OS to manage their memory by swapping. For example, Memcached [Fit09], a widely

used key-value caching application, is usually used in front of databases. Memcached

comes out of the box with predefined constant cache size. Benchmarking it with a

constant cache size of 500 MB inside a guest for different guest RAM values results in

massive thrashing when the memory allocation for the guest is below the used memory

of the system (figure 4.4), similar to what was measured in [HZPW09].

In order to maintain good performance memory is low by avoiding thrashing and

using the memory efficiently, and achieve better performance by making use of high

memory, when it is available, we developed the following requirements for dynamic

applications:

• The application’s performance must be exposed and quantitative, such that the

performance as a function of memory can be evaluated.

• The application must know to use different memory quantities. Logic dictates

that it should, improve performance by using more memory.

• The application must know to change its memory signature quickly enough. In

that way, memory growth will be reflected in a fast increase in performance.

Moreover, before memory is reclaimed, the application will be able to free it fast

enough to avoid thrashing.

• The application must expose an API for changing its memory signature.

For use in our system, we developed Memory Consumer, a synthetic dynamic memory

benchmark, as well as a modified version of Memcached, a widely-used key-value storage

cloud caching application.

Memory Consumer

Memory Consumer is a dynamic memory application, designed to give a linear up to

a saturation point performance graph, without any cache, network communication or

CPU overheads. The application is initiated with three parameters: saturation memory,

mmax, the amount of memory where the Memory Consumer performance graph saturates

(the performance stays constant when the memory increases); spare memory, mspare, the

amount of memory that should remain free, in order to give flexibility to the memory of

unmanaged processes; and wait time, Twait, the waiting time between two subsequent

memory write attempts, used in order to reduce CPU consumption.

While Memory Consumer is running, it tries to write to a random 1 MB sized cell

out of a range of mmax −mspare cells. If the address is within the range of the currently
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available memory, 1 MB of data is actually written to the memory address, and it is

considered a hit. After each attempt, whether a hit or a miss, it sleeps for Twait seconds,

so that misses cost time. The application’s performance is defined as the hit rate. The

available memory is defined by subtracting mspare from total available memory in the OS.

Memory Consumer follows the OS available memory and changes its memory allocation

accordingly.

Dynamic Memcached

Dynamic Memcached is a version of Memcached 1 that changes its heap size on the fly

to respond to OS available memory changes. We drove the load of Memcached with

memslap client. The application’s performance was defined as the get hit rate, such that

an increase in cache size results in higher performance. We programmed Memcached to

expose an interface for changing its cache size.

We programmed an additional application tier, initiated with a parameter mspare.

The Memcached tier follows the OS available memory and sends orders for Memcached

to change its cache size to the amount of the subtraction of mspare from the total

available memory in the OS.

2.6.2 Memory Change Explicit Hinting

We introduce an explicit memory allocation change hinting mechanism, which explicitly

hints to guest about an upcoming memory allocation change, before the change is

implemented.

Waldspurger [Wal02] mentions that the allocation rate should be limited, to avoid

stressing the guest OS. In [Wan09] a limit of memory change was set to 20% of the

current allocation, and a time dependent rate is not mentioned. The change rate was

set this way because pages are not ready to be reclaimed. In [GHDS+11, HGS+11] the

memory change rate was limited to 64 MB/second, but no reason is given for doing

so. This limitation is most important to the reduction of the guest memory, but not

important at all for its enlargement. All of those approaches implicitly hint the guest

that the memory is about to change, by slowly reducing its memory and causing it

pressure.

In the mempressure control group proposal (see [Vor13]), a mechanism of cooperation

between the kernel and applications running inside the control group was proposed, in

order to greatly reduce the memory without thrashing. This mechanism helps both the

kernel and the application avoid swapping.

We used a similar approach, avoiding the limitation of memory change rate, by

explicit hinting the guest with the next round’s memory allocation before the memory

is actually controlled by the balloons.

1Dynamic-Memcached is available from https://github.com/ladypine/memcached.
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In this way, the program can free the memory before it is taken, and the taken

memory is not referenced when it is taken. The memory controller application tier

we programmed gets the hint of the upcoming memory value, and also queries the

/proc/meminfo to get the actual available memory. The desired memory size is then

sent to the application as a memory target, for which the application needs to adapt its

size.

Memory Controller Application Tier

The memory controller is an application tier that is configured with a parameter ,spare

(a typical value of 50 MB), which defines the amount of memory that must be left free.

The memory controller considers the total available memory to be the minimal value

between the hinted memory and the actual memory:

total = min {hinted, actual} .

Then it queries the /proc/meminfo for the used memory and calculates the unused

memory:

unused = total− used .

It then defines the difference it has to correct as

diff = unused− spare .

The application tier calculates two controlling parameters that are sent to the

application, which needs to adapt its memory signature accordingly. The first is the

current usage of the memory: usage , and the second is the target memory usage:

target = usage + diff .

This way the controller adjusts the memory signature of the application even if the

requested target of memory does not exactly equal the actual memory usage of the

application, and the spare memory is always left free.

2.6.3 Linux OS Configuration

In our experiments we used a specially configured OS in the guests. In this configuration

the kernel ignores memory pressure, and keeps its cached pages and buffers. The Linux

kernel has its own mechanisms to control the memory pressure. Controlling the kernel

behavior without hacking it can be done with the aid of sysctl system call, which

changes the different kernel parameters.

The Linux kernel has memory watermarks2. When the free memory in the system

2In the kernel there are three watermarks. watermark[WMARK MIN], watermark[WMARK LOW] and
watermark[WMARK HIGH], will be referred as WMmin, WMlow and WMhigh respectively.
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Figure 2.9: The memory controller application tier as a simple feedback control loop.
The controller takes the memory usage, the current available memory and the hint from

the auction notifier, and calculates the difference between the current application’s
memory signature and the required memory signature.

gets below a watermark, the kernel changes its memory pressure policy. The kernel

handles memory pressure by swapping processes’ pages, and by reducing its cached

pages and buffers. The following kernel parameters affect this behavior:

• vm.min free kbytes affects the kernel memory watermarks in the low memory

zones. In the kernel function setup per zone wmarks in /mm/page alloc.c, three

watermarks are defined. The minimum watermark, WMmin, is defined by:

WMmin = pages min · present pages/sum lowmem pages .

The minimum watermark defines the low and high watermarks as WMlow =

1.25 ·WMmin and WMhigh = 1.5 ·WMmin respectively.

There is no control on the watermarks in high memory zones. They are always

1/1024 of the present pages in the zone, limited from above by 128 pages. But

this zone is always empty in 64-bit architectures, which is the one we were using.

In order to achieve high memory usage without having the kernel experience

memory pressure and starting the page freeing algorithm, we wanted to lower all

the watermarks as much as possible. By setting vm.min free kbytes = 0, we

made all the watermarks 0 for the low memory zones. This means that the kernel

won’t start swapping even if we achieve 100% of memory usage.

• vm.overcommit memory affects the memory overcommitment policy of the kernel.

By setting it to the constant OVERCOMMIT ALWAYS, the function vm enough memory

in the kernel file mm/mmap.c, will always return 0. As a result, a process will never

get the no memory error (-ENOMEM) when it tries to allocate memory.

• vm.swappiness can be set between 0 and 100, and controls whether the kernel
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preference between two available options for freeing memory. For higher values

the kernel will prefer to swap the memory of the processes to the disk, while for

lower values it will prefer to reduce the kernel’s buffers and cached pages.

The above configuration allowed us to achieve high memory usage (we left only

50 MB of free memory) without hurting the kernel’s buffers and cached pages, without

swapping the process to the disk, or even without thrashing. We might note that

this is only applicable if the application conforms with the requirements specified in

section 2.6.1.

2.7 Hardware Description and OS Configurations

We used a cloud host with 12GB of RAM and two Intel(R) Xeon(R) E5620 CPUs @

2.40GHz with 12MB LLC. Each CPU has 4 cores with hyper-threading enabled, for

a total of 16 hardware threads. The host ran Linux with kernel 2.6.35-31-server

#62-Ubuntu, and the guests ran 3.2.0-29-generic #46-Ubuntu. We limited the

memory in the grub to 10000 MB, in order to create the needed memory overcommiment

in the limited number of available CPUs, assuming each guest is assigned with one CPU,

and one CPU is reserved for the host.

To reduce measurement noise, we disabled EIST, NUMA, and C-STATE in the

BIOS and Kernel Samepage Merging (KSM) [AEW09] in the host kernel. To prevent

networking bottlenecks, we increased the network buffers.

2.8 libvirt setup

libvirt is an abstraction layer for virtualization. It enables definition of virtual

machines and virtual networks with XML files. We defined a large enough number of

VMs (13) with consecutive and fixed mac addresses, and configured them with the same

virtual network. In addition there is option in libvirt to define a DHCP server, and

attach a fixed IP address for each mac address of each guest. By doing so, the host can

know all the IP addresses of the guests and communicate with them with the auction

messages.

We also created another master-machine which we used only to change the VM

configuration, and did not use for experiments. it had a qcow2 image. Before each

experiment, with the qcow2 technology, we could create new copies of the master image

for all the VMs in no time, thus starting the experiment on a new and clean image.

Right after that the machine started to run, and an SSH connection was detected, a

copy of the updated code was sent from the host to the guest to start the experiment

with the updated code. Since we used python, there was no use for compiling the new

code.
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Chapter 3

Testing Methods

We tested our system with experiments and simulations. Experiments were conducted

by running guests on the host cloud computer. Each guest ran the tested application,

which was loaded by a load producing program from the host. We conducted three kind

of experiments: memory change experiments, in which we tested the reaction of the

application to a sudden memory change, testbeds, in which we profiled the performance

of the application in different memory allocations and different loads, and benchmarking

experiments, in which we compared Ginseng performance to the alternative memory

management systems. In the simulations we used the Ginseng code to noiselessly

simulate the system with a wide variety of parameters and for a large number of rounds.

The hardware we used for the experiments is described in section 2.7. We used

the libvirt library to manipulate the KVM virtualization environment. The libvirt

configuration is described in section 2.8.

3.1 Memory Change Experiments

Memory change experiments were conducted with the goal of finding the configuration

of the tested programs that could handle sudden memory changes, specifically, defining

the Tload and Tmem (see section 2.3.1). In these experiments, the application ran inside

a guest and was controlled by its memory controller (see section 2.6.2). The application

was subjected to a constant load from a load producing program, running on the host.

During the experiments, the guest was subjected to two sudden memory changes. First

the memory was increased by a certain amount and then it was decreased by the same

amount, back to the initial size. The host hinted the guest 5 seconds before each memory

change (see section 2.6.2).

We measured the application performance during each experiment. In each conducted

experiment, we changed the application and load producing program parameters, in

order to find a configuration in which the application met dynamic memory application

requirements (see section 2.6.1). In the memory change experiments, each memory

change is of 1000 MB. We assume that if the application can handle this amount of
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change, it can handle all the memory changes in our system.

3.2 Testbeds

In the testbed process, the dependency of application performance on a number of

parameters was measured. We defined test values for each parameter. Then we

measured the performance in all possible combinations of all these values.

The “staging server” is a process in QClouds [NKG10] that creates a static linear

relation between QoS and resource allocation using least mean square of the samples.

Ginkgo [HGS+11, GHDS+11] also had a profiling stage, in which a non-linear relationship

was created between the performance as a function of load and memory allocation.

The testbeds for Memory Consumer and Memcached were similar. The performance

measurement was the application hit rate and the parameters were the available memory

in the OS and the application load. The application load for Memcached was number

of concurrent memslap threads and for Memory Consumer the load was the number of

concurrent threads that try to write to the memory.

In the testbed experiment we ran the tested application with the dynamic memory

controller inside the guest and the load producing program from the host. We started by

allocating the guest with the minimal defined memory amount. Then, we decreased the

memory to the maximal value and decreased it back to the minimal value, step by step,

according to the defined set of memory values. In each memory step we first loaded the

application for a “warm-up”, after which we measured the application’s performance

for the defined set of load values. Each measurement, including the warm-up, was for a

fixed, predefined duration. We took care to hint the guest 5 seconds before an upcoming

memory change.

The memory range was limited from below by the minimal OS and application

memory need and from above, a bit more than the performance saturation: the

performance remained constant while the memory was increased. The load range wasn’t

limited from above by the CPU utilization. Higher loads created unrelated bottlenecks.

All limits were found empirically.

To make the testbed represent a high-loaded but not overloaded system, we conducted

the testbed process on four guests running the same tested application. The guests were

always under the same load and allocated with the same memory amount. We chose

four guests because more than that would overcommit the memory on part of the test.

After the testbed, we could produce an average of the performance for each measuring

point in the load-memory plane or examine the performance hysteresis due to memory

increase or decrease. For a set of memory allocations mi and loads lj , we created the

performance matrix of the average measured values Pij = P (li,mj). Those vectors were

used as a database for the adviser’s profiler.

For Memcached and Memory Consumer the measured memory range was between

600 MB and 2400 MB, and the load was between 1 and 10. The measurement duration

54



was 200 seconds for Memcached and 60 seconds for Memory Consumer.

3.3 Benchmarking Experiments

The experiments were conducted in order to compare Ginseng to other cloud memory

management alternatives. We defined several experiment sets, each with a different

workload. In each set we experimented with varying numbers of guests, and for each

number of guests we evaluated all the different memory management alternatives.

In each experiments set, the lowest number of guests was when the cloud server

memory was not overcommited. The highest number of guests was when there was no

memory for auction in the Ginseng setup. Above this number, Ginseng is just like the

static alternative.

Load was defined for Memcached and Memory Consumer as the number of concurrent

requests being made. We used two load schemes: static loads, where each guest’s load

is constant over time, and coordinated dynamic loads. In coordinated dynamic loads,

each pair of guests exchange their loads every Tload. The load-exchange timing is not

coordinated among the different guest pairs in the experiments. Loads are in the range

[2, 10]. The total load is always the number of guests ×6, so that the aggregate hit rate

of different experiments will be comparable.

Before each experiment, copies of the master guest image are created for each guest

(see section 2.8), to create a clean start. The guests are then started, and once an SSH

connection is established, the updated code is copied to all the guests.

Thereafter, the tested application is invoked with its dynamic memory controller

tier, and, in the case of Ginseng system, a bidder server inside the guest. The host

then starts the memory controller process: Ginseng, MOM or none of them. When all

of the above are running, the experiment actually starts, and will stop after a defined

duration.

In order to apply load to the tested application inside the guests, a thread is created

for each guest that repeatedly invokes the load producing program for a duration of

Tl, to produce load calculated by averaging the guest’s load function in the duration

time. The performance of the tested applications were sampled from the load producing

program, but it can be sampled by querying the tested application itself. After the

experiment is over, all the processes are closed, the guests shut down, and the data

saved.

We dedicated hardware thread 0 to the host and pinned the guests to hardware

threads 1 . . . N . The load producing programs were randomly (uniformly) pinned to

threads (N + 1) . . . 15.
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3.3.1 Configurations

The benchmarking experiments are characterized by the benchmarked workload and

the guest’s valuation of the performance. We defined the guest valuation function as a

multiple of a significance coefficient, si, a scalar value that describes guest i’s significance

relative to the other guests and a shape function, S(P ), a function that describes how

the guest valuates its performance, as follows:

V (P ) = si · S(P ) .

Below we detail the different configurations used in various combinations in the

experiments.

Workload

• Memory Consumer, configured as in the testbed experiments with a 2000 MB

saturation point, and 50 MB spare memory and 0.1 seconds for sleep time between

memory write attempts.

• Memcached, configured with dynamic allocation. Memslap ran inside the guest,

configured as in the testbed experiments with a key size of 249 bytes, a value size

of 1024 bytes, a window size of 500 KB and a get/set ratio of 3:7. Each invoking

of memslap was for 10 seconds. A network delay of overall 1 millisecond of the

guest local loopback was emulated.

Shape function

• Second order shape function. This kind of shape function characterizes on-

line games and social networks, where the memory requirements are proportional

to the number of the users, and the income is proportional to user interactions,

which are proportional to the square of the number of users. A combination of

this shape function with the Memory Consumer performance graph can be seen

in figure 3.1. The shape function is defined as follows:

S(P ) = P 2 .

• Piecewise linear shape function. This kind of shape function characterizes

service level agreements that distinguish usage levels by unit price. A combination

of this shape function with Memcached performance graph can be seen in figure 3.2.

The shape function is defined as follows:

S(P ) =

{
0.001 · P if P < P0

P otherwise
,
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where P0 is the minimal performance required. We set P0 = 1.4[Khits/s] for

Memcached.

• Performance function. Used to test an environment where the performance has

direct influence on the valuation, or a configuration where all the clients are equal

and to compare Ginseng to other cloud memory management systems without

the influence of the valuation.

S(P ) = P

Using this function allows us to compare Ginseng to the alternative cloud memory

management systems in an environment where Ginseng does not have its advantage

of being aware that different guests have different valuations of performance.

Significant coefficient distributions

• Pareto distribution. A distribution of the si coefficients according to the

economic Pareto function.

• Three significant guests. A distribution where three guests are much more

significant than the other guests:

si =


4000 if i = 1

3000 if i = 2

2000 if i = 3

1 otherwise.

.

Alternative Memory Management Systems

The different memory management systems we evaluated with were:

• Static. The entire cloud computer memory, other than a fixed amount reserved

for the host, was evenly divided among the guests. In this system the memory is

not overcommited.

• Host-swapping. More than the available memory was allocated to the guests,

leaving the memory to be managed by kernel policies.

• Memory Overcommitment Manager (MOM) [Lit11]. A memory overcom-

mitment controller, described in section 1.3. We configured MOM with the memory

management policy according to host and guest memory pressure. We didn’t use

the KSM controlling policy since we disabled the KSM in the OS (see section 2.7).
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Figure 3.1: The second order shape function combined with the Memory Consumer
performance graph, presented as a function of load and memory allocation. This kind
of shape function characterizes on-line games and social networks, where the memory

requirements are proportional to the number of the users, and the income is
proportional to user interactions, which are proportional to the square of the number of

users.
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Figure 3.2: The piecewise-linear valuation function combined with the Memcached
performance graph, presented as a function of load and memory allocation. This kind
of shape function characterizes service level agreements that distinguish usage levels by

unit price.
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Ginseng and static are memory management systems in which the memory is not

overcommited. In those configurations we dedicated 500 MB for the host. In the static

system, each guest got (10000− 500)/N MB, where N denotes the number of guests.

In the Ginseng system, each guest’s m0 memory was 600 GB, and the memory sold in

the auction was

qmax = (10000− 500− 600 ·N) .

The host-swapping and MOM systems do overcommit memory. We initially allowed

the guests’ memory to grow to a limit of 10000 MB (by setting the libvirt maxmem

parameter). Using these systems in the experiments resulted in massive host swapping

(thrashing) and caused the host to freeze. Hence, we reconfigured these systems with

memory allocation limit (libvirt maxmem parameter) as the performance saturation

point, which was 2000 MB for both tested applications. We denote those systems with

the prefix “hinted”.

In our experiments, 2000 MB is the most memory any rational guest would ask for,

since performance remains flat with any additional memory beyond 2000 MB. This

white-box configuration, which is based on our knowledge of the experiment design, is

intended to get the best performance out of the alternative memory allocation methods.

The initial and maximal memory values are summarized in table 3.1.

3.3.2 Simulation Comparison

For each evaluated point, two more measurements were added, describing simulation

results for a matching configuration:

1. Ginseng Simulation. Simulation of a matching configuration, with the same

bidding strategy and the same rules. This simulation shows the theoretical results.

The results reveal the upper bounds of the Ginseng system. The difference between

the simulated and the measured performance might be due to memory waste

(see section 2.1.2), or to accompanying noise from bottlenecks in other resources,

such as CPU, cache or network bandwidth. A detailed comparison between the

predicted and measured performance is given in 4.3.16.

2. Upper Bound. The upper bound is the result of simulations of a matching

configuration, in which, instead of allocating memory by a function, an optimization

program calculates the allocation that will result in the highest possible social

welfare. This upper bound is the highest possible theoretical social welfare that

can be achieved in the system1.

1 Note that both the optimization program and Ginseng maximize the social welfare. The performance
is not maximized and higher performance can be achieved. If the valuation function were set such that
V (P ) = P , the performance of the system would have been maximized
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System/Memory [MB] Initial Maximal

Ginseng bare 10000
Static (10000− 500)/N —
MOM bare 10000

Host-swapping 10000 —
Hinted MOM bare 2000

Hinted host-swapping 2000 —

Table 3.1: Ginseng and the alternative systems: initial and maximal memory values.
N denotes the number of guests.

3.4 Simulations

The simulations evaluate various aspects of Ginseng’s performance, and were augmented

with experimental results. The simulations reuse Ginseng’s algorithmic core with

simulated guests that use the same strategy as real guests, and can be seen, therefore,

as emulations of the Ginseng process.

The simulations differ from the experiments only with regard to application perfor-

mance. In the simulations the performance is a function P (l,m), which is derived from

the testbed results, and stays constant throughout the simulation, and between simula-

tions. On the other hand, in the experiments the performance is measured on-line from

the application and is subjected to degradation from memory waste (see section 2.1.2),

or accompanied by noise from bottlenecks in other resources, such as CPU, cache or

network bandwidth.

3.4.1 Static Simulations

In the static simulations we simulated the Ginseng system running with 10 guests under

constant load for 1000 rounds. Each of the 10 guests had a different load, and thus a

different performance function. For all the guests the valuation was defined to be equal

to the performance V (P ) = P , and the bare memory was 600 MB, the same value as

used in the benchmarking experiments. In the static simulations we simulated all the

combinations of reclaim factors in the range of [0.1, 1], with an overcommitment ratio

in the range of [1, 4].

In each simulation the auction memory, qmax, was defined through the overcommit-

ment ratio, OC, as follows:

qmax =

(
1− 1

OC

)
·
∑
i

m0i +
1

OC
·mmax , (3.1)

where mmax is the sum of the guest’s memory demand, which is constant. This

describes the actual overcommitment of the system, relative to a minimal allowed value

of the m0 memory. Measured values in the static simulations were social welfare, sum

of guest utilities, host revenue and an upper bound on waste, ties, and inefficiency.
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Waste and Ties. As discussed insection 2.1.2, rapid memory ownership changes

leads to degraded performance. This does not appear in the simulation results, because

the performance is driven by a function and not by real measurements. We try to

quantify this loss by measuring that memory. We defined the upper bound on memory

waste due to ownership changes as the maximal total allocated memory minus the static

allocations over the last 40% of the auction rounds:

Waste(t) =
t

max
τ=t−40

N∑
i=1

mi(τ)−
N∑
i=1

t
min

τ=t−40
mi(τ) .

Ties do not cause cycles because when they are broken, preference is given to the

previous owner, leading to a stable solution.

Inefficiency. With the aid of the optimization program (presented in section 3.4.2),

we were able to find the optimal allocation for maximal social welfare, scmax, in each

round. The inefficiency quantifies the aggregate valuation degradation experienced due

to the mechanism design and the bidding language, defined as:

Inefficiency(t) = 1− sc

scmax
.

3.4.2 Optimization Simulations

The optimization simulation is able to run the same configuration of as the regular

simulation, static, or dynamic. Instead of running the Ginseng memory allocation

algorithm we run an optimization program that finds the allocation for the maximal sc

value possible.

The solution is obtained using a binary linear programming method. The extra

allocation vector, which is the memory a guest will have above its m0 memory, defined

as:

mj = j ·∆m

where the maximal allocation can be all the auction memory qmax, or the saturation

memory of the application, to make the solution faster.

The allocation matrix is binary, guest i gets extra allocation mj if and only if Aij = 1.

The matrix is defined by:

Aij = 1, 0

Let us define a helper matrix of possible memory allocation j for guest i:

Mij = m0i +mj
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The valuation matrix of guest i with extra allocation j is defined as:

Vij = Vi (Aij ·Mij)

The optimization problem was set to maximize the sum of valuations, limited to

give only one allocation to each guest, and to allocate only the available memory:

max
A

∑
ij

Vij

s.t.∑
j

Aij = 1

∑
ij

{Aij ·Mij} ≤ qmax

(3.2)

This problem was solved using the python optimization library pymprog. The

conditions were set with the st method, the problem definition was set using the

maximize method, and the solution achieved using the simple solve method.
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Chapter 4

Results

In this chapter the results of the different experiments and simulations are presented.

Memory Consumer and Memcached were tested for memory change response, profiled

in a testbed for their performance dependency on memory and load, and were used

to compare Ginseng to the alternative memory management systems (static, hinted

host-swapping and hinted-MOM) in benchmarking experiments. Both workloads were

also used to simulate the Ginseng system under different parameter sets. We present

static and dynamic simulations, and compare them to the optimized solution. In all the

results the overcommitment ratio is defined by:

OC =
mhost +

∑
i [∆Mi +msat

i ]

mtotal
,

where mhost is reserved for the host, ∆Mi is the allocation difference, described in

section 2.3.2, msat
i is the memory in which the guest’s performance saturate, its value

depends on the running application and the load value and mtotal is the total memory

available. In the experiments we used mhost = 500 MB. The allocation difference value

depends on the maximal memory of the balloon, we obtained ∆Mi = 54 MB. We

limited the total memory of the host to mtotal = 10012 MB, to have no memory for

auction when the guests number reached the number of available CPUs.

4.1 Memory Change Experiments

In the memory change experiments, the tested application inside the guest is subjected

to constant load while the guest memory allocation is subjected to two sudden changes.

Workload configuration was empirically determined to meet the the dynamic memory

application requirements, as described in section 2.6.1.

Memory Consumer was configured with Tload = 10 seconds. It can be seen in

figure 4.1(a), that Memory Consumer performance (hits) was relatively constant when

the memory was constant, and when it was higher, the performance increased. In the

unused memory graph, we can see from the first peak that it takes Memory Consumer
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less than 10 seconds to fill the extra 1000 MB, and from the second peak that Memory

Consumer succeeded in releasing the memory before it was taken. We can see that the

throughput slightly decreased when the memory was high, due to the memory write

overhead.

Memcached was configured with Tload = 200 seconds. It can be seen in figure 4.1(b)

that Memcached performance (hits) was relatively constant when the memory was

constant, and when it was higher, the performance increased. In the unused memory

graph, we can see from the first peak that it takes Memcached about 100 seconds to fill

the extra 1000 MB, and from the second peak that Memcached succeeded in releasing

the memory before it was taken.
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Figure 4.1: Memory Consumer (figure 4.1(a)) and Memcached (figure 4.1(b))
performance measurement under constant load and sudden changes in memory
allocation. The hits and throughput were measured in order to understand the
application performance. The unused memory was measured in order to see the

dynamic memory application response to memory change.
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4.2 Testbeds

In this section the testbed results are presented. First, the Memory Consumer and

Memcached testbed results of the final configuration are presented. These results were

used as the adviser’s application profiling function in the benchmarking experiments.

They were also used as the performance function in the simulations. Thereafter, testbed

results of different Memcached configurations are presented. The first is Memcached as

it comes out-of-the-box, with fixed cache size, and the second is dynamic Memcached,

with no special OS configurations.

4.2.1 Memory Consumer Testbed

In the testbed, Memory Consumer was configured with a 2000 MB saturation point, and

50 MB spare memory and 0.1 seconds for sleep time between memory write attempts.

Loads between 1 and 10 concurrent requests were sampled, and memories between

600 MB and 2400 MB. Each point was measured for 60 seconds.

The Memory Consumer testbed results are presented in figure 4.2. It can be seen that

the performance is linear up to the saturation point, and remained constant afterwards,

exactly in accordance with design. The result function is concave and non-decreasing.

Each point was measured once after the memory was increased and once after the

memory was decreased. A comparison of those measurements shows no hysteresis.
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Figure 4.2: Testbed results for Memory Consumer. The performance (hit rate) as a
function of memory allocation for different load values. The linear behavior up to a

saturation point is exactly in accordance with design.
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4.2.2 Dynamic Memcached Testbed

In the testbed, Memcached was configured with dynamic allocation and memslap (the

load producing program) was configured with a key size of 249 bytes, a value size of

1024 bytes, a window size of 100 KB and a get/set ratio of 3:7. Loads between 1 and

10 concurrent requests and memories between 600 MB and 2400 MB were sampled.

Each point was measured for 200 seconds.

The Memcached testbed results are presented in figure 4.4. It can be seen that for

each load the performance increased up to the saturation point and remained constant

afterwards. We can also see that the saturation point differs for each load. As the

load increases, the performance saturates with higher memory allocation. The result

function is non-decreasing and concave in most of its regions. Each point was measured

once after the memory was increased and once after the memory was decreased. A

comparison of these measurements shows no hysteresis.

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Memory [GB]

0

1

2

3

4

5

P
e
rf

o
rm

a
n
c
e
 [

K
h
it

s
/s

]

load: 10

load: 8

load: 6

load: 4

load: 2

load: 1

Figure 4.3: Testbed results for dynamic Memcached. The performance (hit rate) as a
function of memory allocation for different load values. Dynamic Memcached with the

OS configuration gives a non-decreasing and mostly concave performance function,
which is consistent and stable.

Executing the memslap process on the host side and sending requests to the Mem-

cached application on the guest side produced high load on the virtual network between

the host and the guests. We found that the network had trouble transporting this large

traffic, and essential packets found it difficult to reach their destination. Therefore, we

changed the configuration such that we ran both Memcached and memslap inside the

guest, and all the requests were passed using the local loopback address. By doing so
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the network was no longer a bottleneck and the one CPU assigned to the guest became

the critical path. By configuring the local loopback to have an emulated delay using

the netem tool, we emulated the network bottleneck again without actually stressing

any resource of the system. We used a network delay of 1 millisecond1 and only had to

reconfigure the memslap window size to 500 KB to get results which behave similarly

to the configuration where memslap ran on the host. The testbed results for this

configuration can be seen in figure 4.4.
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Figure 4.4: Testbed results for dynamic Memcached with memslap running on the
guest side. The performance (hit rate) as a function of memory allocation for different

load values. Running memslap from inside the guest released the network pressure
caused by running it from the host. An emulated network delay was used to emulate

the behavior of concurrent clients on a single CPU.

1To emulate a 1 millisecond network delay in the local loopback, a value of 0.5 millisecond was set.
Since the delay is emulated twice on every request (one in each direction), the result is a total delay of
1 millisecond.
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4.2.3 Testbed Examples of Infelicitous Configurations

In the previous sections (sections 4.2.1 and 4.2.2), workable and stable performance

testbed results were presented. In this section, we will present how Memcached behaves

out-of-the-box, or with the default OS configuration, in order to explain how we arrived

at the final configuration.

Static Memcached

Memcached, as it is an out-of-the-box application, has a fixed cache size. The cache size

is defined when the Memcached process starts, and is constant as long as Memcached

runs. The static Memcached was configured with cache size of 500 MB, and memslap

was configured with the same parameters as in section 4.2.2. Loads between 1 and

10 concurrent requests, and memories between 300 MB up to 900 MB were sampled.

Each point was measured for 200 seconds.

The testbed results are shown in figure 4.5(a). The application shows very poor

performance, under any load, up to an allocation of about 600 MB. For allocations

of 700 MB and upward, the performance for each load is almost constant. The non-

functionality of Memcached for memory allocations lower than 700 MB is due to severe

swapping. This can be seen in the sampling of guest OS major-faults, in figure 4.5(b).

Static Memcached, configured with 500 MB cache size, needs at least 700 MB to operate,

but higher memory allocations are no use to it.

This kind of application is not suitable for a dynamic memory cloud computer.

It requires a fixed amount of memory, and its performance does not improve from

additional memory allocation.

Dynamic Memcached without any Special OS configuration

The dynamic configuration of Memcached allows it to change its cache size. A larger

cache size increases the hit percent of the requests, and thus the hit rate. Gaining more

benefit from extra memory is not enough; dynamic memory applications also need the

OS to trust them. If the OS interferes with their memory and swaps it to the disk

because of memory pressure, the performance of the application will decrease when it

starts to consume a large percent of the available memory.

In this testbed, dynamic Memcached and memslap were configured with the same

parameters as in section 4.2.2. The guest OS, however, had the default configuration,

and was not configured as described in section 2.6.3.

The testbed results can be seen in figure 4.6. The performance graph shows

unexpected behavior. There is an unexplained drop in the performance at a memory

allocation of around 1800 MB, and inconsistent behavior for higher memory allocations.

Those behaviors can be only explained by OS interference.

This example, which shows unaccepted results, proves that the guest OS configuration

for trusting the dynamic memory application is a necessary companion for the dynamic
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(a) Performance
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Figure 4.5: Testbed results for unmodified (static) Memcached, configured with
500 MB cache size. In (a) it is shown that Memcached had very poor performance with
a memory allocation lower than 700 MB, and had almost constant performance value in
higher memory allocations. In (b) it can be seen that the poor performance is due to

high number of major faults, and that there are no major faults at all when the
performance achieve their maximal value.
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memory application.
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Figure 4.6: Testbed results for dynamic Memcached with unconfigured OS.
Unexpected and inconsistent behaviors in high memory allocations can be explained by

the OS interference with the application’s allocated memory.
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4.3 Benchmarking Experiments

The benchmarking experiments were conducted in order to compare Ginseng to other

cloud memory management alternatives (see section 3.3.1) and the simulation of the

same experiments (see section 3.3.2). We conducted the experiments in sets, where each

set is characterized by the workload, the guest valuation functions and the distribution

of the wealth of the guests. In each set we experimented with various numbers of guests,

and for each number of guests we evaluated all the different memory management

alternatives.

The guests were subject to dynamic loads, which were exactly the same for the

different evaluated systems. In the Ginseng system the reclaim factor was set to 1,

and guests used the strategy described in section 2.4.1. In each experiment set, a

different combination of workload, guest valuation shape function and guest significance

coefficient distribution, as described in section 3.3.1, was chosen.

General note for the graphs. Ginseng results are compared to the different memory

management systems as a function of the number of guests and overcommitment ratio,

for dynamic load experiments. The solid lines show the results of the experiment, while

the dashed lines represent the Ginseng simulations and the optimized simulations.
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4.3.1 Results for valuation function equal to performance

In this experiment sets, the Memcached and Memory Consumer guests were configured

with valuation function equal to the performance. The significance coefficients were all

set to one. These experiments demonstrate the efficiency of Ginseng for maximizing the

performance of an application. The guests, which are configured with valuation equal to

the performance, bid according to the maximal performance. Since the host is looking

for the maximal social welfare allocation, it is also looking for the maximal performance

allocation. For Memcached, each experiment lasted 60 minutes, with Tload = 1000s. For

Memory Consumer, each experiment lasted 30 minutes, with Tload = 200s.

In this case the social welfare and the performance are the same, up to the measured

unit. The comparison of Ginseng performance to the alternative systems is shown in

figure 4.7(a).
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Figure 4.7: Results for Memcached and Memory Consumer with valuation function
equal to performance. See explanation general note on the beginning of section 4.3
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4.3.2 Results for Memcached with a piecewise linear valuation shape

function and significance coefficients corresponding to three sig-

nificant guests

In this experiment set, the Memcached guests were configured with a piecewise linear

performance valuation shape function and the significance coefficients correspond to

three significant guests. Each experiment lasted 60 minutes, with Tload = 1000s. The

social welfare results were scaled with the scalar value of 10−5.

The comparison of social welfare between the different alternative systems is shown

in figure 4.8(a), and comparison of performance is also available in figure 4.8(b).

When the number of significant guests is small, and the valuation shape function is

piecewise linear, the maximal possible social welfare is constant as long as those guests

can have memory sufficient for their minimal required performance. It drops down when

there is not enough memory for auction for the minimal performance value.
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Figure 4.8: Results for Memcached with a piecewise linear valuation shape function
and significance coefficients corresponding to three significant guests. See explanation

general note on the beginning of section 4.3
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4.3.3 Results for Memcached with a second order valuation shape

function and Pareto distributed significance coefficients

In this experiment set, the Memcached guests were configured with a second order valu-

ation shape function and Pareto distributed significance coefficients. Each experiment

lasted 60 minutes, with Tload = 1000s. The social welfare results were scaled with the

scalar value of 10−7.

The comparison of social welfare between the alternative systems is shown in

figure 4.9(a), and comparison of performance is also available in figure 4.9(b).
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Figure 4.9: Results for Memcached with a second order valuation shape function and
Pareto distributed significance coefficients. See explanation general note on the

beginning of section 4.3
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4.3.4 Results for Memcached with a second order valuation shape

function and one significant guest

In this experiment set, the guests were configured with a second order performance

valuation shape function and the significance coefficients correspond to one significant

guest. Each experiment lasted 60 minutes, with Tload = 1000s. The social welfare

results were scaled with the scalar value of 10−9.

The comparison of social welfare between the different alternative systems is shown

in figure 4.10(a), and comparison of performance is also available in figure 4.10(b).
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Figure 4.10: Results for Memcached with a second order valuation shape function and
one significant guest. See explanation general note on the beginning of section 4.3
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4.3.5 Results for Memcached with a second order valuation shape

function and three significant guests

In this experiment set, the guests were configured with a second order performance

valuation shape function and the significance coefficients correspond to three significant

guests. Each experiment lasted 60 minutes, with Tload = 1000s. The social welfare

results were scaled with the scalar value of 10−9.

The comparison of social welfare between the different alternative systems is shown

in figure 4.11(a), and comparison of performance is also available in figure 4.11(b).
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Figure 4.11: Results for Memcached with a second order valuation shape function and
three significant guests. See explanation general note on the beginning of section 4.3
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4.3.6 Results for Memcached with a second order valuation shape

function and equal guests

In this experiment set, the guests were configured with a second order performance

valuation shape function and the significance coefficients were equal to one another.

Each experiment lasted 60 minutes, with Tload = 1000s. The social welfare results were

scaled with the scalar value of 10−7.

The comparison of social welfare between the different alternative systems is shown

in figure 4.12(a), and comparison of performance is also available in figure 4.12(b).
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Figure 4.12: Results for Memcached with a second order valuation shape function and
equal guests. See explanation general note on the beginning of section 4.3
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4.3.7 Results for Memcached with a linear valuation shape function

and Pareto distributed significance coefficients

In this experiment set, the guests were configured with a linear performance valuation

shape function and the significance coefficients were drawn from the Pareto distribution.

Each experiment lasted 60 minutes, with Tload = 1000s. The social welfare results were

scaled with the scalar value of 10−4.

The comparison of social welfare between the different alternative systems is shown

in figure 4.13(a), and comparison of performance is also available in figure 4.13(b).
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Figure 4.13: Results for Memcached with a linear valuation shape function and Pareto
distributed significance coefficients. See explanation general note on the beginning of

section 4.3
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4.3.8 Results for Memcached with a linear valuation shape function

and one significant guest

In this experiment set, the guests were configured with a linear performance valuation

shape function and the significance coefficients correspond to one significant guest. Each

experiment lasted 60 minutes, with Tload = 1000s. The social welfare results were scaled

with the scalar value of 10−6.

The comparison of social welfare between the different alternative systems is shown

in figure 4.14(a), and comparison of performance is also available in figure 4.14(b).
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Figure 4.14: Results for Memcached with a linear valuation shape function and one
significant guest. See explanation general note on the beginning of section 4.3
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4.3.9 Results for Memcached with a linear valuation shape function

and three significant guests

In this experiment set, the guests were configured with a linear performance valuation

shape function and the significance coefficients correspond to three significant guests.

Each experiment lasted 60 minutes, with Tload = 1000s. The social welfare results were

scaled with the scalar value of 10−6.

The comparison of social welfare between the different alternative systems is shown

in figure 4.15(a), and comparison of performance is also available in figure 4.15(b).
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Figure 4.15: Results for Memcached with a linear valuation shape function and three
significant guests. See explanation general note on the beginning of section 4.3
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4.3.10 Results for Memory Consumer with a second order valuation

shape function and Pareto distributed significance coefficients

In this experiment set, the guests were configured with a second order performance

valuation shape function and the significance coefficients were drawn from the Pareto

distribution. Each experiment lasted 30 minutes with Tload = 200s. The social welfare

results were scaled with the scalar value of 10−7.

The comparison of social welfare between the different alternative systems is shown

in figure 4.16(a), and comparison of performance is also available in figure 4.16(b).
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Figure 4.16: Results for Memory Consumer with a second order valuation shape
function and Pareto distributed significance coefficients. See explanation general note

on the beginning of section 4.3
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4.3.11 Results for Memory Consumer with a second order valuation

shape function and three significant guests

In this experiment set, the guests were configured with a second order performance

valuation shape function and the significance coefficients correspond to three significant

guests. Each experiment lasted 30 minutes with Tload = 200s. The social welfare results

were scaled with the scalar value of 10−9.

The comparison of social welfare between the different alternative systems is shown

in figure 4.17(a), and comparison of performance is also available in figure 4.17(b).
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Figure 4.17: Results for Memory Consumer with a second order valuation shape
function and three significant guests. See explanation general note on the beginning of

section 4.3
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4.3.12 Results for Memory Consumer with a second order valuation

shape function and equal guests

In this experiment set, the guests were configured with a second order performance

valuation shape function and the significance coefficients were equal to one another.

Each experiment lasted 30 minutes with Tload = 200s. The social welfare results were

scaled with the scalar value of 10−7.

The comparison of social welfare between the different alternative systems is shown

in figure 4.18(a), and comparison of performance is also available in figure 4.18(b).
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Figure 4.18: Results for Memory Consumer with a second order valuation shape
function and equal guests. See explanation general note on the beginning of section 4.3
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4.3.13 Results for Memory Consumer with a linear valuation shape

function and Pareto distributed significance coefficients

In this experiment set, the guests were configured with a linear performance valuation

shape function and the significance coefficients were drawn from the Pareto distribution.

Each experiment lasted 30 minutes with Tload = 200s. The social welfare results were

scaled with the scalar value of 10−4.

The comparison of social welfare between the different alternative systems is shown

in figure 4.19(a), and comparison of performance is also available in figure 4.19(b).
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Figure 4.19: Results for Memory Consumer with a linear valuation shape function and
Pareto distributed significance coefficients. See explanation general note on the

beginning of section 4.3
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4.3.14 Results for Memory Consumer with a linear valuation shape

function and three significant guests

In this experiment set, the guests were configured with a linear performance valuation

shape function and the significance coefficients correspond to three significant guests.

Each experiment lasted 30 minutes with Tload = 200s. The social welfare results were

scaled with the scalar value of 10−6.

The comparison of social welfare between the different alternative systems is shown

in figure 4.20(a), and comparison of performance is also available in figure 4.20(b).
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Figure 4.20: Results for Memory Consumer with a linear valuation shape function and
three significant guests. See explanation general note on the beginning of section 4.3
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4.3.15 Results for Memory Consumer with a linear valuation shape

function and one significant guest

In this experiment set, the guests were configured with a linear performance valuation

shape function and the significance coefficients correspond to one significant guest. Each

experiment lasted 30 minutes with Tload = 200s. The social welfare results were scaled

with the scalar value of 10−6.

The comparison of social welfare between the different alternative systems is shown

in figure 4.20(a), and comparison of performance is also available in figure 4.21(b).
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Figure 4.21: Results for Memory Consumer with a linear valuation shape function and
one significant guest. See explanation general note on the beginning of section 4.3
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4.3.16 Offline Profiling Relevance

Threesomes of memory allocation, load and performance were sampled during the

benchmarking experiments. For each pair of memory and load, the performance

predicted by the guest’s adviser could be computed according to the profiling function,

and then compared with the actual performance from the initial threesome. This

comparison shows the relevance of offline profiling.

In figure 4.22, the performance measured in the testbed was validated by comparing

it with the performance measured in the experiments and shown in figures 4.2 and 4.4.

We can see that the majority of the samples are close to the theoretical ideal. For

Memcached we can see negligible deviation, and that most of the samples were predicted

correctly. In the Memory Consumer comparison we can see that the deviation is much

higher. This comparison is important because the adviser for the guest bid is making

decisions according to the performance measured in the testbed. If the performance

is far from the actual performance, the adviser’s advice is misleading. Mistakes in

prediction can be overcome by on-line measurements of the performance and a correction

of the profiling function.

0 5 10 15 20 25
Predicted [hits/s]

0

5

10

15

20

25

A
c
tu

a
l 
[h

it
s
/s

]

Theoretical

(a) Memory Consumer

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Predicted [khits/s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
c
tu

a
l 
[k

h
it

s
/s

]

Theoretical

(b) Memcached

Figure 4.22: Validation of the performance predicted from the testbed, by comparing
it with that measured in the experiments. For predicted performance values with at

least ten values, boxes extend from the first quartile to the third, and the mean value is
marked.

87



4.3.17 Reclaim Factor Influence

To examine the impact of the reclaim factor on social welfare in a real system, we

combined a statically loaded Memcached guest, which is vulnerable to allocation

cycles, with a dynamically loaded Memory Consumer guest, whose load changed every

60 seconds. Each guest got bare memory of 600 MB. We repeated the same experiment

for different reclaim factors.

A comparison of the total social welfare between those experiments is presented in

figure 4.23, in which the highest social welfare was achieved for reclaim factor value of

0.5, and decreased for higher or lower values. A trace of the measured load, memory

allocation and valuation of the two guests for reclaim factors of 0.5 and 1 is presented

figure 4.23(b), in which the reclaim factor memory restrain is made perceptible.
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Figure 4.23: Impact of reclaim factor on social welfare for a mixed workload of
Memcached and Memory Consumer, and traces of the experiments demonstrating the

difference in the behavior
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4.4 Simulations

We used simulations to evaluate various aspects of Ginseng’s performance. The simula-

tions allowed us to run and test Ginseng with a variety of parameter ranges and for

longer durations. We simulated Ginseng running with 10 guests for 1000 rounds. All

the guests were configured with the adviser described in section 2.4.2, and with the

performance valuation function: V (P ) = P .

4.4.1 Memory Exchange Penalty Influence

The figures present the social welfare, sum of guest utilities, and host revenue, in

addition to the upper bound on waste, ties, and inefficiency. All of them are presented

as a function of overcommitment and β, the percent of p0 out of the minimal accepted

bid’s unit-price in the previous round.

The results of simulations testing the influence of β on Ginseng performance are

presented in figure 4.26 for Memory Consumer, and in figure 4.27 for Memcached.

4.4.2 Reclaim-Factor Influence

The figures present the social welfare, sum of guest utilities, and host revenue, in

addition to the upper bound on waste, ties, and inefficiency. All of them are presented

as a function of reclaim factor and overcommitment.

The reclaim-factor influence simulation results are presented in figure 4.26 for

Memory Consumer, and in figure 4.27 for Memcached.
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Figure 4.24: Simulation results for Memory Consumer. The impact of the β, the
percent of p0 out of the minimal accepted bid’s unit-price in the previous round, and
overcommitment ratio on Ginseng time-averaged performance. Social welfare, revenue

and profit values are normalized by the maximal social welfare achieved in the
parametric sweep.
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Figure 4.25: Simulation results for Memcached. The impact of the β, the percent of p0
out of the minimal accepted bid’s unit-price in the previous round, and overcommitment
ratio on Ginseng time-averaged performance. Social welfare, revenue and profit values

are normalized by the maximal social welfare achieved in the parametric sweep.
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Figure 4.26: Reclaim factor simulation results for Memory Consumer. The impact of
the reclaim factor and overcommitment ratio on Ginseng’s time-averaged performance.
Social welfare, revenue and profit values are normalized by the maximal social welfare

achieved in the parametric sweep.
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Figure 4.27: Reclaim factor simulation results for Memcached. The impact of the
reclaim factor and overcommitment ratio on Ginseng time-averaged performance.

Social welfare, revenue and profit values are normalized by the maximal social welfare
achieved in the parametric sweep.

93



94



Chapter 5

Discussion and Conclusions

5.1 Discussion

In this section we will discuss the results of the experiments and simulations, try to

quantify the efficiency of Ginseng, and understand how the suggested approaches for

dynamic memory cloud computing improve the known and existing approaches.

5.1.1 Memory Change Experiments

In the memory change experiments, presented in figures 4.1(a) and 4.1(b), the effective-

ness of the dynamic memory applications and guest hinting before memory change is

shown. Both dynamic applications increase their performance when they have more

available memory, and both avoid thrashing when the memory is reclaimed by freeing it

beforehand. The system responds as expected to sudden memory changes.

Our explicit hinting approach is similar to the one proposed in [Vor13], but has not

been tested yet. Less efficient approaches that limit the memory change rate were used

in [Wan09, GHDS+11, HGS+11]. In those approaches, which use implicit knowledge,

the memory degradation is dependent on the OS memory management system, which

should respond to memory pressure. Moreover, the memory change process becomes

unacceptably long in its duration and limited in its amount.

5.1.2 Testbed

The testbed procedure, presented in section 3.2, is similar to the “staging server” which

was used in QClouds [NKG10], in which a static linear relation between QoS and

resource allocation was created using least mean square of the samples. We show that

a linear relation is not enough to represent this function, as can be seen even in our

cleanenst testbed results in figures 4.2 to 4.4.

It is also similar to the correlation stage in Ginkgo [HGS+11, GHDS+11], in which

a correlation between performance as function of load and memory was created. In

Ginkgo, the samples were measured with allocations that differed by 32 MB, and for
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more than an hour in each load and memory point. However, our specially developed

dynamic memory applications and special OS configuration showed that resolution of

the 100-200 MB allocation difference between samples is fine enough, and moreover, a

duration of 60 seconds for Memory Consumer and 200 seconds for Memcached were

long enough to give small variance and no hysteresis in the results. A duration of an

hour is not practical, not even for the results to be valid in a real time system.

Ginkgo also presents results similar to our testbed results, but under the magnifying

glass strange behavior can be seen, such as discrepancy between the performance and

load, and strange, discrepant and unexplained behavior of the performance function.

The testbed results that involved our dynamic memory applications and the hinting

mechanism (see figures 4.2 to 4.4) show that there is logic behind the performance

function. The function increases as the memory allocation increases and higher loads

result in higher performance.

In [HZPW09], results of performance profiling as a function of memory are also

presented. Their results show an example of a static heap size allocations with OS

thrashing for memory allocation which are lower than the minimal requirement. These

results are similar to the results we experienced on the out-of-the-box Memcached

with un-configured OS, as can be seen in figure 4.5. Our dynamic memory application

approach, as presented in section 2.6.1, avoids this kind of behavior, which is not suitable

for a dynamic memory cloud computer.

Support for the dynamic memory application approach is presented in [HGS+11,

GHDS+11]. JavaBalloons is a modification of JVM that allows heap size changes. But

the profiling graph of the JavaBalloons also shows static heap size behavior that suggests

that they are inefficient.

5.1.3 Experiment results

The experiments were conducted in order to compare Ginseng to other cloud memory

management alternatives, for different workloads and different valuation function shapes

and distribution. In this section we discuss the comparison, for which we used black-box

clients for Ginseng and white-box clients for the alternatives.

The memory exchange penalty, as presented in section 2.1.5, was not used in the

presented results. The conditional allocation rules, as presented in section 2.1.2, were

used instead. The second approach, like the first, is used in order to prevent costly

memory exchanges, and has a similar effect. The disadvantage of conditional allocation

is that we cannot assume truthful guests. Since our guests were programmed to be

truthful, the results are still valid for our developed system. However, using the memory

exchange approach might yield slightly different results.

The social welfare achieved by Ginseng was evaluated and compared to the social

welfare of each of the five other methods listed in table 3.1 for a varying number of

guests on the same physical host. The social welfare and performance of the different
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experiments is compared in section 4.3. The figures contain two upper bounds for the

social welfare, achieved through simulations, which are presented in section 3.4. The

tighter bound results from a simulation of Ginseng itself, and the looser bound results

from a white-box on-line simulation. The MOM and host-swapping methods (in their

not hinted version) yield negligible social welfare values for these experiments, and are

not presented in the graphs.

Ginseng achieves much better social welfare than any other memory management

system alternative for both workloads. It improves social welfare by ×31.5 for Mem-

cached and up to ×6.2 for Memory Consumer, compared with all other approaches.

Since each guest is allocated a fixed amount of memory (bare) on startup, as the number

of guests increases, the potential for social welfare increases, but our host has less free

memory to auction.

In all experiment sets, Ginseng achieves around 83%–100% of the optimal social

welfare.

Using Ginseng does not guarantee that the performance of the system will be

maximized, since Ginseng was designed to maximize the social welfare of the system.

However, we show that by setting the valuation function to be proportional to the

performance, Ginseng improves the performance up to ×1.6 for the Memcached workload,

relative to the alternative systems.

Reclaim Factor influence

The results of reclaim the factor experiment, as described in section 4.3.17, are given in

figure 4.23 for various reclaim factors. The trace of load, memory and valuation for two

of these experiments can be seen in figure 4.23(b). The experiment shows that lowering

the reclaim factor reduces the penalty that Memory Consumer suffers when conditions

change and it needs to change its strategy. When the reclaim factor is lower, the system

gets sluggish and does not stabilize before the load changes again.

In real systems there is a trade-off between system responsiveness and limitation

of allocation cycles that does not exist in simulations. This experiment proves the

importance of the reclaim factor as a knob for the host to control the system’s stability.

Offline Profiling

In figure 4.22 we compare our benchmarks’ predicted performance with the actual

measured performance values during Ginseng experiments. The comparison shows that

the profiled data is accurate enough, as can be seen when comparing Ginseng’s results

to its simulations.

The performance prediction is important to the advising strategy of the guest. More

accurate advising bid recommendations will lead to higher social welfare. Measuring the

performance on-line with feedback to the advising unit and a correction of the profiler

function can improve the accuracy of the bids.
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5.1.4 Simulation Results

The simulation results are presented in section 4.4. The simulations were conducted in

order to help evaluate various aspects of Ginseng’s performance and enable to run and

test Ginseng in a variety of parameter ranges and for longer durations.

Memory Exchange Penalty Influence

Determining p0, by β, as described in section 2.1.2, causees p0 to be higher as the

unit price of the submitted bids is higher and the prices of the bids increased. This

technique gives an adaptive value of p0 to the currently submitted bids. Nevertheless,

more sophisticated techniques could be employed, to improve the performance of the

system.

The influence of β was studied through simulations. Figures 4.24 and 4.25 presents

simulation results of the Memory Consumer and Memcached benchmarks respectively.

Each is simulated in the entire space of memory overcommitment and β values. Since

β directly influences p0, as higher β results in higher p0 values, we will consider the β

horizontal axis, as a suggestion on p0 values. Additionally we can see that in the sense

of economic behavior of the system (social welfare, host revenue and guests utility),

both workloads behave quite similarly.

It can be seen that p0, has negligible (if any) influence on the social welfare, and as

expected, a higher overcommitment ratio reduces the social welfare, as fewer goods are

being sold to the same number of clients. On the other hand, p0 has a strong influence

on the host revenue. Higher values reduce host revenue significantly. On the vertical

axis, we can see that the overcommitment demonstrate a supply and demand behavior

on the host revenue; for small overcommitment ratios, where the supply is high, and for

high overcommitment ratios, where there is hardly any supply, the host revenue is low,

and for the middle range of overcommitment where there is the lowest ratio of supply

over demand, the host revenue rises.

Memory Consumer, with the linear dependency of value and memory, exhibits nice

behavior: no inefficiency, no memory waste and no ties over the whole range. On the

other hand, Memcached, with the concave valuation functions, the behavior is less

satisfactory. Inefficiency accrues for middle range overcommitment ratios and higher

p0 values. In the middle range overcommitment ratio the supply and demand ratio

is low and the market prices are high; moreover, for higher β values, the p0 values

comprise a significant portion of the bidder’s payment. The result is that in this area

we expect the highest p0 values. Higher p0 values reduce memory exchange and the

difference between the best social welfare to the Ginseng social welfare increases. This

is expressed in higher inefficiency. We should keep in mind that this inefficiency is for

a system that does not suffer from exchanging memory, and a real experiment might

show better performance due to the cost of exchanging that memory. Memory waste is

zero on most of the areas in the graph, but might be shown in the places where memory

98



overcomitment is low and the p0 is low. This might happen due to small values of the

memory exchange penalty term.

Reclaim-Factor Influence

Memory Consumer static simulation results can be seen in figure 4.26. It is shown that

the reclaim factor has low impact on the host revenue and sum of guest utilities, and no

impact on the social welfare and the inefficiency. The inefficiency ranges from 0 in a well

provisioned system to 35% for an overcommitment ratio of 3.5. The inefficiency can be

reduced by using a richer bidding language [MT04a]. There are no ties in the Memory

Consumer simulations, and usually no waste either. We attribute the lack of ties to the

different slopes of the Memory Consumer performance graphs for the different loads (in

figure 4.2).

figure 4.27 shows the static simulation results of Memcached guests. It can be seen

that in this case as well, the impact of reclaim factor on the social welfare and inefficiency

is negligible. The main influence on the sum of guest utilities is the overcommitment.

We can see a greater influence of reclaim factor on the host revenue, but the trends

are similar to the Memory Consumer simulation: host revenue has lower values in the

high and low overcommitment values, and in the middle overcommitment range, higher

values for lower reclaim factor.

In contrast to Memory Consumer tie graph, which had a value of zero for the entire

range, Memcached tie graph shows that the simulations could have had up to 80% of the

rounds with tied guests. This can be explained by the Memcached performance graphs

which share the same slope in their lower parts (figure 4.4). This is consistent with our

design assumption in section 2.1.2, that ties do happen in real life, and supports the

claim that they must be efficiently dealt with.

Host Revenue

Ginseng does not attempt to maximize host revenue directly. Instead, it assumes that

the host charges an admittance fee for cloud services and maximizes the aggregate

client satisfaction (the social welfare). Maximizing social welfare improves host revenues

indirectly because better-satisfied guests are willing to pay more. Likewise, improving

each cloud host’s hardware (memory) utilization should allow the provider to run more

guests on each host. Nevertheless, it is interesting to examine the host’s direct revenues.

In the both of the simulations, for small overcommitment ratios (< 1.3) the host

revenue is negligible (< 5% of the maximal social welfare): the guest utilities (see

figures 4.26(c) and 4.27(c)) equal to their valuations (see figures 4.26(a) and 4.27(a)).

As the overcommitment ratio increases, host revenue decreases because there is less

memory to rent. When the host revenue is zero and the social welfare is high, as in the

case for the low overcommitment range, the system is functioning well and is in a state

of equilibrium. In this state, guests are more considerate of their neighbors thanks to
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the exclusion compensation principle. Our guests reach such equilibrium using indirect

negotiations that result from their learning strategy (in section 2.4.2).

5.2 Conclusions

Ginseng is the first cloud platform that allocates physical memory to selfish black-box

guests while maximizing their aggregate benefit. It does so using the MPSP auction,

in which even guests with non-concave valuation of memory are incentivized to bid

their true valuations for the memory they request. Using the MPSP auction, Ginseng

achieves an order of magnitude of improvement in the social welfare.

Although Ginseng focuses on selfish guests, it can also benefit altruistic guests

(e.g., when all guests are owned by the same economic entity). In this case, economic

valuations can distinguish between guests that perform the same function for different

purposes, such as a test server vs. a production server.

In the research, we have shown the importance of dynamic memory applications, the

efficiency of explicit guest hinting, and the contribution of the guest OS being configured

to trust the dynamic memory application. Adopting those approaches was necessary to

increase the system utilization.

Ginseng is the first concrete step toward the Resource-as-a-Service (RaaS) cloud

[ABYST12]. In the RaaS cloud, all resources, not just memory, will be bought and sold

on the fly. Extending Ginseng to resources other than physical memory remains as

future work.

5.3 Future Work

The MPSP auction is uncharted territory with regard to game theory: the reclaim factor,

which reduces waste, introduces private guest-states that change over time and affect

the guests’ valuation of additional memory chunks. When the base memory changes,

it also changes the forbidden ranges. In addition, valuations may change at random

due to dynamic loads. In this work we only analyzed guest strategies with a horizon

of one auction round. In simpler problems of repeated games without private states,

there may be rational strategies which are irrational to play as a stage game. This may

also be the case here: there are strategies that are irrational in the stateless game (with

α = 1), but are rational in the private-state game. For example, if a guest expects a

fast increase of demand for memory, it can plan ahead and bid for more memory than

it currently needs. It will benefit from keeping its payments lower for several rounds,

until the system reaches a new equilibrium. Even in a stateless game, prediction of

other guests’ bids may incentivize a guest to lie about its valuation in a repeated VCG

auction. Analysis of such strategies calls for new theoretic approaches.

The performance of the guest’s agent can be enhanced through learning. It can

predict load changes, and bid according to predictions rather than according to the
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current load. It can predict the impact of its bid on allocation results. It can update

the P (m) on-line. It can use the knowledge it collected to devise side-channel attacks

on its neighbors.

The host can learn how to dynamically change the reclaim factor. To this end it

can utilize the total amount of memory that was bid for, in addition to its own plans to

add or remove guests. It can also utilize black-box measurements to assess the rate at

which conditions change.

Ginseng currently only allocates memory. It can be expanded to allocating resource

bundles (e.g., memory, IO, and CPU) [ABYST12]. It can also be expanded to allow

shedding memory, for example when the decay brings the guest to an undesired memory

amount, or when the guest’s requirements quickly change, but the reclaim factor is

small.
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מתאימות ואינן איטיות אלו שיטות לפנותו. לאורח גורמת ובכך זכרון, לחץ יצירת ידי על מפורש

balloon) האורח בלון של הזכרון לקיחת פעולת את מדמות ובנוסף דינמי, זכרון בעל בענן לשימוש

בהפעלת כיעילה והוכחה נבדקה המפורשת ההתראה שיטת מקרה. בכל בפועל שמבוצעת כפי ,(driver

עם בשיתוף (swap) הקשיח לכונן זכרון דפי העברת למנוע ויכולה בזכרון, ומיידיים גדולים שינויים

כיצד מציגים בנוסף אנו בביצועים. לשיפור מביאה היא כיצד מוצג כן, כמו מתאימה. אפליקציה

כי מראים אנו התערבותה. ללא הזיכרון של גדול באחוז להשתמש מאפשר ההפעלה במערכת שינוי

ביצועים. לשיפור מביא השינוי מוקצה־יתר לא הזכרון בה במערכת

יישום עם אורח לבדיקת הן ראשונות בדיקה סביבות שתי שונות. בדיקה סביבות פותחו במחקר

ההפעלה. מערכת של הקונפיגורציה ושינוי מוקדמת מפורשת התראה מערכת עם בשילוב דינמי זיכרון

מהר כמה למדוד ניתן זו במערכת ופתאומי. גדול זכרון לשינויי היישום תגובת נמדדה בראשונה

לאחר מהר מספיק הזכרון את לשחרר מספיק הוא והאם בזכרון, מעליה תועלת להפיק יכול היישום

הקצאות ותחת שונים עבודה עומסי תחת היישום בביצועי לאפיון שניה מערכת בכך. הצורך לו שנודע

לחזות לאורח המשמשת ובזכרון בעומס בתלות הביצועים של פוקנציה מפיקה המערכת שונות. זיכרון

מערכת ג'ינסנג. את לבדוק מנת על פותחו נוספות בדיקה סביבות שתי הריצה. במהלך ביצועיו את

להשוות שנוכל מנת על שווים, תנאים תחת זכרון לניהול אחרות וחלופות ג'ינסנג את הריצה אחת

יכלנו דמיוניים. אורחים עם ג'ינסנג של ריצה לדמות יכלנו בה סימולציה מערכת פותחה בנוסף ביניהן.

האסטרטגיות אלגוריתם את ולבחון ג'ינסנג, של האלגוריתם על משפיעים שונים פרמטרים איך לבדוק

האורחים. של

הוצלחו ומיידיים גדולים זכרון שינויי כיעילות, הוראו בענן דינמי בזכרון לשימוש שהוצגו השיטות

ספורות, בשניות נמדדה הזכרון להגדלת האפליקציות ותגובת לכונן, דפים העברת ללא להתקבל

100 וכ ,Memory Consumer ביישום מקסימליים ביצועים לקבלת עד בייט לג'יגה שניות 10 מ פחות

ג'יגה לפנות הצליחו היישומים שני .memcached ב מקסימליים ביצועים לקבלת בייט לג'יגה שניות

שניות. 5 מ בפחות זכרון של בייט

×1.6 או הכוללת, החברתית הרווחה עבור ×6.2-×31.5 של שיפור הציגה ג'ינסנג הניסויים בתוצאות

השיגה היא בנוסף בענן. הזכרון הקצאת לניהול ביותר העדכניות לגישות בהשוואה הביצועים, עבור

האפשרית. האופטימלית החברתית מהרווחה 83%-100%
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.reclaim factor בשם פרמטר הוא האחד הזכרון. העברת לצמצום נוספים מנגנונים שני נבחנו

ערך קביעת המכרז. תקופת סיום לאחר למארח יוחזר לאורח שנוסף מהזכרון כמה קובע זה פרמטר

מכניס הוא כי נרה המנגנון של בחינה לאחר הלקוח. אצל יותר רב זמן מהזכרון חלק משאירה נמוך

הרווחה את להקטין מוכן המארח בו מנגנון הוא שנבחן השני ברורה. לא ויעילותו לתוצאות, רעשים

שהעברת בגלל לאחר. אחד לקוח בין הזכרון העברת מבחינת עולה שהיא המחיר בגלל החברתית

שלו החברתית הרווחה אם רק יתבצע הזכרון ששינוי דורשים אנו כלשהי עלות בעלת היא הזכרון

במידה וזאת הקודמת, ההקצאה מהשארת המתקבלת החברתית הרווחה מאשר כלשהו באחוז גבוהה

המנגנון הכנסת ידי על שהתקבלו. הקודמות מההצעות כלשהו באחוז שונות אינן שהתקבלו וההצעות

מבטל המנגנון זאת, עם שופרו. המערכת וביצועי דומים לקוחות בין תכופה זכרון העברת צומצמה

את אומרים בהכרח שאינם לקוחות עם נבחן היה ואם ,incentive compatibility ה תכונת את

במיוחד. להיותרעות יכולות היו התוצאות האמת,

שלו הביצועים את להעריך לדעת צריך השחקן במכרז. המשתתף שחקן אסטרטגיית שולבה במחקר

הזכרון. שווי את להעריך יכול הוא הביצועים שווי ומהערכת לרשותו, שעומד הזכרון של כפוקנציה

מחיר מציע במשחק המשתתף השחקן זכרון. אזורי מאותם הרווח את להעריך יכול השחקן בנוסף,

מציע הוא אותו המחיר זה. במחיר לרכוש מוכן הוא אותם זכרון ואזורי לשלם, מוכן הוא אותו יחידה

זאת, לעומת זו. זכרון כמות עבור הדומיננטית האסטרטגיה שזו משום הזכרון של האמיתי ערכו הוא

אסטרטגיה מציגים אנו זכרון. אזורי של שונה בחירה עבור שונים יחידה מחירי להציע יכול המשתתף

הטובים הסיכויים בעלות האסטרטגיות ומן נמוכים, שלהם הקבלה שסיכויי ההצעות את הפוסלת

ביותר. הגדול הרווח הערכת בעלת האסטרטגיה נבחרת

של הזכרון הקצאות את דינמי באופן המשנה ענן במחשב נכון לשימוש גישה מוצגת זה במחקר בנוסף,

.(dynamic memory applications) דינמי זכרון יישומי יישומים: של חדש סוג מציגים אנו הלקוחות.

מסוגלים ובנוסף זכרון, של יותר גדולה כמות לשרותם כאשר ביצועיהם את לשפר מסוגלים אלו יישומים

הקצאת בו ענן לסביבת כהכרחיים אלו יישומים בסוג רואים אנו הצורך. בשעת במהירות לשחררו

מנסה זה יישום .Memory Consumer ייחודי, בדיקה יישום פותח המחקר במהלך משתנה. הזכרון

לרשותו, קיים באמת הזכרון אם רק כתיבה פעולת מבצע אך שוטף, באופן זכרון לכתובות לכתוב

הוא הכתיבות שקצב ומכיוון כתובות ליותר לכתוב יצליח היישום זכרון, יותר יש לאורח אם כלומר,

של שינוי מוצג בנוסף משתנה. זכרון כיישום מתאפיין זה יישום ישתפרו. ביצועיו לביצועיו, המדד

המקורי היישום מידע. מאגרי לפני העומד מטמון בתור מאוד ונפוץ Memcached הנקרא יישום

הזכרון כשגודל משתנה. זכרון בעל אורח בתוך לשימוש מתאים ואינו קבוע בגודל מטמון בעל הוא

כתיבות או קריאות עבור לדיסק לפנות יצטרך האורח המטמון, זכרון לגודל מתחת יקטן האורח של

הוא שהמטמון משום זכרון, תוספת עבור ביצועיו את ישפר לא היישום בנוסף, ייצנחו. והביצועים

נוסף יישום באמצעות להשתנות. יכול המטמון שגודל כך היישום של שינוי מציגים אנו קבוע. בגודל

הקיים לזכרון בהתאם המטמון של גודלו את לשנות מצליחים אנו הדינאמי היישום גודל את המבקר

עבור בביצועים שיפור ומראה מהר מספיק המטמון גודל את משנה הדינאמי היישום האורח. אצל

זכרון בסביבת יעילים בתור והוכחו המחקר במהלך נבדקו שפותחו היישומים שני זכרון. תוספת

דינמית.

קרב שינוי על הענן במחשב לאורחים מוקדמת מפורשת התראה היא במחקר המוצגת נוספת שיטה

זכרון לקיחת בהם קודמות שיטות מול אל ניצבת זו שיטה בפועל. יישומו בטרם הזכרון, בהקצאת

בלתי באופן לאורח מרומזת היתה הזכרון לקיחת אלו בשיטות הדרגתית. בצורה מבוצעת האורח מן
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תקציר

היו העננים מחשוב ספקי ימנו. של העננים מחשוב במערכות ביותר היקר המשאב הוא פיזי זיכרון

ידי על מירבי, לערך לקוחותיהם של (Social welfare) החברתית הרווחה את להביא מעוניינים

הם אנוכיים: הללו הלקוחות האמיתי, בעולם אבל אותו. מעריכים שהכי ללקוחות הזיכרון הקצאת

כיצד כאלה, בתנאים שלהם. האישי האינטרסט זהו כאשר הזכרון של האמיתי ערכו את לספק יגלו

לקוחותיהם? של החברתית הרווחה את שמגדילה זכרון הקצאת למצוא יכולים העננים מחשוב ספקי

הראשונה שוק, מונחה דינמית זכרון הקצאת ניהול מערכת ,(Ginseng) ג'ינסנג את מציג זה מחקר

כשהם רק זכרון לבקש אנוכיים ללקוחות גם גורמת ג'ינסנג אנוכיים. לקוחות עם להתמודד שמסוגלת

מצמצת שהיא בכך זכרון של למכרז מותאמת היא בנוסף האמיתי. ערכו את ולהציע אותו צריכים

דינמי, באופן האורחים הקצאות את משנה ג'ינסנג נחוץ. אינו הדבר כאשר ליד מיד זכרון העברת

אותו. (Overcommited) מקצה־ייתר ואינה

.VCG למכרז ודומה , affine maximizers של המכניזמים לקבוצת שייכת ג'ינסנג של המכרז מערכת

מחיר משלם הוא עליה וקבועה מינימאלית זכרון כמות אורח לכל מקצה ג'ינסנג המשחק, במהלך

עבור מציעים הלקוחות מכן, לאחר הפנוי. הזכרון את למכרז מציעה היא קצוב, לזמן אחת קבוע.

לרכוש מוכנים הם אותם זכרון ואזורי לשלם, מוכנים הם אותו זמן ליחידת זכרון ליחידת מחיר הזכרון

מונוטוניות לא ואפילו קמורות זכרון הערכת פונקציות על להתגבר מאפשר זה, פרוטוקול זה. במחיר

של המירבית החברתית לרווחה המביאה זכרון הקצאת מוצאת ג'ינסנג ההצעות, איסוף לאחר עולות.

לפי נקבע הלקוחות מן הנגבה התשלום .2-tree עץ הפורש רקורסיבי אלגוריתם ידי על הלקוחות,

במכרז. מנצחונם האחרים ללקוחות הנגרם הנזק

לעיתים ליד מיד העברתו ולמזעור זכרון של למכרז להתאמתו לג'ינסנג, מנגנונים מספר הוספנו בנוסף,

יחידה מחיר בעלות הצעות שתי הוצעו כאשר שוויון לשבירת מנגנון הוספנו ראשון, מנגנון תכופות.

לזה אלו; לאורחים שהוקצתה האחרונה הזכרון כמות ידי על היא הראשונה השוויון שבירת זהה.

ליד. מיד הזכרון מעברי את מצמצמים אנו שוב בכך, השני. על עדיפות תהיה זכרון יותר שהיה

רנדומאלית. בצורה השוויון את שוברים אנו זהה, היא גם היתה האחרונה שההקצאה במקרה

social) החברתי המחיר מפונקציית חלק המהווה זכרון העברת על ענישה איבר הוא שני, מנגנון

איבר .affine maximizers ה של המכניזמים במשפחת המוגדרת החבתית התועלת של הכללה ,(cost

הזכרון שכמות ככל החברתי המחיר את ומקטין ליד מיד שעוברת הזכרון לכמות פרופורציונאלי זה

איבר יותר. קטנה היא העובר הזכרון כמות בהם הקצאות להעדפת גורם הוא בכך גדלה. העובר

incentive ה תכונת את מבטיח ובכך ,affine maximizers ה בקטגוריית המכניזם את משאיר זה

הזכרון. של האמיתי הערך עם להמר הוא המשתתפים השחקנים של האינטרסט לפיה compatibility
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המחשב. למדעי בפקולטה שוסטר, אסף פרופסור של בהנחייתו בוצע המחקר

תודות

הבאים: לאנשים להודות רוצה ברצוני

ההנחיה על המעניין, המחקר על לעבור ההזדמנות את לי שנתן שוסטר, אסף פרופסור שלי, למנחה

הדרושה. התמיכה את שנתן כך ועל המחקר, במהלך

ההדרכה ועל מכשולים, על להתגבר בכדי שניתנה והתמיכה העזרה על יהודה, בן אגמון לאורנה

המשחקים. תורת בעולם

טובות. עצות נותנים שתמיד והתומכת, הטובה למשפחתי

על צריך, כשהייתי לי לתת שידעה והמרחב הזמן על שחוויתי, הקשיים הבנת על מריה, לחברתי,

קשים. בזמנים והתמיכה שלי, השפיות שמירת

בהשתלמותי. הנדיבה הכספית התמיכה על לטכניון מודה אני
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