
Attacks in the Resource-as-a-Service (RaaS)
Cloud Context

Danielle Movsowitz, Orna Agmon Ben-Yehuda, and Assaf Schuster

Technion—Haifa Institute of Technology,
Haifa, Israel

dani.movso@campus.technion.ac.il,

ladypine@cs.technion.ac.il,

assaf@cs.technion.ac.il

http://www.cs.technion.ac.il

Abstract. The Infrastructure-as-a-Service (IaaS) cloud is evolving to-
wards the Resource-as-a-Service (RaaS) cloud: a cloud which requires
economic decisions to be taken in real time by automatic agents. Does
the economic angle introduce new vulnerabilities? Can old vulnerabili-
ties be exploited on RaaS clouds from different angles? How should RaaS
clouds be designed to protect them from attacks? In this survey we an-
alyze relevant literature in view of RaaS cloud mechanisms and propose
directions for the design of RaaS clouds.

Keywords: cloud computing, privacy, security, RaaS

1 Introduction

The Resource-as-a-Service (RaaS) cloud [1] is an economic model of cloud com-
puting that allows providers to sell individual resources (such as CPU, memory,
and I/O resources) for a few seconds at a time. In the RaaS cloud, clients are
able to purchase exactly the resources they need when they need them. In light of
global trends and economic incentives driving the providers to a price war [3], we
anticipate that the RaaS cloud will gradually replace the IaaS cloud. In the RaaS
cloud, e-commerce is quick and frequent. It is impossible for a human to make
the economic decisions required to optimize the resource purchases. Hence, in
the RaaS cloud, clients will deploy automatic agents to conduct the e-commerce
for them. This e-commerce may be centralized (an auction, for example) or de-
centralized (as in a marketplace or negotiations).

Commercial cloud users are selfish economic entities, with secrets and poten-
tially conflicting preferences. Since some clients may be malicious, most clients
expect a certain level of privacy and security within the system. The more private
and secure the cloud is, the more motivated the users are to trust the cloud with
important tasks. In the past few years, numerous studies have been published
on different attack methods (side channel, escape to hypervisor, etc.), levels of
isolation in cloud computing systems, and how to detect and limit attacks.



2 Attacks in the RaaS Context

The introduction of economic aspects into the hypervisor, the basic layer
of the cloud’s operating system, may introduce new vulnerabilities. In addition,
known attacks may be launched in different ways against an economically driven
machine, or may be combined in different ways with economic attacks. In this
paper we survey non-economic attacks in the context of the RaaS cloud, in order
to learn how a successful, undetected attack may be launched, and what can be
done to defend against it.

We begin this paper with a description of Ginseng, an example of an economic
resource allocation mechanism in the hypervisor, in Section 2. In section 3 we
survey cloud attacks which may prove relevant in the context of the RaaS cloud.
We conclude in Section 4.

2 Allocating RAM Using an Auction

The division of resources according to economic mechanisms is discussed in sev-
eral academic works [16, 18, 26, 15, 4] and implemented in several commercial
clouds. Amazon’s spot instances are sold using an auction, in which entire IaaS
machines are rented. In CloudSigma’s burst price method, clients pay a fast-
changing price. 1 Both pricing mechanisms are declared to be affected by supply
and demand, but their exact algorithm is kept secret [2]. In this work we use
the terminology and mechanism used by Ginseng [4], the first economy-driven
cloud system that allocates memory efficiently to selfish cloud clients. It does so
by using the Memory Progressive Second Price (MPSP) auction, which is based
on the Progressive Second Price (PSP) auction [16].

In a RaaS cloud, each guest has a different, changing, private (secret) valu-
ation for memory: how much benefit it expects to gain from different quantities
of memory. This is what guides the agent’s actions in any economic transac-
tion it performs (i.e., negotiations or auction bidding). We define the aggregate
benefit of a memory allocation to all guests—their satisfaction from auction
results—using the game-theoretic measure of social welfare. The social welfare
of an allocation is defined as the sum of all the guests’ valuations of the memory
they receive in this allocation. An efficient memory auction allocates the memory
to the guests such that the social welfare is maximized.

VCG [25, 6, 13] auctions optimize social welfare by incentivizing even selfish
participants with conflicting economic interests to inform the auctioneer of their
true valuation of the auctioned items. They do so by the exclusion compensa-
tion principle, which means that each participant is charged for the damage it
inflicts on other participants’ social welfare, rather than directly for the items it
wins. VCG auctions are used in various settings, including Facebook’s repeated
auctions [17, 14].

The Memory Progressive Second Price (MPSP) auction, which Ginseng uses,
resembles a VCG auction. It is a repeated auction in which each auction round
takes 12 seconds. In each auction round the participants bid in order to rent

1 CloudSigma’s Pricing https://www.cloudsigma.com/pricing/https://www.

cloudsigma.com/pricing/, accessed October 2015.



Attacks in the RaaS Context 3

memory for the following 12 seconds. The MPSP protocol is illustrated in Fig-
ure 1. To work at this rate, the participants are not human clients who own the
guest virtual machines, but rather software agents which work on their behalf,
according to the valuation functions and business-logic algorithms embedded
in them by their respective owners. Accordingly, the auction is orchestrated by
the host’s auctioneer, which is a software agent working on behalf of the cloud
provider. Ginseng’s structure in illustrated in Figure 2.

An MPSP auction round begins with the host’s auctioneer announcing the
quantity of memory which is up for rent in this round. Then, during the following
3 seconds, each participant may bid by stating a maximal unit price it is willing
to pay for the memory (in terms of dollars per MB per second), and desired
ranges of quantities it is willing to accept. The limitation of ranges allows the
guest to refuse to get and pay for quantities from which it cannot benefit: for
example, if the guest requires 1GB to avoid thrashing, and can enjoy up to 1.5
GB, it can refuse to get any memory quantity in the range 0-1GB, but be willing
to rent any quantity from 1–1.5GB.

During the fourth second, the host’s auctioneer determines the allocation and
the bills each guest will have to pay. The host’s auctioneer chooses the allocation
which optimizes the social welfare according to the bids. The bills are computed
according to the exclusion compensation principle: each guest pays according to
the damage it causes other guests, as per their own reported valuation. For each
guest i, the host’s auctioneer computes the social welfare of all guests except
guest i. Then it computes what the optimal allocation would be, had guest i not
participated in the auction at all, and what the social welfare of all the other
guests would be in that case. Guest i’s bill is determined as the difference between
these two computations. This method of computing payments and choosing an
optimal allocation makes truthful bidding the best strategy for the guests: to
state the real value they attach to getting a certain quantity of RAM.

Then the host announces the result of the auction to the guests, and gives
them 8 seconds to prepare for a change in the memory allocation (e.g., release
memory from the main application), before the change actually takes place.
Finally, at the end of the 12 seconds, the host actually changes the memory
allocation (if necessary).

When the host announces the results, each guest hears in private how much
memory it won, and for what price. In addition, the host informs all guests of
the lowest bid price among those whose bidders won any memory (denoted by
Pmin in), and the highest bid price among those whose bidders did not win any
memory (denoted by Pmax out). This information is broadcast for three reasons.
First, the guest agents use this information to plan their next bids: they use it
to approximate the borderline unit price bid, below which they are not likely
to win any memory in the next round. Second, guest agents can acquire this
information over time through the rejection or acceptance of their bids, so it
is futile to try to hide it. Third, helping the guest agents learn the borderline
unit price bid quickly can help the system stabilize, and thus reach the maximal
social welfare quickly.



4 Attacks in the RaaS Context

TIME

0

HOST GUESTS

Announce free memory

Bids

Com-
pute
allo-
cation

3

4 Announce results

Prepare
for 
memory
changes 
if 
needed

12
Make memory changes

Fig. 1. Ginseng’s MPSP protocol.



Attacks in the RaaS Context 5

Application

Resource

Valuation(resource)

Strategy Adviser

Strategic Agent

Resource Controller

Host Guest

Ginseng 

Communicator

Auctioneer

Communicator

Fig. 2. Ginseng’s structure. The auctioneer is a smart agent working for the host.
It interacts with the strategic agent within the guest. Once the auction’s results are
determined, the host actually changes the resource allocation for the guest. The guest
uses the resource to operate its applications (presumably one or more main applications,
whose performance matters).

Although we refer in this work to MPSP terminology used in Ginseng, many
of the observations we make here are also relevant to other mechanisms which
mimic market pressure. In Ginseng, resource pressure is felt by participants in
the bill they pay, which reflects the damage they caused to the social welfare.
In mechanisms which rely on computing a clearing price (the highest price for
which the demand is equal to the supply of exceeds it), resource pressure is felt
through the increase in the clearing price.

3 Attacks on Traditional Clouds

Cloud computing is one of the most dominant paradigms in the information
technology industry nowadays. More and more companies are moving to cloud
computing solutions, which in turn requires attackers to find new and inven-
tive ways to attack cloud computing systems. In this section we will classify
attack types and explain how to map the internal system infrastructure, how to
determine levels of isolation, and how to detect and limit attacks.



6 Attacks in the RaaS Context

3.1 Classifying Attack Types

Many types of attacks can be launched against cloud computing systems. These
include attacks aimed at obtaining information from innocent users or resource-
freeing attacks (RFAs) to improve personal cloud performance. Younis et al. [27]
survey the different types of cache based side channel attacks and point out
weaknesses in currently researched solutions. Varadarajan et al. [23] show how
to improve a VM’s performance by forcing a competing VM to saturate some
bottleneck (a resource used by the VM). This can slow down or shift the com-
peting applications’ use of a desired resource.

Our goal is to determine which of the above attacks are most likely to be
launched against Ginseng, which are irrelevant, and which are most likely to
succeed. Is it possible, for example, that an attack analogous to the RFA attack
can be launched against Ginseng in order to obtain a maximum amount of
memory at the expense of other system guests? This might be done, for instance,
by slowly raising Pmax out and forcing the rest of the guests to exhaust their
resources up to the point where they need to bid for a smaller amount of memory,
thus freeing memory that the attacker can obtain for a lower bid. This type of
attack can be carried out either by an attacker who is the highest bidder not
allocated memory, or as a part of a grand-scheme collusion with other agents.

3.2 Mapping the Internal System Infrastructure and Determining
Levels of Isolation

A successful attack within a cloud computing system usually requires a profound
understanding of the internal system infrastructure and the capability to map
the system’s users and their level of isolation. Ristenpart et al. [20] showed that
one can inexpensively probe and explore the system to determine the location of
an instance in the cloud infrastructure, determine whether two instances are co-
resident on the same physical machine, launch instances that will be co-resident
with other users instances, and exploit cross-VM information leakage once co-
resident.

Today it would be very hard—though not impossible—to do what Ristenpart
et al. did in 2009. One reason is that the spot instances of only one zone can
contain tens of thousands of machines. Moreover, machines today are live mi-
grated and their IP may no longer indicate the IP or identity of guest machines
co-located with them on the same physical machine. Finally, machine types are
mixed on physical machines. All of this makes it harder to get a machine co-
resident with a predesignated victim machine. However, on a RaaS cloud machine
an attacker can directly gain from attacking guests sharing the same physical
machine. We can learn from Ristenpart et al. that if the population is small and
there are no migrations (as in the case of Ginseg today), then it is easier to
learn about neighbors.

Zhang et al. [28] introduced a system called HomeAlone that allows guests to
use cache-based side channel probing in order to determine their level of isolation.
The HomeAlone system allows users to silence their activity in a selected cache



Attacks in the RaaS Context 7

region for a period of time, in which they can monitor cache usage and detect
unexpected activity. This system can be used to find information on other virtual
machines that share the same hardware but do not belong to the same owner.

Caron et al. [5] proposed a placement heuristic that allows guests to de-
termine the level of security they require by stating co-residency requirements
(alone, friends, enemies) or by stating the level of privacy/security they need.
Ginseng does not currently take into consideration guest preferences regarding
security/privacy levels or their co-residency requirements. This opens the door to
numerous types of attacks that do not exploit the Ginseng protocol itself. In the
future, it might be interesting to explore the option of determining the level of
security/privacy and isolation between guests by allowing them to state bidding
borders (for example a price/memory range that will define co-residency).

3.3 Detecting and Limiting Attacks

Security measures to detect and limit attacks can range from simple alarm sys-
tems (such as alarms triggered when trying to access an unauthorized area) to
complex systems that monitor and learn user actions and performance over time.

1. Dolgikh et al. [7] showed that malicious users (attackers) can be detected in
two phases: the training phase and the detection phase. In the training phase
the system learns and classifies the “normal” behavior of system users. In the
detection phase, user activities are monitored and observed; any deviation
from the ”normal” behavior is detected. This work is relevant to Ginseng in
two manners:
(a) Detection of malicious behavior. The attacker may also use the two phase

approach. During the training phase, the attacker gathers information
about the system’s behavior, the neighboring guests, and their bid needs.
Furthermore, the attacker can collect information regarding user sched-
ules that can influence changes in supply and demand. It may even figure
out the best time to attack. This information can be used to plan the
attack, and in particular, the best cues for timing costly attacks. During
the detection phase, the attacker will hunt for those cues, and launch
the attack at the perfect time.
During the training phase, the attacker may be monitored and certain
actions may be considered as “out of the ordinary behavior” and thus
stopped. However, this approach has its risks, as benign agents who
online-learn their best strategy may be misidentified as attackers.

(b) Automatic prevention of malicious behavior. Several mechanisms were
proposed to prevent rapid memory allocation changes. These include
an affine-maximizer based method, which taxes the difference between
allocations [19], and a reclaim factor method [19], which controls the
fraction of the memory that is reclaimed by the system to be sold by
the next auction. This method resembles Waldspurger’s tax on unused
memory [26]. This means that an attack on Ginseng might fail due to
the system’s sluggishness.



8 Attacks in the RaaS Context

We note that the sluggishness fails actions according to the action and
not the intention behind it. Hence, it might also fail benign guest actions,
if they are considered harmful to the system.

2. Shi et al. [22] presented Chameleon, a non-intrusive, low-overhead dynamic
page coloring mechanism that provides strict cache isolation only during
security-critical operations. If an attack on Ginseng is cache based, imple-
menting the Chameleon mechanism may obstruct attempts to attack the
system.

3. Varadarajan et al. [24] introduced the concept of soft isolation—reducing the
risks of sharing through better scheduling. They show that a minimum run
time guarantee for VM virtual CPUs that limits the frequency of preemp-
tions can effectively prevent existing prime+probe cache-based side-channel
attacks. This particular work is relevant to RaaS machines that use economic
measures to allocate CPU resources, such as CloudSigma, which uses CPU
burst prices. It is not directly relevant to the memory allocation method
used by Ginseng.

Note that Varadarajan et al.’s method protects the system at the cost of
introducing an inefficiency in resource allocation. In that, it resembles the
sluggish mechanisms, which protect the system against quick changes, at the
expense of reducing its responsiveness.

4 Conclusion

We have reviewed several kinds of attacks on traditional clouds and on the new
RaaS cloud. In addition to its vulnerability to regular attacks, an economically
driven hypervisor is also vulnerable to attacks designed specifically for economic
systems, using the special features of the system against it. Therefore, economic
cloud systems have to be designed while considering both types of attacks, and
include built-in defenses. This design might consist of patches to the original
designs, protecting against specific vulnerabilities. It may even require a whole
new mechanism, which prioritizes privacy and security over other considerations.
There is a large volume of work addressing privacy in distributed systems where
no trusted entity exists [9, 21, 12, 11]. However, it might be enough to assume
that the resource provider, the host and its auctioneer are trusted entities. Data
mining which preserves client privacy [8, 10] may be used to reduce the amount
of information that leaks by announcing global data about the auction’s result,
such as Pmin in or Pmax out.

Acknowledgment

This work was partially funded by the Prof. A. Pazi Joint Research Foundation.
We thank Dr. Eran Tromer, Prof. Katrina Ligett, Dr. Arik Friedman and Shunit
Agmon for fruitful discussions.



Attacks in the RaaS Context 9

References

1. O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir. The resource-
as-a-service (RaaS) cloud. In USENIX Conference on Hot Topics in Cloud Com-
puting (HotCloud), 2012.

2. O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir. Deconstruct-
ing amazon EC2 spot instance pricing. ACM Trans. Econ. Comput., 1(3):16:1–
16:20, Sept. 2013.

3. O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir. The rise of
RaaS: The resource-as-a-service cloud. Commun. ACM, 57(7):76–84, July 2014.

4. O. Agmon Ben-Yehuda, E. Posener, M. Ben-Yehuda, A. Schuster, and A. Mu’alem.
Ginseng: Market-driven memory allocation. ACM SIGPLAN Notices, 49(7):41–52,
2014.

5. E. Caron and J. R. Cornabas. Improving users’ isolation in IaaS: Virtual machine
placement with security constraints. In IEEE International Conference on Cloud
Computing (CLOUD), pages 64–71, 2014.

6. E. H. Clarke. Multipart pricing of public goods. Public Choice, 11(1):17–33, Sep
1971.

7. A. Dolgikh, Z. Birnbaum, Y. Chen, and V. Skormin. Behavioral modeling for sus-
picious process detection in cloud computing environments. In IEEE International
Conference on Mobile Data Management (MDM), volume 2, pages 177–181, 2013.

8. A. Friedman and A. Schuster. Data mining with differential privacy. In ACM
International Conference on Knowledge Discovery and Data Mining (SIGKDD),
pages 493–502, 2010.

9. A. Friedman, I. Sharfman, D. Keren, and A. Schuster. Privacy-preserving dis-
tributed stream monitoring. In Annual Network and Distributed System Security
Symposium (NDSS), 2014.

10. A. Friedman, R. Wolff, and A. Schuster. Providing k -anonymity in data mining.
VLDB J., 17(4):789–804, 2008.

11. B. Gilburd, A. Schuster, and R. Wolff. k-ttp: a new privacy model for large-
scale distributed environments. In ACM International Conference on Knowledge
Discovery and Data Mining (SIGKDD), pages 563–568, 2004.

12. B. Gilburd, A. Schuster, and R. Wolff. Privacy-preserving data mining on data
grids in the presence of malicious participants. In International Symposium on
High-Performance Distributed Computing (HPDC), pages 225–234, 2004.

13. T. Groves. Incentives in teams. Econometrica, 41(4):617–631, Jul 1973.
14. J. Hegeman. Facebook’s ad auction. Talk at Ad Auctions Workshop, May 2010.
15. F. Kelly. Charging and rate control for elastic traffic. European Transactions on

Telecommunications, 8:33–37, 1997.
16. A. Lazar and N. Semret. Design and analysis of the progressive second price

auction for network bandwidth sharing. Technical report, Columbia University,
1998. http://econwpa.repec.org/eps/game/papers/9809/9809001.pdf.

17. B. Lucier, R. Paes Leme, and E. Tardos. On revenue in the generalized second
price auction. In International Conference on World Wide Web (WWW), 2012.

18. P. Maillé and B. Tuffin. Multi-bid auctions for bandwidth allocation in communi-
cation networks. In IEEE INFOCOM, 2004.

19. E. Posener. Dynamic memory allocation in cloud computers using progressive
second price auction. Master’s thesis, Technion, 2013.

20. T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In ACM Conference
on Computer and Communications Security (SIGSAC), pages 199–212, 2009.



10 Attacks in the RaaS Context

21. A. Schuster, R. Wolff, and B. Gilburd. Privacy-preserving association rule mining in
large-scale distributed systems. In Cluster, Cloud and Grid Computing (CCGrid),
pages 411–418, 2004.

22. J. Shi, X. Song, H. Chen, and B. Zang. Limiting cache-based side-channel in multi-
tenant cloud using dynamic page coloring. In IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops (DSN-W), pages 194–199, 2011.

23. V. Varadarajan, T. Kooburat, B. Farley, T. Ristenpart, and M. M. Swift. Resource-
freeing attacks: improve your cloud performance (at your neighbor’s expense). In
ACM Conference on Computer and Communications Security (SIGSAC), pages
281–292, 2012.

24. V. Varadarajan, T. Ristenpart, and M. Swift. Scheduler-based defenses against
cross-vm side-channels. In Usenix Security, 2014.

25. W. Vickrey. Counterspeculation, auctions, and competitive sealed tenders. Journal
of Finance, 16(1), 1961.

26. C. A. Waldspurger. Memory resource management in Vmware ESX server. In
USENIX Symposium on Operating Systems Design & Implementation (OSDI), vol-
ume 36, pages 181–194, 2002.

27. Y. Younis, K. Kifayat, and M. Merabti. Cache side-channel attacks in cloud com-
puting. In International Conference on Cloud Security Management (ICCSM),
page 138. Academic Conferences Limited, 2014.

28. Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter. Homealone: Co-residency detection
in the cloud via side-channel analysis. In Security and Privacy (SP), 2011 IEEE
Symposium on, pages 313–328. IEEE, 2011.


