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Abstract—Rewriting sequential programs to make use of multiple cores requires considerable effort. For many years, Amdahl’s law
has served as a guideline to assess the performance benefits of parallel programs over sequential ones, but recent advances in
multicore design introduced variability in the performance of the cores and motivated the reexamination of the underlying model. This
paper extends Amdahl’s law for multicore processors with built-in dynamic frequency scaling mechanisms such as Intel’s Turbo Boost.
Using a model that captures performance dependencies between cores, we present tighter upper bounds for the speedup and
reduction in energy consumption of a parallel program over a sequential one on a given multicore processor and validate them on
Haswell and Sandy Bridge Intel CPUs. Previous studies have shown that from a processor design perspective, Turbo Boost mitigates
the speedup limitations obtained under Amdahl’s law by providing higher performance for the same energy budget. However, our new
model and evaluation show that from a software development perspective, Turbo Boost aggravates these limitations by making
parallelization of sequential codes less profitable.

Index Terms—performance modeling, multicore, Turbo Boost, code parallelization, Amdahl’s law
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1 INTRODUCTION

Multithreading is known to provide speedup and reduced
energy consumption. However, writing and validating parallel
codes requires significant programming effort and expertise.
Thus, given a sequential code, it is important to have a prelimi-
nary estimate of the expected benefits of its parallelization. Such
estimates are commonly computed using Amdahl’s law [2] and
its extension for energy [12], which provide easy-to-compute
formulas for upper bounds for the corresponding parameters.
These formulas are based on several simplifying assumptions,
such as the processors being identical and their speeds fixed,
and they do not account for external factors that may affect the
performance of the cores.

Most modern processors are limited by maximum power
and thermal constraints. Therefore, in multicore processors the
nominal frequency is set according to the power consumption
and temperature when all the cores are active. However, when
some of the cores are idle, the spare power budget can be
utilized to increase the frequency of the active cores; most
modern multicore processors implement such a mechanism.
For example, Intel CPUs with Turbo Boost technology [10] are
equipped with a frequency governor that aims to maximize
core frequencies such that the power consumption, current
consumption, and temperature stay below certain limits; AMD
processors use a similar technology called Turbo Core. Here-
after, we refer to these mechanisms as Turbo Boost. These
technological advances encouraged us to revisit Amdahl’s law
for multicore processors.

Using analysis and experimental evaluation, we show that,
from a software design perspective, Turbo Boost aggravates
the speedup limitations obtained by Amdahl’s law by making
parallelization of sequential codes less profitable. This is in
contrast to previous studies showing that from a processor
design perspective, frequency scaling mechanisms mitigate
these limitations by providing higher performance for the same
energy budget [4], [5]. We extend the model used in Amdahl’s
law to account for frequency changes. Using this extended
model, we propose refined formulas for the maximum expected
speedup and energy scaling, and validate them experimentally.

2 BACKGROUND

2.1 Amdahl’s Law
Amdahl’s law states that having multiple processors to ac-
celerate a program has limited effect on the speedup unless
the processing rate of its sequential component is increased
by nearly the same magnitude. Gene Amdahl illustrated this
“law” using the following simplified model. The program has
two parts: a parallel part of proportionate size f , which is
equally split without scheduling overhead between N identical
processors running in parallel, and a sequential part of size 1−f
that does not overlap the parallel part. The speedup in this case
is computed using the following formula:

speedupAmdahl =
1

(1− f) + f
N

. (1)

Using this model, Amdahl advocated for the continuation of
using single-processor machines (in 1967) [2], [3]; the formula
was, in fact, derived from his original paper by others.

Four decades later, when the industry turned to multicore
processors, a series of works extended Amdahl’s law to take
into account additional characteristics of these processors (see
the survey in [1]). The assumptions in Amdahl’s law were
refined for multicores in two main directions:

• Architecture: use of various chip designs, including
symmetric, asymmetric, dynamic, distributed, and het-
erogeneous multicores, and dynamic frequency scaling.

• Shared resources and scalability: cache contention, lim-
ited memory latency/bandwidth, communication be-
tween cores, synchronization, context switching, and
computation scaling.

The extended models provided more accurate estimation of
performance and energy consumption, and showed architec-
tural tradeoffs in multicore design. Hill and Marty [9] compared
different multicore designs under a fixed resource budget (e.g.,
chip area) and provided important insights for chip architects.
Their designs consist of a number of basic cores and at most one
more powerful core. These models generally cannot represent
dynamic voltage and frequency scaling (DVFS), where the
power of more than one core can be increased or decreased



dynamically. Optimizing time and energy in multicores using
DVFS was examined in [6], [7], [11], [4], [8]. Turbo Boost im-
plements many such optimizations in an embedded automatic
power management mechanism.

This paper considers a different aspect of Amdahl’s law –
estimating the improvement ratio in time and energy between
parallel and serial codes on an existing multicore processor
with Turbo Boost. Unlike previous works, in our model the
sequential program runs on one core of the multicore processor.

2.2 Energy Scaling
The energy consumed by a program is equal to P×T , where P
is the average power consumption and T is the execution time.
Woo and Lee [12] extended Amdahl’s law for energy efficiency.
In their augmented model, each processor consumes one unit
of power when it is in active state and a fraction π when it is in
idle state (0 ≤ π ≤ 1). The energy consumption of the parallel
program is given by the following formula:

E = (1− f) · (1 + (N − 1)π)︸ ︷︷ ︸
serial

+
f

N
·N︸ ︷︷ ︸

parallel

= 1 + (N − 1)π(1− f) . (2)

The energy consumption of the sequential program, which
is also executed on the multicore processor, is equivalent to
the energy consumption of a parallel program with f = 0.
Therefore, the energy scaling factor is as follows:

E+ =
1 + (N − 1)π

1 + (N − 1)π(1− f) . (3)

Normally, program parallelization reduces energy consump-
tion, as the numerator is greater than the denominator.

3 EXTENDED AMDAHL’S LAW

3.1 System Model
A compute-intensive sequential program is executed on a
symmetric multiprocessor with N cores and Turbo Boost. An
alternative implementation is considered, where a part of pro-
portionate size f is split equally between the N cores without
overhead; we call this implementation the parallel program.
Our aim is to compute the maximum expected speedup and
energy improvement of the parallel program over the sequen-
tial one. Our model extends Amdahl’s law to account for mul-
tiprocessors where the performance of each processor depends
on the number of active (non-idle) processors. Concretely, we
focus on multicore CPUs with Turbo Boost, which operate at
higher frequency when fewer cores are active. For example,
Tables 1 and 2 show that the maximum CPU frequency scales
inversely with the number of active cores in two Xeon series
CPUs. We denote the effective speed (performance) of every
active core when n cores are active by s(n). Note that s(N) is
higher than the base frequency. This is partly because the chip’s
temperature depends on other factors besides the number of
active cores.

3.2 Extended Speedup Model
In the extended model, the core speeds are not fixed. For
simplicity, we normalize all the speeds by s(1). Thus, when
only one core is active, its normalized speed is 1, and when N
cores are active, the normalized speed of each core is s(N)/s(1).
We modify the speedup formula to match the extended model
by introducing a correction factor for the parallel part:

speedupmulticore =
1

(1− f) + f
N
· s(1)
s(N)

. (4)

TABLE 1: Frequency specification: 8-core Intel Xeon E5-2690
Active cores 1 2 3 4 5 6 7 8 Base

Frequency [GHz] 3.8 3.6 3.6 3.4 3.4 3.3 3.3 3.3 2.9

TABLE 2: Frequency specification: 12-core Intel Xeon E5-2658 v3
Active cores 1 2 3 4 5 – 12 Base

Frequency [GHz] 2.9 2.9 2.7 2.6 2.5 2.2

Normally, the factor s(1)/s(N) is greater than 1 because higher
frequency is achieved when some cores are idle. Therefore, the
above formula provides a tighter upper bound on the speedup
than does Amdahl’s law.

3.3 Extended Energy Scaling Model
The energy model of Woo and Lee [12] assumes that active
cores always have the same power consumption. However,
in multicores with frequency scaling mechanisms, active cores
consume more power when some cores are idle, because they
operate at higher frequency. We augment the model we used for
the speedup formula with information about power to compute
the energy improvement factor.

Let P (n) denote the average power consumption of the
CPU when n cores are active (1 ≤ n ≤ N ). Then, the energy
consumption during a period of length t where n cores are
active is P (n) · t. The energy scaling factor is hence described
by the following formula:

1 · P (1)

(1− f) · P (1) + f
N
· s(1)
s(N)

· P (N)
.

We rewrite this formula in a slightly more compact form:

E+
refined =

1

(1− f) + f
N
·
(

P (N)
s(N)

/P (1)
s(1)

) . (5)

4 EVALUATION

In this section, we evaluate the accuracy of the traditional
and refined formulas for speedup and energy scaling. We start
with an experimental evaluation on two Intel multicore CPUs
with Turbo Boost. Then, we perform a theoretical analysis to
identify how different problem parameters will affect accuracy,
assuming our model is correct, and examine the potential for
improvement in a series of Intel Xeon CPU models, based on
their specification.

4.1 Experimental Setup
We used two evaluation platforms that were located in an air-
conditioned server room.

• A Sandy Bridge platform composed of two eight-core
Intel Xeon E5-2690 CPUs with 128GB RAM that runs
Linux kernel 3.13.0.

• A Haswell platform composed of two twelve-core Intel
Xeon E5-2658 v3 CPUs with 64GB RAM that runs Linux
kernel 4.0.9.

We disabled hyperthreading, CPU power limitations, and the
CPU in Socket 1, and configured the OS frequency scaling
governor to run the CPUs at maximum frequency. The base
frequency and the maximum Turbo frequencies for the two
processor types are shown in Tables 1 and 2.

A worker thread was attached to each core and executed a
given function in a loop, for a given number of iterations. Each
thread measured its execution time, and thread 0 also measured
the energy consumed by the cores and by the entire processor



TABLE 3: Execution time [sec]
Xeon E5-2690 Xeon E5-2658 v3

INT AES AES
f Turbo No Turbo Turbo No Turbo Turbo No Turbo
0 15.8 20.7 16.0 20.7 20.8 27.7

0.2 13.1 17.1 13.2 17.1 17.0 22.3
0.4 10.4 13.4 10.4 13.5 13.3 17.3
0.6 7.7 9.8 7.7 9.9 9.5 12.3
0.8 5.0 6.2 5.1 6.2 5.8 7.3
1 2.3 2.6 2.3 2.7 2.0 2.3

TABLE 4: Package energy consumption [J]
Xeon E5-2690 Xeon E5-2658 v3

INT AES AES
f Turbo No Turbo Turbo No Turbo Turbo No Turbo
0 712.8 639.6 757.1 662.0 876.4 1097.3

0.2 608.7 548.0 646.8 581.5 728.5 918.6
0.4 509.4 457.5 544.9 479.7 597.7 734.9
0.6 407.3 366.3 440.8 388.3 449.7 548.6
0.8 307.9 274.6 340.4 295.2 310.6 357.2
1 209.4 182.8 229.6 202.6 166.4 168.8

package, using processor counters MSR_PKG_ENERGY_STATUS
and MSR_PP0_ENERGY_STATUS. The process was run with
maximum priority.

We measured the accuracy of speedup and energy improve-
ment formulas in the following three configurations:

INT-SB: a synthetic sequence of integer MUL and DIV
operations on the Sandy Bridge platform.

AES-SB: an AES-CBC 128-bit encryption function from the
Crypto++ 5.6.2 library on the Sandy Bridge platform.

AES-HW: the AES-CBC function on the Haswell platform.

For each configuration, a program with a configurable par-
allel portion f ∈ [0, 1] and a sequential portion (1 − f) was
executed, and its execution time and energy consumption were
measured. The experiments were run with Turbo Boost enabled
and again with it disabled.

4.2 Speedup Measurements

The time measurement results are listed in Table 3. For each
value of f , we computed the speedup by dividing the execution
time of the sequential program (f = 0) by that of the parallel
program, and used it to compute the error of each formula.

Figure 1 shows the estimation errors of the traditional and
refined speedup formulas for the AES-HW configuration, with
Turbo Boost enabled. The traditional formula overestimated
the speedup by 16% for f = 1, while the refined formula
accurately estimated the speedup with a maximum error of
0.3% and as low as 0.04% for f = 1. These results clearly show
that the refined formula significantly improves the accuracy of
the speedup estimation, indicating that the upper-bound on
speedup given by the refined formula is achievable for real-
world applications. For INT-SB, the error similarly increased,
up to 15.1% for f = 1, while the refined formula was very
accurate with 0.05% maximum error. The function here was
designed for maximum utilization of the ALU; hence these
results verify that the core frequencies are as expected. For AES-
SB, the results were similar; the maximum error of the original
formula was 16.2%, while for the refined formula it was 0.9%.

0.0% 0.9% 1.8%
4.1%

16.0%

0.04%
0%

5%

10%

15%

20%

0.2 0.4 0.6 0.8 1

E
st

im
at

io
n 

er
ro

r

Parallel part

Amdahl
Refined

Fig. 1: Speedup estimation accuracy for AES-HW configuration
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Fig. 2: Energy scaling estimation accuracy for AES-HW config.

4.3 Energy Consumption Measurements
Figure 2 shows the estimation errors of the traditional and
refined energy scaling factor formulas for the AES-HW config-
uration, with Turbo Boost enabled. The refined formula signif-
icantly improved the accuracy, though its error was not as low
as for the speedup. Notably, the maximum error of the original
speedup and energy improvement formulas is the same at 16%.
We show that this result is expected in our theoretical analysis
in Section 4.5. As for speedup, the results indicate that the
estimated improvement in energy consumption is achievable
in real-world applications. For INT-SB, the trend was similar.
The original formula had errors 5.0% and 15.1% for f = 0.8
and f = 1 in the original formula, while the refined formula
had a maximum error of 0.8%, for f = 0.6, and an error of
0.03% for f = 1. For AES-SB, the errors were higher for both
formulas; for the original formula they were 10% and 16.2%,
for f = 0.8 and f = 1, while for the refined formula they were
2.1% and 0.9%, respectively.

The refined formula uses the average power consumption
parameters P (1) and P (N). We measured P (n) for every
1 ≤ n ≤ N active cores as follows: a fixed-size workload was
split equally between the n cores, and the power was computed
by dividing the CPU package energy consumption by the
execution time. On the Haswell platform with Turbo Boost
enabled, for the AES-CBC workload, the power scaling was
close to linear, PT

pkg(n) ≈ 3.7n+ 37.9 [W], but the curve was
not smooth. With Turbo Boost disabled, it was also close to
linear and the curve was smoother; PD

pkg(n) ≈ 2.8n+ 28.4 [W].

4.4 Accuracy With Turbo Boost Disabled
Our refined formulas are based on the assumption that Am-
dahl’s law accurately models multicores with fixed frequency;
hence, we expect the original formulas to be accurate with
Turbo Boost disabled. The results of our experiments confirm
this assumption. For INT-SB, the maximum error of the original
speedup function was only 0.1%. For AES-HW, the error was
1.2% for all f = 0.2−1.0. Interestingly, for AES-SB, the error for
f = 0.2− 0.8 was at most 0.4%, but for f = 1 it was 4.4%. Our
temperature measurements indicate that this was not caused
by thermal issues. Note that in all the experiments, the parallel
part is executed by all the threads, so any delay caused by using
all the cores (such as frequency throttling) should have an effect
for any f > 0. We ascribe this error to microarchitectural issues.

For energy scaling, the formula based on Woo and Lee’s
model was also quite accurate. For INT-SB, the maximum error
was 0.3%; for AES-HW it was 1.3%; and for AES-SB it was



again 4.4%. Note that Woo and Lee’s formula yields different
estimates when Turbo Boost is enabled and when it is disabled
because the idle state power parameter π is different in the two
cases, which is why there is a difference in the estimation error.

4.5 Theoretical Analysis

Assuming that our extended model is correct, the error of the
original formula is abs( o−r

r
) where o and r are the results of the

original and refined formulas, respectively. After rearranging
the terms, the expected speedup error is

errspeedup =
1

N ·
(

1
f
− 1
)
+ 1
·
(
s(1)

s(N)
− 1

)
. (6)

The formula shows that the factors that can increase the error
include increasing the parallel part f , changing to a CPU with
a larger range of Turbo frequencies, or changing to a CPU with
fewer cores. We used this formula to find that the average
improvement potential for 36 Haswell-EP CPU models with
4-18 cores is 15.5%, and the maximum is 38%.

To compute the energy improvement error, we first need
to bring the two formulas to use the same representation of
power. π is defined as the fraction of the power of an active core
consumed by an idle core; consequently, it can be represented
as follows: π = N

N−1
· P (1)
P (N)

− 1
N−1

. The expected error in energy
improvement is

errenergy =

(
s(1)
s(N)

− 1
)
f

N · P (1)
P (N)

· (1− f) + f
. (7)

The error can increase by the factors mentioned for speedup,
and additionally by changing to a CPU where idle cores con-
sume less power.

For f = 1 we get errspeedup = errenergy = s(1)
s(N)

− 1. This
explains why we got the same maximum error for speedup
and energy in our experiments; e.g., for AES-HW, this error is
2.9
2.5
− 1 = 16%, as we observed.

5 CONCLUSIONS AND DISCUSSION

Turbo Boost and similar frequency scaling technologies such
as Turbo Core have changed the scaling curve of parallel
programs. One might expect that without any parallelization
overhead, the speedup would be linear, but with Turbo Boost
the performance scales sub-linearly.

While the use of multiple core processors has become
ubiquitous in modern computer systems, much of the legacy
software remains sequential due to the significant cost and
effort required for its parallelization. Therefore, simple tools for
initial evaluation of the speedup and energy savings that could
be gained from the parallelization are needed.

We have shown that the speedup limitations obtained under
Amdahl’s law are worse on multicore processors with Turbo
Boost, where the use of multiple cores is accompanied by
lower frequency. Previous works [4], [5] conversely claimed
that Turbo Boost mitigates these limitations. The difference
in the conclusions results from a different choice of reference
points. The prior works showed that multicore processors with
scaling mechanisms can complete the program in shorter time
than their fixed-performance counterparts that have the same
power consumption. This work, on the other hand, evaluated
the speedup factor achieved from parallelizing a sequential
program such that it makes use of multiple CPU cores.

We presented a refined formula for Amdahl’s law that
computes a tight upper bound on the speedup for CPUs with

Turbo Boost while having a minimal impact on the simplic-
ity of the model. In our experiments with AES-CBC 128-bit
encryption and a synthetic compute-intensive function on an
eight- and twelve-core Intel Xeon series CPUs with Turbo boost,
the estimated speedup using Amdahl’s law was up to 16% too
high. In contrast, our refined formula had an estimation error of
less than 1%. The changes in core frequency with Turbo Boost
affect the power consumption of the CPU, so the extension of
Amdahl’s law for energy scaling also needs to be revised. We
presented a refined formula for the energy improvement factor
that can be achieved from parallelization on a CPU with Turbo
Boost and showed that it significantly reduces the estimation
error. Using theoretical analysis, we showed that increasing
the parallel part, changing to a CPU with a larger range of
Turbo frequencies, or changing to a CPU with fewer cores can
increase the necessary correction factor. For 36 Haswell-EP CPU
models with 4-18 cores, we found the average correction factor
to be 15.5%, and the maximum 38%. For energy, changing to
a CPU with more power-efficient idle cores can also increase
the correction factor. The analysis also shows that with a fully
parallelizable program, the correction factor for speedup and
energy is the same.

Normally, the frequency of a core is highest when all other
cores are idle; however, this is not guaranteed by the CPU
specification. Theoretically, it is possible that for some CPU
and workload, the sequential program would run only at base
frequency (e.g., 2.2GHz), while the parallel program would run
at a Turbo frequency (e.g., 2.5GHz). In this case, the speedup
would be higher than the upper bound given by Amdahl’s law.
For example, suppose the sequential program starts running
at maximum Turbo frequency and shortly after that, the core
overheats and its frequency drops to base; in the parallel
program, however, each core runs at a lower Turbo frequency
and does not overheat.
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