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�Man moves in order to satisfy a
need.� �Rudolph Laban

Abstract

Laban Movement Analysis (LMA) is

a method for describing, interpreting

and documenting all varieties of human

movement. Analyzing movements using

LMA is advantageous over kinematic

description, as it captures their quali-

tative aspects in addition to the quan-

titative. Thus, in recent years, LMA

is increasingly becoming the preferred

method for movement analysis. In this

study we developed a Machine Learn-

ing (ML) method for recognizing La-

ban qualities from a markerless Mo-

tion Capture (MOCAP) camera � Mi-

crosoft's Kinect. We believe that we

are the �rst succeeded identifying LMA

with a ubiquitous sensor. There no pa-

pers similar enough to ours for a per-

formance comparison, but our work ob-

tained a recall and precision rate of

about 60% averaged over the qualities,

result that is a solid foundation for a fu-

ture work, and even a success by itself.

1 Introduction

Our goal is to create a method for automated
identi�cation of Laban qualities that charac-
terize any movement sequence, using Kinect.
Our problem presents three challenges. The
�rst is quantifying subtle qualities for which
a well-de�ned quanti�cation has not yet been
found. The second challenge is handling

noisy sensory data with an in-home setup,
and the third is keeping our method as
general as possible � We are developing a
system capable of handling di�erent scenar-
ios (dancing and acting, for example), and
di�erent postures (sitting and standing, for
example), by di�erent people of di�erent
backgrounds (if any) in movement.

We propose a low-cost (100$), non-intrusive
(markerless), ubiquitous (76 million sensors
around the world) system that can recognize
Laban qualities using the Kinect sensor
and Software Development Kit (SDK). For
evaluation, we have created our own dataset
and applied several ML techniques on it, in
several learning settings. We chose to use
ML (instead of rule based algorithms), so
we would be able to use all of the rich data
provided by the Kinect sensor rather than
focus on a very subtle feature extraction
method that requires domain expertise.
Using ML gave us an opportunity to reverse
engineer the learned models and learn about
our problem's intrinsic characteristics, such
as which features are predictive of which
qualities. The system obtained a recall and
precision rate of between 40-60% in the more
subtle qualities, and 60-90% in the more
expressive ones.

1.1 Motivation for Automated

LMA

There are numerous applications for com-
puterized identi�cation of the qualities that
characterize each possible human movement.
Examples include the generation and control
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of speci�c expressive movements of avatars,
virtual characters, or robots in mixed reality
scenarios [14]; detection of personality traits
during a job interview [17]; early detection,
severity assessment or revealing of genetic
tendency (phenotype) towards various
illnesses such as Alzheimer's, autism, Parkin-
son's disease [2], or schizophrenia, based on
analysis of the person's motor behavior. Au-
tomated emotion recognition from movement
is another important application, which may
have a variety of uses such as online feedback
to presenters to help them convey through
their body language the emotional message
they want to communicate (e.g., politicians
and public speakers or actors in training) [5];
or recognition of people's emotions during
interactive games such as those played using
the Xbox [21].

For reducing our data collection and
analysis e�ort, we focused our work on 18
Laban qualities (as listed in table 3) that
have been found predictive for emotional
state [23].

1.2 Laban movement analysis

LMA is a formal language for motion descrip-
tion �rst developed by Rudolf Laban [13] and
colleagues in the middle of the 20th century.
LMA describes both conscious and uncon-
scious human movement, based on Laban's
categories of Body, E�ort, Shape, and Space.
LMA has been used in the �elds of dance, act-
ing, athletics, physical therapy, and psychol-
ogy and behavioral science. LMA helps actors
create momentary moods and portray person-
ality traits through movement. For exam-
ple, LMA work investigates the E�ort prop-
erties Flow, Space, Time and Weight of all
movement and helps actors think speci�cally
about why their character might move in a
jerky, fast, light and direct manner versus a
heavy, slow, indirect and uninterrupted man-
ner. The entire LMA hierarchy is shown in
�gure 1.

1.3 Kinect Sensor Data

Figure 2 shows the skeleton provided by
Kinect's SDK. Once the skeleton is detected,
the 3D coordinates of all the joints of the

Figure 2: Skeleton positions relative to the
human body

user's body � with the exception of joints
that are not visible (e.g., a user's hand is be-
hind his or her back) � are provided. As
seen in Figure 3, the coordinates are in a �real-
world� coordinate system, whose origin [0,0,0]
is in the sensor and whose x-, y-, and z-axis
are as depicted below.

Figure 3: Kinect Coordinate System

1.4 Related Work

Several attempts were made to recognize La-
ban qualities. The �rst was Chi et al. [1],
who quanti�ed E�ort and Shape for anima-
tion. Most of the other attempts were for
emotion recognition in the context of Human
Robot Interaction (HRI). Martin et al. [8]
analyzed the importance of gestures in emo-
tion recognition for HRI. Masuda et al. gen-
erated emotional body motion for a human
form robot [14]. Rett et al. proposed a human
motion recognition system using a Bayesian
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Figure 1: Main axes of LMA. Taken from [22]

reasoning framework [20]. The second line
of works focused on LMA (not on emotions),
but not using Kinect. Lourens et al. [3] used
video data and Samadani et al. [4] used a
high quality MOCAP camera, but both of
them analyzed only hand gestures. A third
line of works used Kinect as the main sen-
sor for skeletal information. Gabel et al. [11]
used Kinect for gait analysis. The work of
Zacharatos et al. [21] was inspired by LMA
for emotion recognition using Kinect. His
feature extraction method was in�uenced by
LMA principles, but he did not attempt to
recognize the qualities themselves. Kim et al.
[16] did attempt to do so but not on a real
dataset and their work did not include a per-
formance evaluation.

2 Method

Because we are the �rst to handle Laban
recognition with Kinect, we had to create a
dataset from scratch. To reduce the noise,
and ensure that we capture the essence of the
Laban qualities in our dataset, we decided
that most of it should be built by recording
several Certi�ed [Laban] Movement Analysts
(CMA), with just a few validation clips taken
from recordings of ordinary people. We did

not want to constrain the lengths of the clips
to be equal, so in order to get feature vectors
of uniform length (regardless of the original
length of the clips), every feature is function
of a whole clip (for example, the variability
of the elbow's acceleration). On the uniform
length feature vector we applied feature se-
lection, single task learning (learning a model
for every quality separately), and multitask
learning (learning a model for all the quali-
ties together).

2.1 Clip Collection

Two main datasets were collected:

• CMA dataset - includes 6 CMAs per-
forming in about 80 clips each (a total of
550 clips). Every clip is about 3 seconds
long, and the CMAs executed combina-
tions of the 18 qualities. To achieve uni-
form distribution of the Laban qualities
over the dataset, in every clip the CMA
was asked to perform actions that include
several speci�c qualities, and nothing but
them.

• Non-CMA dataset - includes 2 subjects
without a background in movement anal-
ysis, performing 30 clips each. Every clip
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Figure 4: CMA during a clip

is also about 3 seconds long, and the sub-
ject was asked to perform one out of sev-
eral tasks.

2.2 Clip Labeling

To achieve a ground truth labeling for the two
datasets, every clip was tagged by a commit-
tee of 2 CMAs who determined which Laban
qualities appear in the clip. The use of a
committee decision instead of the subjective
opinion of one CMA decreases the labeling
noise and the decision is considered as ground
truth.

2.3 Feature Extraction

Due to the unequal length of clips, all the
extracted features are in whole clip granu-
larity. We extracted two groups of features,
the �rst is a relatively small, and contains
about 100 features that each one of them is
designed for a speci�c quality. The second
group contains about 6000 features, and
exploits the rich data that is provided by
Kinect, by extracting from every joint in the
skeleton, the angular velocity, acceleration,
and jerk. For every joint/metric pair, the
mean, variance, skew, and kurtosis were
extracted (the extraction of the last four
moments is denoted as φ).

We denote ~Pj(t) as the vector (as we
get it from the Kinect) of the position of
joint j in time t in a clip with n frames, and
αj is a coe�cient proportional to the mass
around the joint.

2.3.1 Shape Analysis: Sagittal Plane

Laban shape analysis of the sagittal plane is
based on the distinction between two quali-
ties, Advance and Retreat. This distinction
was quanti�ed by projecting the velocity
vector of the Center of Mass (CM) on the
vector of the front of the body. The CM was
approximated in this case by the average of
all the joints. The front of the body was
approximated by the perpendicular vector to
the vector between the Left Shoulder (LS)
and the Right Shoulder (RS).

If sag stands for sagittal, then from the
de�nition of CM of a physical system,

~PCM (t) =
∑

j∈Joints αj
~Pj(t),

~Pshoulders(t) = ~PLS(t)− ~PRS(t),

the front is perpendicular to ~Pshoulders,
so we can easily calculate it with:

~Pfront = ~Pshoulders

 0 0 1
0 1 0
−1 0 0

 ,

Ssag(t) = ~PCM (t) · ~Pfront(t),

~Fsag = φ([Ssag(1), . . . Ssag(n)]),

where φ was denoted in the beginning
of the section.

2.3.2 Shape Analysis: Horizontal Axis

Here the distinction is between Spreading
and Enclosing on the horizontal axis. This
distinction was quanti�ed by measuring the
average distance between every joint to the
vertical axis of the body that extends from
the Head (H) to the Spine Base (SB).

dj =
|(~Pj−~PSB)×(~Pj−~PH)|

|~PH−~PSB| ,

Shoriz(t) =
∑

j∈Joints dj(t),

~Fhoriz = φ([Shoriz(1), . . . Shoriz(n)]),
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2.3.3 Shape Analysis: Vertical Axis

Here the distinction is between Rise and Sink
on the vertical axis. This distinction was
quanti�ed by measuring the average distance
on axis y of each joint from the CM. This
quanti�cation is based on the assumption
that the body is �longer� when rising.

Svert(t) =
∑

j∈Joints

∣∣∣~Pj − ~PCM

∣∣∣ ,
~Fvert = φ([Svert(1), . . . Svert(n)]),

2.3.4 LMA E�ort Analysis: Time Cat-

egory

Here the distinction is between Sudden and
Sustained. This quality was quanti�ed by the
skew of the acceleration, relying on the as-
sumption that the acceleration of a sudden
movement will be skewed further to the left,
i.e., will get a higher value at the beginning
of the movement.

2.3.5 E�ort Analysis: Space Category

Here the distinction is between direct and In-
direct motion. This quality was quanti�ed
by the angle between the movement vector
of a joint to the next one, relying on the as-
sumption that in direct movement every vec-
tor will be in the same direction as the last
(the angle between them is small). The ve-
locity direction V is calculated by ~Vj(t) =
~Pj(t + 1) − ~Pj(t), and the angles between a
direction to the next one is calculated with
the inner product ~Aj(t) = ~Vj(t+ 1) · ~Vj(t).
2.4 Performance Evaluation

From a statistical point of view, we have
18 possible labels (Laban qualities) for every
clip. Each clip was a combination of just a few
of these, often 3-4, which means that there is
about an 85% chance that a quality won't ap-
pear in a clip. Due to this sparsity, accuracy
alone is not a relevant metric for the perfor-
mance evaluation because one can get 85%
accuracy by stating that for every recording
none of the qualities appear. A better evalua-
tion would have to combine the precision and
recall rates of the classi�er. This can be done
using the F1 score:

F1 =
2 · precision · recall
precision+ recall

.

2.5 Feature Selection

Every clip is extracted into a vector of 6120
features, most of which are noisy or redun-
dant, thus requiring massive feature selection.
The feature selection is done in three stages:

• Computing the Anova F-value for ev-
ery feature over the training set. Cross-
validation was used to determine the op-
timal number of features that should be
left. As seen in Figure 5, �ltering out
most of the features yielded better results
than not �ltering them, where using the
top 4% of features was optimal.

Figure 5: In�uence of the number of features
on the performance. The selection was made
according to statistical signi�cance. The blue
line is the di�erence between the score with
and without feature selection. It can be seen
that the optimal fraction of features to select
is 4%.

• The second phase of feature selection was
conducted by Information Gain (IG) rat-
ing of the features. As seen in Figure
6, the optimal ratio was obtained by se-
lecting the top 60% out of the features
that remained after the �rst phase of fea-
ture selection. Examples of qualities and
their most signi�cant feature are given in
Table 1. The �Information Gain� metric
used in the table is de�ned as:

IG(T, f) = H(T )−H(T |f),

where T is the training set, f is a feature,
and H() is the information entropy of a
dataset.

• The third phase of feature section
was conducted using the Least Abso-
lute Shrinkage and Selection Operator
(LASSO) regularization.
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Quality Feature Description Information Gain p-value

Jump Vertical relative position of center of mass 0.28 3.00E-50
Spread Horizontal relative position of left elbow 0.25 2.20E-49
Rotation Left shoulder horizontal acceleration 0.21 4.80E-46
Up+Rise Vertical relative position of left elbow 0.2 3.00E-31
Free+Light Left elbow angle's variability 0.16 1.10E-24
Rhythmicity Vertical relative position of center of mass 0.16 1.50E-11

Table 1: Example of several qualities and the feature found to be the most informative for
them. �Relative position� stands for the position of the joint relative to the ancestor joint in
the joint hierarchy.

Figure 6: In�uence of the number of features
selected with IG from the subset of features
chosen in the �rst phase on the performance.
The optimal ratio was 60%.

3 Experimental Setups and

Results

3.1 Multilabel Classi�cation

Multilabel learning deals with the problem
where each instance is associated with mul-
tiple labels simultaneously, where the num-
ber of labels is not �xed from instance to in-
stance. The task of this learning paradigm
is to predict the label (Laban quality) set for
each unseen instance (skeletal recording), by
analyzing training instances with known la-
bel sets. The multilabel approach taken in
this paper is to break the LMA problem into
18 binary classi�cation tasks � one for every
Laban quality � where every binary decision
is whether or not the quality exists.
The following subsections will describe sev-
eral experimental setups where the results in
each will serve as a baseline for the next.

3.2 Per CMA Evaluation

In this experiment the train and test datasets
are taken from the same CMA. The per-
formance on every Laban quality separately

is demonstrated on a dataset of one of the
CMAs in Figure 8. In Figure 7 the incre-
mental evolution of the algorithm is described
from step to step with the next notation:

• Chance stands for randomly tossing a
balanced coin in every classi�cation de-
cision.

• NN stands for applying the Nearest
Neighbors algorithm.

• LinearSVC stands for Support Vector
Classi�er (SVC) with a linear kernel.

• LabelBalancing stands for giving greater
weight to clips that contain the quality
due to the small fraction of them in the
whole dataset.

• Lasso, SFS (Statistical Feature Selec-
tion), and InfoGain (information gain
based feature selection) were described in
the Feature Selection section.

3.3 Mixed Dataset Evaluation

In this section the datasets of all of the CMAs
were mixed. In the learning and testing pro-
cess the origin (CMA) of the instance was ig-
nored.

3.3.1 Single Task Learning as a Base-

line

As a baseline we applied the SVC based �ow
that was described in the last section on the
mixed dataset. The results are shown in Fig-
ure 9. It can be seen that the performance
improves in comparison to the per CMA eval-
uation of the last section. There are two rea-
sons for this improvement, the �rst is the in-
crease in the dataset's size when merging a
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Figure 8: Recall, precision and F1 score of each Laban quality separately. The evaluation
was conducted on a dataset that was captured on only one CMA.
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Figure 7: Evaluation of every CMA's dataset
separately in the single task learning setting.
Each column represents an additional step in
the algorithm's evolution. The results are the
average F1 score and its standard deviation
(STD) between the CMAs.

few CMA datasets together, and the second
is diversity of the clips, which improves the
model's generalization ability.

3.3.2 Multitask vs Single Task Learn-

ing

We found that multitask learning for all
the 18 qualities together exhibited superior
performance to learning a classi�er for each
problem separately. For the multitask set-
ting we used Multitask Elastic Net (MEN)
regularization, which is the multitask regu-
larization method of Zou et al. [15], where
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Figure 9: Evaluation on CMA mixture
dataset in single task learning setting. Ev-
ery Column is an additional step in the algo-
rithm's evolution.

the optimization objective is:

‖Y −XW‖2F +λ1 · ‖W‖2,1+λ2 · ‖W‖2F , (1)

λ1, and λ2 are hyper-parameters, where,

‖W‖2,1 =
∑
i

√∑
j

w2
ij ,

i.e., the sum of norm of each row (also known
as mixed norm), and

‖W‖2F =
∑
i

∑
j

w2
ij ,

i.e., the Frobenius norm. Feature selection
was carried out by averaging the statistical
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signi�cance of each feature with respect to all
of the tasks (this is in contrast to the single
task learning �ow, where every task had its
own feature selection). As seen in Table 2,
the multitask setting improved the F score by
7%, indicating that the tasks are correlated
and more might be learned from the small
dataset when using this setting.

Metric Single task Multitask

Precision 0.46 0.59

Recall 0.71 0.65

F1 0.56 0.6

Table 2: Multitask vs Single task learning
performance evaluation on a CMA mixture
dataset.

3.3.3 Performance of Every Quality in

Multitask Setting

The performance over every quality as clas-
si�ed by the MEN in Table 3. During the
MEN optimization (1), the mixed norm term
‖W‖2,1 promotes sparsity in the weights ma-
trix W such that for every row in the matrix,
if one coordinate is equal to zero, then every
coordinate in the row will be equal to zero.
The generalization ability of the model was
enhanced by the fact that the decision which
features to select is in�uenced by all the qual-
ities, (feature fi is selected in the MEN if the
row ri inW is not all zeros). The most signif-
icant improvement were in the qualities that
performed worse in the single task learning
setting (Strong and Sudden for example).

3.4 Evaluation on an Unseen CMA

In this experiment the test set was taken from
a CMA who did not appear in the train set.
As shown in Figure 10, performance degrades
on the unseen CMA from 0.6 to 0.57. We
blame the degradation on the large variability
between clips from one CMA to another. Ev-
ery CMA performed di�erent gestures, in dif-
ferent postures (some sitting and some stand-
ing) and in di�erent contexts (some were
dancing while some were acting).

3.5 Validation on Ordinary People

The �nal validation was conducted on ordi-
nary people (non-CMAs). We designed sev-

Quality Precis-
ion

Recall F1
score

Jump 0.89 0.81 0.85

Twist and Back 0.69 0.85 0.76

Sink 0.62 0.79 0.69

Rhythmicity 0.59 0.72 0.65

Spread 0.55 0.76 0.64

Head drop 0.60 0.66 0.63

Rotation 0.66 0.60 0.63

Free and Light 0.45 0.94 0.61

Up and Rise 0.67 0.54 0.60

Condense and En-
close

0.44 0.84 0.58

Arms To Upper
Body

0.67 0.54 0.60

Advance 1.00 0.38 0.55

Retreat 0.50 0.59 0.54

Passive 0.40 0.85 0.54

Bind 0.44 0.61 0.51

Direct 0.56 0.49 0.52

Sudden 0.61 0.41 0.49

Strong 0.29 0.42 0.34

Average 0.59 0.65 0.60

SD 0.17 0.17 0.11

Table 3: Recall, precision and F1 score of each
Laban quality on a CMA mixture dataset.
The learning was done in a multitask setting.
The number of features that weren't nulli�ed
by the mixed norm regularization is 282 (same
features for all of the tasks). The F1 average
and standard deviation over the qualities is
shown in the last row of the table.

eral daily actions (greeting friends or playing
with a balloon, for example) and the CMA
committee tagged the clips. This dataset was
small, with a focus on the qualities that we
found easier to recognize. The evaluation is
shown in Figure 11.

4 Conclusion

We developed a method for recognizing
Laban qualities using the Microsoft Kinect
sensor. Our method obtained a recall and
precision of about 60% over the qualities.
The larger movements, such as jump, spread,
and sink, are easier to quantify, and hence
easier to recognize (precision and recall of
60-90%). The more subtle qualities, such
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Figure 10: Con�dence intervals of F1 score in
quality detection of an unseen CMA. Every
con�dence interval is two standard deviations
(STD) long. In every trial one CMA was the
test set, while the classi�er was trained on
the rest. The mean F1 score is 0.57. The
measures from left to right are: STD between
CMAs when every CMA's score is an aver-
age the scores of his or her qualities; STD be-
tween qualities when every quality's score is
an average of all of the CMAs' scores for this
quality; an average of qualities' STDs, where
every STD is between CMAs within a quality;
an average of CMAs' STDs, where every STD
is between qualities within a CMA's dataset.
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Figure 11: Performance on ordinary people
(non-CMAs) instructed to perform several
tasks.

as strong and passive, are harder for us to
quantify in kinematic measurements, which
causes a degradation in the performance
(precision and recall of 40-60%).

The improvement of the F1 score from
a single task learning setting (0.56) to a mul-
titask setting (0.6) demonstrates the synergy
of a shared model for several correlated tasks.
The mild degradation of the F1 score from a
seen CMA (0.6) to an unseen (0.57) shows a
very good generalization ability of our linear
classi�cation model. This ability derives
from our focus on the MEN regularization
terms, which resulted in our model being not
too rich, even sparse, and thus not over-�tted.

Overall we believe that we succeeded in
capturing the essence of most of the qualities,
using a cheap ($100) and widely available
sensor. We believe that our work will provide
the foundation and inspiration that will make
the LMA method applicable in many more
methodologies and processes.
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