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ABSTRACT

This paper presents the results of a multitask learn-
ing method for recognition of Laban Movement Analysis
(LMA) qualities from a markerless motion capture cam-
era. LMA is a well-accepted method for describing, in-
terpreting and documenting human movement which can
be advantageous over kinematic description for captur-
ing qualitative aspects as well as quantitative ones. Its
specific language can be understood across disciplines.
Thus, in recent years, LMA is increasingly becoming the
preferred method for movement analysis. Many applica-
tions that use motion capture data might be significantly
leveraged by automatic recognition of Laban Movement
qualities. A data set of 550 video clips of different com-
binations of LMA qualities were recorded from mark-
erless motion capture skeletal recordings demonstrated
on the output of Microsoft’s Kinect V2 sensor and on
video. These clips were tagged by 2 Certified Move-
ment Analysts as a multi-label training set to develop
the Machine Learning (ML) algorithms. This approach
obtained an improvement in recall and precision rate of
about 60%— 4% more than single-task machine learn-
ing previous approach by Bertstein et al. on single-task
learning, was validated by analysis of non trained people
moving general actions. Results show improved handling
of noisy sensory data with an in-home setup, a method
for automatic recognition of markerless movement in dif-
ferent situations, postures and tasks, and moderate im-
provements in quantification of subtle qualities for which
a well defined quantification had previously not been
found.
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INTRODUCTION

LMA is a formal language for motion description first
developed by Rudolf Laban [17] and colleagues in the
middle of the 20th century. LMA describes both con-
scious and unconscious human movement, and has been
used in the fields of dance, acting, athletics, physical
therapy, and psychology and other behavioral sciences,
among others. LMA is particularly useful in describing
subtle, qualitative aspects of movement crucial to expres-
sion and communication. LMA observes four main cate-
gories of movement: Body, Effort, Space and Shape, and
how elements from these appear and change over time,
making it particularly useful for observing nuance and
how movement is phrased. For example, actors working
with the LMA category of Effort make physical choices in
their attention to space, how they activate their weight
(strongly or lightly) their use of time (with suddenness
or sustainment), and free or bind their flow to create
momentary moods and portray character traits through
movement e.g., to develop a character who might move
in a jerky, fast, light and direct manner or a heavy, slow,
indirect and uninterrupted manner. The entire LMA hi-
erarchy is shown in figure 1.

There are numerous applications for computerized
identification of the possible qualities that combine to
characterize each human movement. Examples include
the generation and control of specific expressive move-
ments of avatars, virtual characters, or robots in mixed
reality scenarios [18]; understanding of personality
traits during a job interview [21]; severity assessment
or revealing of early stages of various disorders such
as Alzheimer’s, autism, Parkinson’s disease [9], or
schizophrenia, based on analysis of a person’s motor



Figure 1. Main axes of LMA. Taken from
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behavior. Automated emotion recognition from move-
ment is another important application which may have
a variety of uses such as online feedback to presenters
to help them convey through their body language the
emotional message they want to communicate (e.g.,
politicians and public speakers or actors in training)
[12]; as a type of biofeedback for motor skills learning
for interpersonal communication, coordination and self-
regulation or recognition of people’s emotions during
interactive games such as those played using the Xbox
[25].

Several attempts were made to recognize Laban quali-
ties. The first was Chi et al. [8], who quantified Effort
and Shape for animation. Most of the other attempts
were for emotion recognition in the context of Human
Robot Interaction (HRI). Masuda et al. generated
emotional body motion for a humanoid [18]. Rett
et al. proposed a human motion recognition system
using a Bayesian reasoning framework [24]. The second
line of work focused on LMA and emotions, but not
using Kinect. Lourens et al. [10] used video data and
Samadani et al. [11] used a high quality MOCAP
camera, but both of them analyzed only hand gestures,
rather than whole body movement, which is important
for detecting the expression of emotions. A third line
of inquiry used Kinect as the main sensor for skeletal
information. Gabel et al. [15] used Kinect for gait
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analysis. The work of Zacharatos et al. [25] focused on
two LMA Efforts (Space Effort and Time Effort) for
emotion recognition using Kinect. His feature extraction
method was influenced by LMA principles, but he did
not attempt to recognize the qualities themselves, and
the detection of more than 2 LMA elements are needed
to identify expression. Kim et al. [20] did attempt to
do so but not on a real dataset and their work did not
include a performance evaluation. Our work continues
Bernstein’s et al. work [27], but with multitask instead
of single-task learning and with analysis on people that
are not trained in LMA.

The multi-task learning approach was chosen to address
the limitations of the studies cited above. Our goal is
to create a method for automated identification of La-
ban qualities that characterize any movement sequence,
using Kinect. Our problem presents three challenges.
The first is quantifying subtle qualities for which a well-
defined quantification has not yet been found. The sec-
ond challenge is handling noisy sensory data with an
in-home setup, and the third is keeping our method as
general as possible — We are developing a system capa-
ble of handling different scenarios (dancing and acting,
for example), and different postures (sitting and stand-
ing, for example), by different people of different back-
grounds (if any) in movement. For reducing our data
collection and analysis effort, we focused our work on



18 Laban qualities (as listed in table 3) that have been
found predictive for emotional state [22].

METHOD

Kinect Sensor Data
Figure 2 shows the skeleton provided by Kinect’s Soft-
ware Development Kit (SDK). Once the skeleton is de-
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Figure 2. Skeleton positions relative to the human body

tected, the 3D coordinates of all the joints of the user’s
body — with the exception of joints that are not visi-
ble (e.g., a user’s hand is behind his or her back) — are
provided. As seen in Figure 3, the coordinates are in a
“real-world” coordinate system, whose origin [0,0,0] is in
the sensor and whose x-, y-, and z-axis are as depicted
below.

Z

Figure 3. Kinect Coordinate System

Motion Capture Clip Collection

In order to develop the ability to automatically identi-
fiy Laban qualities that characterize any movement se-
quence, we generated two specific datasets:

e The first relied upon Certified Movement Analysts
(CMAs) experts in demonstrating the LMA elements.
Six CMAs performed 3 second movements of 2-4 LMA
elements per clips, generating about 80 clips each, for
a total of 550 clips. Each clip is about 3 seconds long,
and the CMAs executed combinations of the 18 qual-
ities. To achieve uniform distribution of the Laban
qualities over the dataset, in every clip a single CMA

was asked to perform actions that include several spe-
cific qualities, and nothing but them.

Figure 4. CMA during a clip

e Non-CMA dataset - includes 5 subjects that are not
CMAs, performing 30 clips each. These clips are also
about 3 seconds long, and each individual was asked
to perform one out of several every day tasks.

Clip Labeling

To achieve a ground truth labeling for the two datasets,
a sample of the first data set clips was tagged by a com-
mittee of 2 CMAs (two of the 6 CMAs who performed
in the clips) who determined which Laban qualities ap-
pear in the clip. The use of a committee decision instead
of the subjective opinion of one CMA decreases the la-
beling noise and the decision is considered as ground
truth. The consensus method that the committee used
is was: Both of the CMAs watched observed each sample
clip without knowing the clip’s intended features, named
the primary elements observed in the clip independently,
then the clip was labeled by the intersection of the two
sets where we both agreed.

Feature Extraction

The feature extraction is adopted from an earlier work
[27]. Due to the unequal length of clips, all the extracted
features are in whole clip granularity. We extracted two
groups of features, the first is relatively small, and con-
tains about 100 features each of which is designed for a
specific quality. The second group contains about 6000
features, and exploits the rich data that is provided by
Kinect, by extracting from every joint in the skeleton,
the angular velocity (the change in position of a limb
around the fixed point of its joint attachment, e.g, veloc-
ity of the limb perpendicular to the radius of the circular
motion), acceleration (the change in velocity), and jerk
(the change in acceleration). For every joint/metric pair,
the mean (average), variance (how spread the numbers
are), skew (how asymmetrical the trajectory appears
compared to a bell curve), and kurtosis (how peaked
is the trajectory) were extracted (the extraction of the
last four moments is denoted as ¢).

We denote ]%(t) as the vector (as we get it from the
Kinect) of the position of joint j in time ¢ in a clip with



n frames, and «; is a coefficient proportional to the mass
around the joint.

Advance and Retreat

The Center of Mass (CM) was approximated in this
case by the average of all the joints. The front of the
body was approximated by the perpendicular vector
to the vector between the Left Shoulder (LS) and the
Right Shoulder (RS).

If sag stands for sagittal, then from the definition
of CM of a physical system,

Pou®)= > a;Pi(t),
jEJoints
ﬁshoulders (t) = ﬁLS(t) - ﬁRS(t)7

the front is perpendicular to ﬁshouldersa so we can easily
calculate it with:

3 3 0 01
Pfront = Pshoulders 0 10 5
-1 0 0

Ssag(t) = ﬁCAI(t) . ﬁfront(t)7

ﬁsag = (b([ssag(l)a .

Spreading and Enclosing

This distinction was quantified by measuring the average
distance between every joint to the vertical axis of the
body that extends from the Head (H) to the Spine Base
(SB).

+Ssag(n)])-

‘(133» — Psp) x (P; — ﬁH)‘
dj = — — ,
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Shoriz (t) = Z dj (t),

jeJoints
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Rise and Sink

This distinction was quantified by measuring the aver-
age distance on axis y of each joint from the CM. This
quantification is based on the assumption that the body
is “longer” when rising.

S’uert (t) == Z

j€Joints

Py~ Pou|,

ﬁvert = d)([Svert(l)v .

Sudden and Sustained
This distinction was quantified by the skew of the accel-
eration, relying on the assumption that the acceleration

. Svert (n)]),

of a sudden movement will be skewed further to the left,
i.e., will get a higher value at the beginning of the move-
ment.

Vi(t) = Bt + 1) — B;(t),

aj(t) = Vi(t +1) = Vj(t),

n

Skew; = % Z(myﬁ

a
i=1

where y and o are the mean and standard deviation of
the accelerations (a,;(t)), and n is the length of the the
time series (clip).

Direct and Indirect

In Direct movement, the distal limb part is likely to have
a straight trajectory, and the mid-limb parts will have
a slightly different vector and perhaps have a different
direction. In Indirect movement, the proximal part of
the limb will likely move much less than the distal part
of the limb on a curve. Directness may also be expressed
in the gaze, which we did not measure. We quantified
how straight is the trajectory by the angle between the
movement vector of a joint to the one that is created
by the next frame in the clip (in a direct movement the
angle between them is small). The velocity direction V'
is calculated by

Vi(t) = Bt + 1) — Bj(t),

and the angles between a direction to the next one is
calculated with the inner product

A;(t) = Vit +1) - Vi(t).

Jump

This distinction was quantified by the maximal (over the
clip) difference in the position along the Y axis of the
lower between Ankle Right (AR) and Ankle Left (AL).
Let S(t) be the time series of the minimum between the
ankles. If PjY (t) is the position along Y axis of joint j in
time t,

S(t) = min{P} (1), P} (1)},

Frump = max {S(t)} — min{S(¢)}.

i.e., the highest point of the bottom of the skeleton minus
the lowest point of the bottom of the skeleton.

Statistical glance on the features
Examples of qualities and their most significant feature
are given in Table 1. The “Information Gain” metric
used in the table is defined as:

IG(T, f) = H(T) — H(Tf),
where T is the training set, f is a feature, and H() is the

information entropy of a dataset.

Multilabel Classification using Multitask Learning
Multi-task learning was chosen as particularly suited
to address challenge 3: Developing a system capable



Table 1. Example of several qualities and the feature found to be the most informative for them. “Relative position”
stands for the position of the joint relative to the ancestor joint in the joint hierarchy.

Quality Feature Description Information Gain | p-value

Jump Vertical relative (to the starting point) position of center of mass | 0.28 3.00E-50
Spread Horizontal relative position of left elbow 0.25 2.20E-49
Rotation Left shoulder horizontal acceleration 0.21 4.80E-46
Up+Rise Vertical relative position of left elbow 0.2 3.00E-31
Free+Light | Left elbow angle’s variability 0.16 1.10E-24
Rhythmicity | Vertical relative position of center of mass 0.16 1.50E-11

of identifying movement in different scenarios, different
postures by people of different movement backgrounds.
Multilabel learning is suited to this task because it deals
with problems where each instance is associated with
multiple labels simultaneously, where the number of la-
bels is not fixed from instance to instance.

The task of this learning paradigm is to predict the
label (Laban quality) set for each unseen instance
(skeletal recording), by analyzing training instances
with known label sets. The multilabel approach taken
in this paper is to break the LMA problem into 18
binary classification tasks — one for every Laban
quality — where every binary decision is whether or
not the quality exists. In this paper we chose to tackle
Multilabel Classification problem using Multi-task
learning (MTL) and we showed how it outperforms
the more common Single Task Learning (STL). MTL
framework [23] is an approach to ML that learns a
problem simultaneously with other related problems at
the same time, using a shared representation, even when
they are different. This differs from STL, which trains a
model for every task separately, and the data might be
represented for each one differently. The goal of MTL
is to improve the performance of learning algorithms
by learning classifiers for multiple tasks jointly. This
works particularly well when these tasks have some
commonality and are generally slightly under sampled.
For the multitask setup we used Multitask Elastic
Net (MEN) regularization, which is the multitask
regularization method of Zou et al. [19], where the
optimization objective is:

1Y = XWI[% + A1 - [Wllzn + Az - W5, (1)

A1, and Ay are hyper-parameters, where,

— 2
2= [> v
i\

i.e., the sum of norm of each row (also known as mixed

nOI‘m), and
J

i.e., the Frobenius norm. Feature selection was carried
out by averaging the statistical significance of each fea-
ture with respect to all of the tasks (this is in contrast

w

to the single task learning flow, where every task had its
own feature selection). As seen in Table 2, the multitask
setting improved the F1 score (will be explained below)
by 4% over the STL results, indicating that the tasks
are correlated and more might be learned from the small
dataset when using this setting.

Performance Evaluation

From a statistical point of view, we have 18 possible
labels (Laban qualities) for every clip. Each clip was
a combination of just a few of these, often 3-4, which
means that there is about an 85% chance that a qual-
ity won’t appear in a clip. Due to this sparsity, accuracy
(the number of clips that have been labeled correctly out
of the total number of clips) alone is not a relevant met-
ric for the performance evaluation because one can get
85% accuracy by stating that for every recording none
of the qualities appear. From one Laban quality point
of view, let Truly Positive Clips (TPC) stand for clips
that the quality truly appears in them, and let Classified
Positively Clips (CPC) stand for clips that our classi-
fier found that include the quality. A better evaluation
would have to combine the precision (the fraction of re-
trieved clips that were relevant) and recall (the fraction
of relevant instances that were retrieved) rates of the
classifier, where

{TPC} N {CPCY|
{CPCY '

precision =

{TPC} N {CPCY|
{TPCH| '

The combination between the two can be done using the
F1 score:

recall =

2- [STOM, -+ l
Fl = precision - reca

precision + recall

The F1 score was chosen as the main evaluation metric
in this paper.

EXPERIMENTAL SETUPS AND RESULTS

Multitask vs Single Task Learning

We found that multitask learning for all the 18 qualities
together exhibited superior performance to learning a
classifier for each problem separately.

Evaluation of Performance by Laban Quality

The performance over every quality as classified by the
MEN in Table 3. During the MEN optimization (1),



Metric Single task | Multitask
Precision 0.46 0.59
Recall 0.71 0.65

F1 0.56 0.6

Table 2. Multitask vs Single task learning performance
evaluation on a data set of several CMA'’s.

the mixed norm term ||W||2,; promotes sparsity in the
weights matrix W such that for every row in the matrix,
if one coordinate is equal to zero, then every coordinate
in the row will be equal to zero.

The generalization ability of the model was enhanced
by the fact that the decision which features to select is
influenced by all the qualities, (feature f; is selected in
the MEN if the row 7; in W is not all zeros). The most
significant improvement were in the qualities that per-
formed worse in the single task learning setting (Strong
and Sudden for example).

Quality Precis-| Recall | F1
ion score
Jump 0.89 0.81 0.85
Twist and Back 0.69 0.85 0.76
Sink 0.62 0.79 0.69
Rhythmicity 0.59 0.72 0.65
Spread 0.55 0.76 0.64
Head drop 0.60 0.66 0.63
Rotation 0.66 0.60 0.63
Free and Light 0.45 0.94 0.61
Up and Rise 0.67 0.54 0.60
Condense and En- | 0.44 0.84 0.58
close
Arms To Upper | 0.67 0.54 0.60
Body
Advance 1.00 0.38 0.55
Retreat 0.50 0.59 0.54
Passive 0.40 0.85 0.54
Bind 0.44 0.61 0.51
Direct 0.56 0.49 0.52
Sudden 0.61 0.41 0.49
Strong 0.29 0.42 0.34
Average 0.59 | 0.65 | 0.60
SD 0.17 0.17 0.11

Table 3. Recall, precision and F1 score of each Laban
quality on a CMA mixture dataset. The learning was
done in a multitask setting. The number of features that
weren’t nullified by the mixed norm regularization is 282
(same features for all of the tasks). The F1 average and
standard deviation over the qualities is shown in the last
row of the table.

Evaluation on an Unseen CMA

In this experiment the test set was taken from a CMA
who did not appear in the train set. As shown in Figure
5, performance degrades on the unseen CMA from 0.6 to
0.57. This degradation seems minimal for such a large

variability between clips from one CMA to another. Ev-
ery CMA performed different gestures, in different pos-
tures (some sitting and some standing) and in different
contexts (some were dancing while some were acting).
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Figure 5. Confidence intervals of F1 score in quality de-
tection of an unseen CMA. Every confidence interval is
two standard deviations (STD) long. In every trial one
CMA was the test set, while the classifier was trained on
the rest. The mean F1 score is 0.57. The measures from
left to right are: STD between CMAs when every CMA’s
score is an average the scores of his or her qualities; STD
between qualities when every quality’s score is an aver-
age of all of the CMASs’ scores for this quality; an average
of qualities’ STDs, where every STD is between CMAs
within a quality; an average of CMAs’ STDs, where ev-
ery STD is between qualities within a CMA’s dataset.

Validation on Untrained Movers in Everyday Tasks

The final validation was conducted on ordinary people
(non-CMAs). We designed several daily actions (greet-
ing friends or playing with a balloon, for example) and
the CMA committee tagged the clips. This dataset was
small, with a focus on the qualities that we found easier
to recognize. The evaluation is shown in Figure 6.
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Figure 6. Performance on ordinary people (non-CMAs)
instructed to perform several tasks.



DISCUSSION

The authors of this study generated video clips of 18
LMA elements found to be significant in the expression
of emotion, in combinations found together in the ex-
pression of particular emotions in other studies [22]. The
unique data set generated of these particular LMA ele-
ments focused our ML priorities to automatically iden-
tify the specific LMA elements most helpful to thera-
peutic, communication and gaming applications. Us-
ing CMA’s as expert movers for these data sets and
filtering the training set a second time with trained
CMA observers boosted the accuracy of the training set.
Filtering the test set in this way by tagging all clips
(rather than the sample tagging within the scope of this
study) may further boost accuracy when tested in non-
structured settings. An advantage of the language of
LMA is that it can be more easily understood as lan-
guage than metric descriptions, describes in words that
can be used for coaching, and facilitates first-person em-
bodied experience of movement. Thus automatic recog-
nition that uses this language can be readily applied in
scientific, artistic, and humanistic practices. Although
not within the scope of this paper, the specific results of
the feature extraction itself may also be valuable in bet-
ter understanding the kinesiologic mechanisms by which
qualitative movement is recorded and perhaps produced
in the body. The precision and recall themselves may
illuminate nuances in movement vectors, relationships
among body parts, and how these change over time that
open new inquiry into each LMA element itself. While
automatic recognition of Body, Space and somewhat for
Shape is easier to achieve than recognition for Effort,
the recall and F1 score for some Efforts (notably the
combination of Free and Light) are quite high. For the
Efforts which we're not yet identifying clearly (such as
Strong, or Direct) more interdisciplinary led exploration
may yield new analytical hypotheses for analysis from
the same data set — for example, identification of Di-
rect might be improved by looking at vectors for the
distal limb parts compared to vectors for the mid-limb
and proximal parts. We discovered advantages for multi-
task learning in identifying some elements, and advan-
tages for single task for others. STL had advantages for
recall, and multi-task for precision. This indicates a fu-
ture development of these methods might combine each
as a filter to boost accuracy further still.

CONCLUSION

The improvement of the F1 score from a single task
learning setting (0.56) to a multitask setting (0.6)
demonstrates the synergy of a shared model for several
correlated tasks. The method works better on qualities
that appear with larger changes in Space that supports
their recognition. Although this fact indicates that there
still much more to be done to achieve a deep capture of
all the qualities, the MTL approach might facilitate the
ML to take advantage of LMA theories of the affinity
of Space, Shape, Effort and body to mine the data for
new discoveries about the kinematic features of effort.

The high performance on free and light demonstrated
that this method can identify some Efforts and shows
potential that with further refinement it maybe valuable
for recognition of the other Efforts. We defined three
challenges in the introduction: the first, quantifying the
subtle qualities — the MTL approach produced modest
improvement in that area. The second, handling noisy
sensory data — We used multiple signal processing and
ML manipulations to extract meaningful features from
raw skeletal recordings, and were able to produce se-
mantic knowledge from the data. The third, develop-
ing a method capable of generalization from novel and
varied input data, was the strongest achievement of our
method. Our method succeeded with a first time seen
CMA and with ordinary people in several postures doing
different tasks. The mild degradation of the F1 score
from a seen CMA (0.6) to an unseen (0.57) shows the
generalization ability is robust. This generalization abil-
ity is derived from our focus on the MEN regularization
terms, which kept our model to not be too-rich, even
sparse, and thus not over-fitted on the training data. In
summary, we succeeded in capturing the essence of many
LMA qualities, in non-laboratory settings, demonstrat-
ing that it is possible to develop an in-home, inexpensive
LMA based feedback system for multiple purposes such
as therapy, arts, communication, HRI and inter-cultural
understanding of movement.
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