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Abstract the performance and durability of the flash device. How-
fver doing so is not always trivial and requires a deep

long term storage, sequentiality of placement and accHl erstanding of the interacting causes of data movement

was their main optimization goal. But in modern, flasffthin each device.

based devices, which now dominate an increasing marg:urrently available simulators [5, 13] output internal

ket share, data is updated ‘out of place’. Their Optimizﬁt-ate andf stat|st|r::_sh|r:jth_e_f0rm of “Tts’ tables a_nd his-
tion must therefore focus atata movemenather than on 109"ams, ro(;‘n whic er|V|ng(|jnteIrn]:':1 Elrloce§§es IS cum-
static placement. An understanding of the processes @iafisome and requires a great deal of skill and imagination.

move data on a flash device is crucial for analyzing afi@sic hardware evaluation boards [1] provide similar out-
managing it put, while advanced ones provide graph output of block

While sequentiality on hard drives is easy to visualiz@.,\/(alfrellablllty t?StS. [f18]' S.SD gptlsmlﬁilc%n_rtools.pro-

as is done by various defragmentation tools, data mO\\/éj—de brlaglr(nentdatlonfm ormat|on3[ ]i-l P statl!st|csd

ment on flash is inherently dynamic. With the lack of sui ind block update frequency [3]. However, complicate
h processes cannot bhederstoodrom these aggre-

able visualization tools, researchers and developers q ictics. Furth h | X dod f
rely on aggregated statistics and histograms from whigfjied statistics. Furthermore, these tools are inten 0
-the-shelf SSDs, and cannot be used for research proto-

the actual movement is derived. The complexity of th

task increases with the complexity of state-of-the-art Fﬂ’frehs' . . lexity of f-th flash
production and research optimizations. e increasing complexity of state-of-the-art flash man-

Adding visualizationto existing research and analysiggemem_]l"St'f'eS the adopt|0n_of new research and analy-
tools will greatly improve our understanding of moder&lstechmques. Just as graphsillustrate phenomenaéhat ar

complex flash-based systems. We developed SSDPIa’EgF,d to identify in tables, and just asone pic_tu_re Is said to
a graphical tool for visualizing the various processes t worth a thousand words, we claim thae clip is worth

cause data movement on SSDs. We use SSDPIaye? {Bousand histogramgo establish this claim, we devel-

demonstrate how visualization can help us shed light 8a%dSSDPIayeran open source graphical tool for visu-

the complex phenomena that cause data movement a ing data layout and movement on flash devices. This
expose new opportunities for optimization. tool will give us a better understanding of how our data

gets from one place to another and why.
1 Introduction In the rest of this paper, we first introduce the basic fea-
Data on flash devices moves to a different location whﬁ;})‘l[is a;nd struci‘ture of SSgPtIayer. we thten take a Cl?ﬁet
ever it is updatedthe data is written again on a clean pag ,0 at several common data movement processes tha
were analyzed with standard mathematical methods. We

and the previous data location is marked as invalile SSDP| t0 show how th vzed ph
flash translation layer (FTL)s responsible for mappinguse DFIayer 1o Snow now the analyzed phenomena can
be easily identified by visualizing each of these processes

logical addresses to physical pages. Gaebage collec- c?rp_d explain how visualization can shed light on similar

tion process maintains a pool of clean blocks by occasi . :
processes in more complex systems. We will refer the

ally erasing a block with mostly invalid page&ercopy- der t f Ut i i ted with
ing its valid pages to another available block. These int Fader 1o a few one-minute oniine clips generated wi
SDPlayer for demonstration purposes

nal writes, referred to aarite amplification are another
cause for data movement throughout the device. The wite SSDPI ayer

amplification is usually estimated using a formula derivelri]e SSDPIlayer display, depicted in Figure 1, is organized

from an analy5|s.oflgre_edy garbage gqllectpn [7]. into chips, planes, blocks and pages, as specified by the

Many FTL optimizations incur additional internal data

. . User at startup. Colors and textures are used to represent

movement. Examples include wear leveling [5], merg- ) ) )

. " . - page and block properties, such as data ‘temperature’ or

ing of log blocks [14], partition resizing [19], and parit alid page count. A page’s properties and state determine
updates [12]. Quantifying the write amplification is im- bag - A pages prop

portant for analyzing the effect of such optimizations on *http:/www.cs.technion.ac.il/ ~gala/SSDPlayer/

When hard disks (and tapes before them) domina



http://www.cs.technion.ac.il/~gala/SSDPlayer/

N

chip We describe several such scenarios in the following sec-

88 % tions.
o | bt |V Our goal of keeping SSDPlayer as simple and easily ex-
age

tendible as possible lead to several design choices. Most
(FTL_v)[input_v] DI —Frrarre— of the complexity of full scale simulators is due to ac-
curate performance modeling. Thus, we implemented
SSDPIlayer from scratch, focusing only on the way data
I ...5.. moves, regardless of how much time it takes. However,
Figure 1:SSDPlayer display (simplified) it can be extended to provide performance analysis by
adding delays during time consuming operations such as
its fill color, texture, and frame color. A block’s properasures and copies, or by collecting the relevant sttisti
erties determine its background and frame colors. Nefed presenting them as a histogram or a final output file.
that the page and block properties need not necessarilynere is a tradeoff between the complexity and amount
match. Aggregated information such as write amplificgf details displayed, and how easily the visualized pro-
tion is displayed in continuously updated histograms, Hesses can be identified and interpreted. Thus, while there
lustrating how the device’s state changes overtime. s no restriction on the complexity of the FTL schemes
SSDPlayer is implemented in Java and is designediigqplemented within SSDPlayer, users should carefully
provide the most general SSD functionality, in order to alhoose which page and block attributes to display. For
low easy extensions and additions for a wide range of gamplicity, we use a ‘toy’ device (2K pages) in our demon-
pabilities. The basic flash components — e.g., page, bloskations. However, we used SSDPlayer to visualize de-
page mapping and garbage collection — are implementésks with up to 25K pages on an HDTV screen by omit-
as abstract classes that can be extended according tdithgfill texture and page numbers. Larger devices can be
desired FTL functionality. The simulation and visualizaanalyzed by visualizing a subset of the device’s planes or
tion components are similarly flexible: the trace parser cainips, which is sufficient for a wide range of purposes.
be extended to process different trace formats. Alterna-
tively, synthetic access distributions can be added by &- Greedy Garbage Collection

tending the workload generator. The basic histograms g most commonly used formula for estimating the write
be extended to display additional aggregated statistics., y yjification with greedy garbage collection as a function
SSDPIlayer supports two modes of operation.sim- of page size and overprovisioning is that of Bux and II-
ulation mode, it simulates the chosen FTL on a raw l/Qis [7]. They derive the formula from a detailed analysis
trace or on a synthetic workload, illustrating the SSD staiethe number of blocks with eastalid count—number of
at eaCh Step. Th|S i||ustrati0n iS Continuous, thus forma”d pages_ Their ana|ysis shows that with a random uni-
ing a “clip” of the data movements that take place durifgrm workload, the minimum valueMinValid) converges
execution. This mode is useful for testing and analyzigg a single value or to two consecutive values. To date,
various features without, or before, implementing them i are not aware of a similar derivation for purely non-
a full scale simulator or hardware platform. uniform distributions such as Zipf. We use SSDPlayer to
In visualizationmode, SSDPlayelustratesoperations illustrate data movement in the uniform case, where it is
that were performed on an upstream simulator or deviegell-understood. We then show how a visual illustration
The input in this mode is an output trace generated byan shed some light on the non-uniform case, where data
simulator, hardware evaluation platform, or a host leu@lovement is complex and not fully understood.
FTL, describing the basic operations that were performedrhe Greedy FTL in SSDPlayer implements greedy
on the flash device — writing a logical page to a physicgarbage collection within each plane, and a page alloca-
location, changing block state, etc. This madeiseful tion scheme that balances the number of valid pages be-
for illustrating processes that occur in complex reseangieen planes. All pages have the same color, but the page
and production systems, without porting their entire setfif changes to a checkered pattern if it has been copied to
features into SSDPlayer. a new block during garbage collection. Invalid pages are
SSDPlayer is an open source project. Thanks to its flexessed out, but maintain their fill color and pattern until
ible structure, a wide range of functionalities can be addiey are erased.
to it in a straightforward manner. These include many re-In the Greedy-Uniforndemo, the basic manager is exe-
cently suggested FTL optimizations, including wear leeuted with a small SSD and a uniform random workload.
eling, page mapping, and garbage collection algorithriidis clip shows that shortly after the SSD’s logical capac-
Users can easily modify the page coloring scheme to visty-is filled and garbage collection beginginValid sta-
alize the concepts they are interested in and display cbitizes at 10-11 pages. The portion of each block that is
tinuously updated histograms required for their analysiaken up by valid pages transferred at garbage collection
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is clearly visible thanks to their different pattern. @

We use the same SSD and FTL with a Zipf workload. valid count =3
The Greedy-Zipf demo shows thaMinValid converges Erase count =0
much slower and at a higher value of 15-16 pages. The
reason is that cold pages that are rarely updated remain O
valid during consecutive garbage collection invocations. V& count =108.F
. e . . Erase count =2&—
As a result, write amplification increases, leaving less >

space available in the erased blocks for invalid copies of ©
hot pages, thus causing even more frequent garbage col-  \4ig count =151
lection, and so on. This phenomenonis graphically visible Erase count =
as a dense grouping d@fvalid (X) marks on the plainly

filled pages that represent user writes.
- red (1) is the hottest and blue (10) is the coldest. The valicht
4 Hot/Cold Data Separation is shown at the time when the block is chosen for the next era-
Separating hot and cold data has been shown to redgi€, where itis equal fdinValid. TheMinValid pages that were
write amplification and, respectively, garbage collectipied to a clean block during previous garbage collectaes
costs and cell wear [8, 19]. Desnoyers [8] analyzes cagu‘,%d W|.th a che.ckeregllpattern. This demo shows thglr portio
in which the hot and cold portions of the workloads affcreasing until it stabilizes at roughly half the blockesiz
each accessed with different uniform distributions, showhis block. Figure 2 shows snapshots of the first block in
ing that separating them to different partitions with gneeehe device during this demo.
garbage collection results in the same write amplificationwhen we separate the data into two or three partitions,
as in the uniform case. Stoica and Ailamaki [19] analyzeag observe a process similar to thaHotCold-1, because
workload with severalemperaturesThey show that sev-within each partition, pages are still accessed with a rela-
eral temperatures can be grouped into the same partitiosly high skew. However, this behavior changes when
without increasing the write amplification, as long as thee define five partitions, one for every two temperatures.
skew within each partition does not exceed a certain @&r this trace, this granularity is fine enough to reduce
gree. The conclusions of both studies are based on a righé-skew in the cold partitions, so that garbage collection
ous analysis of data movement processes. In this sectigithin each partition behaves as with a uniform workload.
we use SSDPIlayer to show how a graphical visualizatipitleed, in theHotCold-5demo,MinValid stabilizes at 10-
can greatly clarify these processes and is certain to assispages like irGreedy-Uniform This process, described
in analyzing more complicated scenarios. by Desnoyerd8], is seen clearly in the demo. We be-
The HotCold FTL separates pages into partitions atieve much more complicated phenomena can be identi-
cording to their temperature. It is used with traces fied and analyzed as visualization becomes a standard re-
which each input write request is tagged by a temperatgesarch tool.
tag. The user specifies the number of partitidghgnd the
highest tempergture of pages that belc?ng to each partition. Reusable SSD
Each plane haP active blocks, on which pages of eacihe recenReusable SS[23] reuses flash pages for addi-
partition are written. When an active block is full, a newonal (second writes before they are erased. To perform
clean block is allocated for this partition. Greedy garbagesecond write, the logical page written by the user is en-
collection is used, determining partition sizes impliciticoded with a special encoder that adds redundancy bits,
according to the number of writes with each temperatufgroducing an output that is twice the page size and can be
As a reference point, we first run théotCold FTL written on a pair of physical pages that have already been
with one partition and a Zipf workload where requesggogrammed. The encoder guarantees that writing the new
are tagged with ten different temperatures. HwCold- data will only require increasing the cell voltage leveligh
1 demo is essentially a replay of the demonstration @Gemplying with standard flash programming constraints.
Greedy-Zipf It shows how a simple addition of colors The commonly used formula for write amplification
can facilitate our understanding of the process describedannot be used when additional writes are performed be-
Section 3: before garbage collection starts, the red padess the block is erased. The derivation in [7] does not
which belong to the top five temperatures (and only 2% @ftend trivially to this case, because the number of addi-
the data), occupy roughly half of each block, representitignal writes that can be performed depends on the way in-
their portion of accesses in the trace. As the garbage a@ld pages or entire blocks are reused. In fact, since some
lection process advances, blue (cold) checkered (copiejundancy must always be added to the logical data to
pages occupy increasing portions of each block, mostenfable second writes, the conventional definition of write
them remaining valid until the next garbage collection @mplification does not accurately represent flash utiliza-

Figure 2: Close-up of one block during theotCold-1demo
with Zipf workload, tagged with 10 temperature ranges, \&her



tion in this context. Several models, with varying degreesference, recall that the best partitioning of this trace a
of complexity, were suggested for analyzing the prop&erding to temperature (in the HotCold-5 demo) resulted
ties of second writes in various designs [15, 16, 20]. e MinValid=10, corresponding to 22 writes per erasure.
use SSDPlayer to show how a graphical illustration c&he two versions of Reusable SSD demonstrate the power
provide important insights for such complex designs. of visualization as a research tool for new techniques and
The Reusable FTL implements second writes insystem designslhe insights gained from these visual ex-
SSDPlayer. Each block is first written normally by firgieriments were valuable for formalizing the utilization of
writes. When it is chosen by the garbage collector it fisish with and without second writes, and for designing an
either erased orecycled— allocated for second writesoptimal garbage collection scheme [20].
without erasur& Upon receiving a write command, if a The full Reusable SSD design is much more complex.
recycled block is available, a second write is performed trperforms second writes in parallel to blocks in different
a pair of physical pages in the recycled block whose datanes, identifies cold data without external tagging, and
has been invalidated. handles encoding failures and mapping constraints [23].
Pages are colored according to the write level of thdihe implications of Reusable SSD for device lifetime and
logical page. When a page is copied to a new block hEerformance have been thoroughly evaluated by a detailed
fore erasure (such copies are always performed as fingplementation in DiskSim [5]. We take advantage of
writes), it maintains the color of itsriginal write level, this implementation to illustrate the full Reusable SSD de-
but changes its texture to that of an internal write. Thuggn in SSDPlayer. We added a logging mechanism to
the different colors represent the portion of the data writie implementation in DiskSim, which logs all physical
ten in first and second writes within both user and internatite commands, garbage collection procedures, and state
writes. In addition, we replaced the write amplificatioohanges to a trace fileln the onlineParallelReusables
histogram with one showintpgical writes per erasure demos we use this trace file as input to SSDPlayer in vi-
With N pages per block and first writes only, logical sualization mode to visualize the complex data movement
writes per erasure are equivalent to a write amplificationthe full Reusable SSD desigrith Zipf and realwork-
of 1. With second writesNx 1.5 logical writes per era-loads

sure are the maximum value achievable when all pa%es
are fully utilized for two writes, with no internal writes. Other Data M ovement Processes

In the Reusabledemo, we run the Reusable FTL on @ discuss here several popular flash optimization do-
small SSD withN=32 and a Zipf workload. It shows thainains that we plan to make available in future versions
most of the pages are utilized for two writes, butthat magy sspplayer. Data movement plays a major role in all of
of the logical pages written as second writes (blue) &fgm, occurring within complex interacting processes. We
still valid when the block is erased and must be copiedd@scribe how visualizing these processes will help to un-
a clean block (checkered). This means that pages writfgfistand them and to optimize the systems in which they
without prior erasure of the block end up occupying newecyr.
erased blocks when they are copied, reducing the benefiya|pD The effect of various redundancy schemes such
from second Wri.tes. Indeed, only 26 logical writes (out @fs RAID5 and erasure coding on SSD performance and
Nx1.5=48 possible) are performed per erasure. Althougl, is 4 hot research topic [6, 9, 12]. The performance of
this is more than the 17 writes per erasure achieved Wifase schemes is greatly affected by the data movements
first writes onI)?,_ flash utilization can clearly improve ey incurwhich are complicated to the point where visu-
This understanding motivated the use of second writes;ify ation is crucial for understanding thearity updates
Reusable SSD for hot pages only. _ are a major contributor to write amplification and accel-

TheHotColdReusablETL uses second writes only folerated wear, especially in update schemes that were orig-
hot data, which 't. |dent|f|_es by the temperature tag in tﬂga"y designed for hard drives [6]. The location of parity
trace. We run this FTL in thélotCold-Reusablelemo, pjocks as well as the availability of previous, invalid data
with the Zipf workload from the HotCold demos, wher@ng parity blocks, greatly affect the durability of the sys-
requests are tagged with ten different temperatures. S@g and its recovery costs. We are currently extending
ond writes are used for the top 5 temperatures. The deg¥ppiayer to include notions of parity and stripes, so that
shows that pages written in second writes are almost@l djstribution of parity and data throughout the device
ways invalid by the time their block is erased. As a rgyj pe easily visible and stripes can be discerned.
sult, the logical writes per erasure increase to 32, réPTaching. SSDs that are used as a caching tier em-
resenting a significant benefit from second writes. Aspﬁ)y an additional management layer, further increasing

2The detailed conditions for block recycling are specified thg the complexny of data mc_>vement processgs_. Data may
Reusable SSD design [23]. move as a result of varying the overprovisioned space

3This value is derived fronMinValid=15 in the Greedy-Zipf demo. or read and write cache sizes [17], or the movement of




pages within the garbage collection process may depasodpe of the player and improve user experience. The code
on dynamic properties such as the logical queue they bad executable files of SSDPlayare available onliné.

long to or their dirty status. The complex interactions b&/e encourage researchers and developers to use this tool
tween these processes, easily illustrated within a toel litor their analysis and to contribute to the online repogitor
SSD_PIayer, will be much better understood through \,'A(ck(nowledgments

sualization, where page colors and textures can represen

popularity, dirty status, or prefetch hints, and block backe thank Niva Bar-Shimon and Kai Li for their valu-
grounds and frames can be used to represent logical péte suggestions for improving SSDPlayer and its appear-
titions and queues, and to distinguish between read @nge. We thank the anonymous reviewers and our shep-
write caches [21, 22]. herd, Daniel Ellard, for helping improve this paper.
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