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Abstract performance and durability of the flash device. However,

When hard disks (and tapes before them) dominafgang_so is not_ always_ trivial and requires a deep “”P'e_r'
long term storage, sequentiality of placement and acc%@hdljng ?f the interacting causes of data movement within
was their main optimization goal. But in modern, fladffi¢" ¢€vice. _ _
based devices, which now dominate an increasing marg:urrently available simulators [1, 11] output internal
ket share, data is updated ‘out of place’. Their optimiz%{-""te and statistics in the form of lists, tables and his-
tion must therefore focus atata movemenather than on ©09rams, from which deriving internal processes is cum-
static placement. An understanding of the processes fiffSome and requires a great deal of skill and imagination.

move data on a flash device is crucial for analyzing aRgSic hardware evaluation boatgsovide similar output,
managing it. while advanced ones provide graph output of block level

While sequentiality on hard drives is easy to visualiZ&!12Pility tests [16]. SSD optimization tools provide gra

as is done by various defragmentation tools, data mo%qntation informatiofy S.M.A.R.T statistics and block

ment on flash is inherently dynamic. With the lack of suitPdate frequency However, complicated flash processes

able visualization tools, researchers and developers nfgétnot be derived from these aggregated statistics. Fur-
rely on aggregated statistics and histograms from Wh;&qrmore, these tools are intended for off-the-shelf SSDs,
the actual movement is derived. The complexity of tHfgd cannot be used for research prototypes.

task increases with the complexity of state-of-the-art FTL T N€ increasing complexity of state-of-the-art flash man-
production and research optimizations. agement justifies the adoption of new research and analy-

Adding visualizationto existing research and analysi&S techniques. Just as graphs illustrate phenomena that

tools will greatly improve our understanding of moder"® hard to identify in tables, and just as one picture is said
complex flash-based systems. We developed SSDPIafePe worth a thousand words, we claim tioae clip is

a graphical tool for visualizing the various processes t{rth @ thousand histogramdo establish this claim, we

cause data movement on SSDs. We use SSDPlayef@4elopedSSDPlayeran open source graphical tool for

demonstrate how visualization can help us shed light Ygualizing data layout and movement on flash devices.

the complex phenomena that cause data movementand 8i8 tool will give us a better understanding of how our
pose new opportunities for optimization. data gets from one place to another and why. _
In the rest of this paper, we first introduce the basic fea-

1 Introduction tures and structure of SSDPlayer. We then take a close

Data on flash devices moves to a different location whé@ek at several common data movement processes that

ever it is updated: the previous data location is marked¥&'e@ analyzed with standard mathematical methods. We

invalid, and the data is written again on a clean page. ¢ SSDPlayer to show how the analyzed phenomena can

flash translation layer (FTL)s responsible for mappingbe easily |Qent|f|ed _by w_suqhzmg each of t_hese processes

logical addresses to physical pages. Taebage collec- and explam_ how visualization can shed light on similar

tion process maintains a pool of clean blocks by occasi®focesses in more complex systems. We will refer the

ally erasing a block with mostly invalid pages and cop cader to a few one—mm_ute online clips generated with SS-

ing its valid pages to another available block. These intBfPlayer for demonstration purposes

nal writes, referred to awrite amplification are another

cause for data movement throughout the device. The write SSDPlayer

amplification is usually estimated using a formula derivd@die SSDPlayer display, depicted in Figure 1, is organized

from an analysis of the greedy garbage collection [3]. into chips, planes, blocks and pages, as specified by the
Many FTL optimizations incur additional internal dateser at startup. Colors and textures are used to represent

movement. Examples include wear leveling [1], merging Tt o doroiect ora/

of log blocks [12], partition resizing [17], and parity up- thtg;//WWW:atFJ)sIogics?coL"l/eﬁ/s%ftware/disk-defrag{pr

dates [10]. Qu_antifying the write amplif_ica_ltior_l IS IMPOT- 3nttp://www.raxco.com/home/products/perfectdisk-pro
tant for analyzing the effect of such optimizations on the *http://www.cs.technion.ac.il/ ~gala/SSDPlayer/
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chip and display continuously updated histograms required for

0o % their analysis. We describe several such scenarios in the
o | Gexas | Vi following sections.
e age

Our goal of keeping SSDPlayer as simple and easily ex-
(FrL_v)[input v) DI @ —Fmeme— tendible as possible lead to several design choices. Most
of the complexity of full scale simulators is due to accu-
rate performance modeling. Thus, we implemented SSD-
| T Player from scratch, focusing only on the way data moves,
Figure 1:SSDPlayer display (simplified) regardless of how much time it takes. However, it can be

page and block properties, such as data ‘temperature®¥iended to provide performance analysis by adding de-
valid page count. A page’s properties and state deternff¥% during time consuming operations such as erasures
its fill color, texture, and frame color. A block’s prop@nd copies, or by collecting the relevant statistics anel pre
erties determine its background and frame colors. N&&tNG them as a histogram or a final output file.
that the page and block properties need not necessariljnere is a tradeoff between the complexity and amount
match. Aggregated information such as write amplificat details displayed, and how easily the visualized pro-
tion is displayed in continuously updated histograms, §€SSes can be identified and interpreted. Thus, while there
lustrating how the device’s state changes over time. 1S N0 restriction on the complexity of the FTL schemes
SSDPIayer is implemented in Java and is designedp/emented within SSDPlayer, users should carefully
provide the most general SSD functionality, in order to £000S€ which page and block attributes to display. For
low easy extensions and additions for a wide range of E4DPliCity, we use a ‘toy’ device (2K pages) in our demon-
pabilities. The basic flash components — e.g., page, blgdkations. However, we used SSDPlayer to visualize de-
page mapping and garbage collection — are implemen{&@s With up to 25K pages on an HDTV screen by omit-
as abstract classes that can be extended according td/fgefill texture and page numbers. Larger devices can be
desired FTL functionality. The simulation and visualiz&lyzed by visualizing a subset of the device's planes or
tion components are similarly flexible: the trace parser c@iPS: Which is sufficient for a wide range of purposes.
be extended to process different trace formats. Alterna- ;
tively, synthetic access distributions can be added by fg\(_ Greedy Garbage Collection
tending the workload generator. The basic histograms ddre most commonly used formula for estimating the write
be extended to display additional aggregated statistics.amplification with greedy garbage collection as a function
SSDPlayer supports two modes of operatiorsiinula- of page size and overprovisioning is that of Bux and II-
tion mode, it simulates the chosen FTL on a raw /O tratlis [3]. They derive the formula from a detailed analysis
or on a synthetic workload, illustrating the SSD state @ftthe number of blocks with eaafalid count— number
each step. This illustration is continuous, thus formingoé valid pages. Their analysis shows that with a random
“clip” of the data movements that take place during exeauniform workload, the minimum valueMinValid) con-
tion. This mode is useful for testing and analyzing variouerges to a single value or to two consecutive values. To
features without, or before, implementing them in a fullate, we are not aware of a similar derivation for purely
scale simulator or hardware platform. non-uniform distributions such as Zipf. In this section, we
In visualizationmode, SSDPlayeHustratesoperations use SSDPlayer to illustrate data movementin the uniform
that were performed on an upstream simulator or devicase, where it is well-understood. We then show how a
The input in this mode is an output trace generated byigaual illustration can shed some light on the non-uniform
simulator, hardware evaluation platform, or a host lewse, where data movement is complex and not fully un-
FTL, describing the basic operations that were perfornmdgfstood.
on the flash device — writing a logical page to a physicalThe Greedy FTL in SSDPlayer implements greedy
location, changing block state, etc. This madaiseful garbage collection within each plane, and a page alloca-
for illustrating processes that occur in complex reseatadn scheme that balances the number of valid pages be-
and production systems, without porting their entire settafeen planes. All pages have the same color, but the page
features into SSDPlayer. fill changes to a checkered pattern if it has been copied to
SSDPlayer is intended for use as an open source projactew block during garbage collection. Invalid pages are
Thanks to its flexible structure, a wide range of functionairossed out, but maintain their fill color and pattern until
ities can be added to it in a straightforward manner. Thékey are erased.
include many recently suggested FTL optimizations, in-In the Greedy-Uniforndemo, the basic manager is exe-
cluding wear leveling, page mapping, and garbage colleated with a small SSD and a uniform random workload.
tion algorithms. Users can easily modify the page coldrhis clip shows that shortly after the SSD’s logical capac-
ing scheme to visualize the concepts they are interestettyiris filled and garbage collection beginglinValid sta-

plane
block

Valid Histogram  Write Amplification




bilizes at 10-11 pages. The portion of each block that is @

taken up by valid pages transferred at garbage collection valid count =3

is clearly visible thanks to their different pattern. Erase count =0
We use the same SSD and FTL with a Zipf work-

load. TheGreedy-Zipfdemo shows thawinValid con- (b)

verges much slower and at a higher value, of 15-16 pages.  Valid count =103

The reason is that cold pages that are rarely updated re- Erase count =2

main valid during consecutive garbage collection invoca-

tions. As a result, write amplification increases, leaving Valid c(g)um -15

less space available in the erased blocks for invalid copies  gase count =14

of hot pages, thus causing even more frequent garbage col- 2N >4

lection, and so on. This phenomenon is graphically visit&uré 2: Close-up of one block during thidotCold-1demo

L . . with Zipf workload, tagged with 10 temperature ranges, \&her
a.s a dense grouping aivalid (X) marks on the plainly red (1) is the hottest and blue (10) is the coldest. The valitht
filled pages that represent user writes.

is shown at the time when the block is chosen for the next era-

- sure, where itis equal tdinValid. TheMinValid pages that were
4 Hot/Cold Data Separ ation copied to a clean block during previous garbage collectames

Separating hot and cold data has been shown to redilied with a checkered pattern. This demo shows their portio
write amplification and, respectively, garbage collectiditfreasing until it stabilizes at roughly half the blockesiz
costs and cell wear [4, 17]. Desnoyers [4] analyzes capages occupy increasing portions of each block, most of
in which the hot and cold portions of the workloads atkem remaining valid until the next garbage collection on
each accessed with different uniform distributions, shotktis block. Figure 2 shows snapshots of the first block in
ing that separating them to different partitions with greethe device during this demo.
garbage collection results in the same write amplificationwhen we separate the data into two or three partitions,
as in the uniform case. Stoica and Ailamaki [17] analyzex@ observe a process similar to thaHatCold-1, because
workload with severalemperaturesThey show that sev-within each partition, pages are still accessed with a rela-
eral temperatures can be grouped into the same partitioaly high skew. However, this behavior changes when
without increasing the write amplification, as long as thee define five partitions, one for every two temperatures.
skew within each partition does not exceed a certain @®r this trace, this granularity is fine enough to reduce
gree. The conclusions of both studies are based on a rigie-skew in the cold partitions, so that garbage collection
ous analysis of data movement processes. In this sectigithin each partition behaves as with a uniform workload.
we use SSDPlayer to show how a graphical visualizatigileed, in thdHotCold-5demo,MinValid stabilizes at 10-
can greatly clarify these processes and is certain to asbispages like irGreedy-Uniform This process, described
in analyzing more complicated scenarios. in [4], is seen clearly in the demo. We believe much more
The HotCold FTL separates pages into partitions acemplicated phenomena can be identified and analyzed as
cording to their temperature. It is used with traces Wsualization becomes a standard research tool.
which each input write request is tagged by a temperature
tag. The userzpecifies thg number g?parti%?@;sa,ndpthe g Reusable SSD
highest temperature of pages that belong to each partitibime recenReusable SS[19] reuses flash pages for addi-
Each plane haP active blocks, on which pages of eactional (second writes before they are erased. To perform
partition are written. When an active block is full, a new second write, the logical page written by the user is en-
clean block is allocated for this partition. Greedy garbageded with a special encoder that adds redundancy bits,
collection is used, determining partition sizes implicitlporoducing an output that is twice the page size and can be
according to the number of writes with each temperatusgritten on a pair of physical pages that have already been
As a reference point, we first run thdotCold FTL programmed. The encoder guarantees that writing the new
with one partition and a Zipf workload where requestiata will only require increasing the cell voltage leveygh
are tagged with ten different temperatures. HwCold- complying with standard flash programming constraints.
1 demo is essentially a replay of the demonstration inThe commonly used formula for write amplification
Greedy-Zipf It shows how a simple addition of colorgannot be used when additional writes are performed be-
can facilitate our understanding of the process describetbrre the block is erased. The derivation in [3] does not
Section 3: before garbage collection starts, the red pagasend trivially to this case, because the number of addi-
which belong to the top five temperatures (and only 2%tadnal writes that can be performed depends on the way in-
the data), occupy roughly half of each block, representivajid pages or entire blocks are reused. In fact, since some
their portion of accesses in the trace. As the garbage cetiundancy must always be added to the logical data to
lection process advances, blue (cold) checkered (copieddble second writes, the conventional definition of write




amplification does not accurately represent flash utilizacall that the best partitioning of this trace according
tion in this context. Several models, with varying degrestemperature (in the HotCold-5 demo) resultedviim-
of complexity, were suggested for analyzing the prop&falid=10, corresponding to 22 writes per erasure. The two
ties of second writes in various designs [13, 14, 18]. Wersions of Reusable SSD demonstrate the power of visu-
use SSDPlayer to show how a graphical illustration calization as a research tool for new techniques and system
provide important insights for such complex designs. designs. Similar visual experiments can provide valuable
The Reusablé=TL implements second writes in SSDinsight for formalizing their utilization, and for desigrg
Player. Each block is first written normally by first writeoptimal garbage collection schemes for such systems.
When it is chosen by the garbage collector it is eitherThe full Reusable SSD design is much more complex.
erased orecycled— allocated for second writes withoutt performs second writes in parallel to blocks in different
erasuré. Upon receiving a write command, if a recycleplanes, identifies cold data without external tagging, and
block is available, a second write is performed on a pairltindles encoding failures and mapping constraints [19].
physical pages in the recycled block whose data has b&hs implications of Reusable SSD for device lifetime and
invalidated. performance have been thoroughly evaluated by a detailed
Pages are colored according to the write level of theitplementation in DiskSim [1]. We take advantage of
logical page. When a page is copied to a new block hkis implementation to illustrate the full Reusable SSD de-
fore erasure (such copies are always performed as 8igh in SSDPlayer. We added a logging mechanism to
writes), it maintains the color of iteriginal write level, the implementation in DiskSim, which logs all physical
but changes its texture to that of an internal write. Thwgrite commands, garbage collection procedures, and state
the different colors represent the portion of the data writhanges to a trace filen the onlineParallelReusable«
ten in first and second writes within both user and interrtidmos we use this trace file as input to SSDPlayer in vi-
writes. In addition, we replaced the write amplificatiosualization mode to visualize the complex data movement
histogram with one showingpgical writes per erasure in the full Reusable SSD desigyith Zipf and real traces

With N pages per block and first writes only, logical
writes per erasure are equivalent to a write amplificatifn  Other Data Movement Processes

of 1. With second writesNx1.5 logical writes per era-we discuss here several popular flash optimization do-
sure are the maximum value achievable when all pagesins that we plan to make available in future versions
are fully utilized for two writes, with no internal writes. ¢ SSDPlayer. Data movement plays a major role in all of
In the Reusabledemo, we run the Reusable FTL on gyem, occurring within complex interacting processes. We
small SSD withN=32 and a Zipf workload. It shows thafjescribe how visualizing these processes will help to un-
most of the pages are utilized for two writes, but that mag¥,stand them and to optimize the systems in which they
of the logical pages written as second writes (blue) &gcyr.
still valid when the block is erased and must be copied toga|D. The effect of various redundancy schemes such
a clean block (checkered). This means that pages Writtf@N\R A|D5 and erasure coding on SSD performance and
without prior erasure of the block end up occupying néWfyea is a hot research topic [2, 5, 10]. The performance of
erased blocks when they are copied, reducing the bengfie schemes is greatly affected by the data movements
from second writes. Indeed, only 26 logical writes (out §fey incur. Parity updates are a major contributor to write
N> 1.5=48 possible) are performed per erasure. Althoughijjification and accelerated wear, especially in update
this is more than the 17 writes per erasure achieved Wilthemes that were originally designed for hard drives [2].
first writes onlyﬁ,_ flash utilization can clearly improve:rhe |ocation of parity blocks as well as the availability of
This understanding motivated the use of second Wmeﬁ)l’évious, invalid data and parity blocks, greatly affe th
Reusable SSD for hot pages only. ) durability of the system and its recovery costs.
TheHotColdReusabl&TL uses second writes only for \ye are currently extending SSDPlayer to include no-
hot data, which it identifies by the temperature tag in fjgns of parity and stripes, so that the distribution of par-
trace. We run this FTL in thélotCold-Reusablelemo, v and data throughout the device will be easily visible
with the Zipf workload from the HotCold demos, wherg stripes can be discerned. Stripes can be extended to
requests are tagged with ten different temperatures. Sggy in size or to include invalid data or parity pages. Par-
ond writes are used for the top 5 temperatures. The dgf)Q.a pe extended to represent numerous erasure coding

shows that pages written in second writes are almost@knniques [9]. These optimizations, already a subject for

ways invalid by the time their block is erased. As a res%tngoing research, complicate data movement to the point

the logical writes per erasure increase to 32, represenfifiire visualization is crucial for understanding it.
a significant benefit from second writes. As a referenceCaChing SSDs that are used as a caching tier em-

5The detailed conditions for block recycling appear in [19]. ploy an addi_tional management layer, further increasing
6This value is derived fronMinValid=15 in the GreedyZipf demo. the complexity of data movement processes. Data may



move as a result of varying the overprovisioned spacecause data movement on SSDs. We continue to work on
read and write cache sizes [15], or the movement of pagédditional features and optimizations that will expand the
within the garbage collection process may depend on dgepe of the player and improve user experience. The code
namic properties such as the logical queue they belongiml executable files of SSDPlayare available onliné.

or their dirty status. The complex interactions betwe®¥e encourage researchers and developers to use this tool
these processes, easily illustrated within a tool like 8¢ their analysis and to contribute to the online repositor
DPlayer, will be much better understood through visy-
alization, where page colors and textures can repreéﬁknomedgments

popularity, dirty status, or prefetch hints, and block backe thank Niva Bar-Shimon and Kai Li for their valu-
grounds and frames can be used to represent logical pate suggestions for improving SSDPlayer and its appear-
titions and queues, and to distinguish between read andge. We thank the anonymous reviewers and our shep-
write caches. herd, Daniel Ellard, for helping improve this paper.
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