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ABSTRACT
Entropy is a fundamental property of data and a key metric in many

scientific and engineering fields. Entropy estimation has been exten-

sively studied, but almost always under the assumption that there

is a single data stream, seen in its entirety by one node running

the estimation algorithm. Multiple distributed data sources are be-

coming increasingly common, however, with applications in signal

processing, computer science, medicine, physics, and more. Central-

izing all data can be infeasible, for example in networks of battery

or bandwidth limited sensors, so entropy estimation in distributed

streams requires new, communication-efficient approaches.

We propose a practical communication-efficient algorithm for

continuously approximating the entropy of distributed streams,

with deterministic, user-defined error bounds. Unlike previous

streaming methods, it supports deletions and variable-sized time-

based sliding windows, while still avoiding communication when

possible. Moreover, it optionally incorporates a state-of-the-art

entropy sketch, allowing for both bandwidth reduction and mon-

itoring very high dimensional problems. Finally, it provides the

approximation to all nodes, rather than to a centralized location,

which is important in settings such as wireless sensor networks.

Evaluation on several public datasets from real application do-

mains shows that our adaptive algorithm can often reduce the

number of messages by two orders of magnitude, compared to

centralizing all data in one node.
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1 INTRODUCTION
The Shannon entropy of a discrete random variable X taking values

{x1, . . . ,xk } is

H(X ) = −
k∑
i=1

Pr[xi ] ln Pr[xi ] .

Entropy
1
, often described as a measure of disorder or information

content, is widely used across many scientific and engineering

disciplines, with diverse applications such as network monitor-

ing [40, 50], time series analysis [6, 44], medicine [2, 17, 31], neuro-

science [39], signal processing [42], and anomaly detection [7].

Recent years have seen an explosion in the number of devices

and sensors, and with it new applications of entropy: network

attack detection [3, 22], EEG monitoring [9, 31], air quality moni-

toring [12], physical activity detection using wearable sensors [18],

sensor fusion in wireless sensor networks [46], and many more.

Though new streaming approaches [13, 27] help tackle the growth

in both rate and volume of incoming data, these still assume that

data can be centralized – i.e., a single stream.

In the increasingly relevant setting of distributed streams, how-

ever, multiple data sources give rise to new challenges. First, entropy

is highly non-linear, making accurate entropy estimation from dis-

tributed data a hard problem. Second, when input sources are distant

or battery-constrained wireless devices, transmitting even small

messages can be very costly in terms of battery power [26, 46] or

increased latency [14]. Hence the need for communication-efficient
approaches: algorithms that avoid sending messages.

Existing approaches to distributed entropy estimation can be

impractical in these settings. Sketching [13, 27] reduces the size of

data updates but each such update must still be communicated –

impractical when the input rate is high [3] or sensors are battery

powered. Insertion-only algorithms2 [4, 14] can reduce the num-

ber of messages, but they do not support deletion of previously

observed inputs, and so cannot estimate entropy in the recent (slid-

ing) window. Sampling approaches [14] limit the number of sent

messages per window, but updates are still sent in each window to

maintain the sample even when entropy is unchanged. They also re-

quire large samples to accurately approximate entropy [27, 39, 41].

Periodic sampling also introduces delays, and the update period

must be tuned to balance latency, error, and communication [14].

Finally, the probabilistic bounds of existing approaches could be

unsuitable for some tasks, for instance seizure detection [31].

1
Entropy is an overloaded term. Unless noted, we use “entropy” as shorthand for the

well-known maximum likelihood estimator for Shannon entropy, detailed in Section 3.

2
Also called the cash register streaming model[37]: event counts can only increase.
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In short, existing approaches offer either reduced communication

but no support for sliding windows, or continuous communication

and probabilistic error bounds.

This Work
We propose CIDER (Communication-effIcient Distributed Entropy

estimatoR), a new deterministic distributed entropy approxima-

tion algorithm that reduces communication and supports sliding

windows, without losing the advantages of previous approaches.

Our goal is a practical “turn-key” replacement for many kinds of

distributed entropy monitoring applications that currently use cen-

tralization. What makes CIDER practical?

• It is communication-efficient: messages are sent only when

entropy changes; if the changes are sufficiently small and do

not violate the approximation bounds, CIDER can still avoid

communication.

• It supports event deletions
3
, meaning that it can monitor en-

tropy in a sliding window of fixed or variable size, including

full support for time-based windows.

• Approximation bounds are deterministic and user-defined –

users set error bounds directly.

• For bandwidth-limited or very high-dimensional problems, it

incorporates a state-of-the-art entropy sketch [13] to reduce

message size and avoid holding explicit counters in memory.

• It provides the current entropy estimate in all nodes, rather

than in just a single coordinator node. This can be crucial in

settings such as wireless sensor networks [46].

In summary, CIDER is the first communication-efficient distributed

entropy approximation with deterministic error bounds that fully

supports deletions (specifically the strict turnstile model), fixed-size

windows, and time-based windows.

We evaluate CIDER on real-world datasets representing real

applications: network monitoring, load balancing, and air quality

monitoring. Our results show that CIDER reduces communication

by up to two orders of magnitude (compared to centralizing the

data) and scales well with the number of nodes.

2 RELATEDWORK
Existing work on estimating the entropy of distributed streams can

be roughly divided into four types.

Sketching: Sketching approaches reduce the size of messages

rather than the number of messages sent, and provide probabilistic

bounds on the error. Bhuvanagiri and Ganguly [8] and Chakrabarti

et al. [11] propose entropy sketches for single streams. Zhao et

al. [50] approximate x lnx as a linear combination c(x1+α − x1−α ),
estimated in turn using Indyk’s Lp norm sketch [29]; the result-

ing sketch is used to estimate the entropy of origin-destination

network flows in a datacenter. Harvey et al. [27] use frequency

moment sketches to estimate the Tsallis entropy, which is then

used to approximate the Shannon entropy. Clifford and Cosma [13]

propose a simple unbiased sketch based on random linear pro-

jections drawn from a maximally-skewed stable distribution; it

requires no tuning and has near-optimal space complexity. They

also provide a detailed review of entropy sketching. CIDER provides

3
The strict turnstile streaming model: counts go up and down, but are never negative.

deterministic bounds, and aims to reduce the number of messages

(communication-efficiency) rather than their size. It optionally in-

corporates a recent entropy sketch [13] to achieve similar reduc-

tions in message size (and memory requirements), at the cost of

making the bounds probabilistic.

Insertion-only algorithms: Arackaparambil et al. [4] describe a

round-based probabilistic approximation for distributed streams

in the cash-register model. After each round, nodes update a co-

ordinator if enough new items have arrived during the round, as

determined by a distributed counting (F1 moment) estimator; oth-

erwise, no messages are sent. They also use an entropy sketch [27]

to reduce message size.

Sampling: Sampling from distributed streams is well-studied,

and Cormode provides a review [15]. Sampling requires continu-

ous communication even if entropy does not change: some com-

munication is incurred per window in order to maintain the slid-

ing window [14, 15]. Moreover, sampling provides a probabilistic

bound, and requires a large sample to control both variance and

bias [27, 39, 41], yet communication grows approximately linearly

with sample size [14].

Theoretical bounds: Communication complexity results use ad-

versarial approaches to prove lower bounds on the number of bits or

the number of messages needed to monitor entropy. Woodruff and

Zhang [48] and Arackaparambil et al. [4] give such lower bounds,

deterministic and probabilistic, with and without deletions. Aracka-

parambil et al. also use an adversarial construction to show that no

nontrivial savings in communication is possible [4]. Indeed, CIDER

does not and cannot guarantee communication reduction for all

data. Yet we see that on several real datasets communication reduc-

tion is not only possible but substantial (Section 5). We observe that

much of the existing work on distributed entropy approximation

is highly theoretical, and focuses on the worst case; there appears

to be little empirical evaluation on real data (with a few notable

exceptions, e.g., [3, 50]).

Finally, some of the above also propose approximations for gen-

eralizations of entropy; we briefly discuss those in Section 4.7.

3 PROBLEM DEFINITION AND NOTATION
Let X be a discrete random variable taking values {x1, . . . ,xk }.
Then its Shannon entropy is

H(X ) = −
k∑
i=1

Pr[xi ] ln Pr[xi ]

(we use the natural logarithm, but other bases are also used). Since

Pr[Xi ] is generally unknown, a widely-used estimator is the maxi-

mum likelihood estimator [41]. given bi observations of each Xi ,

and denoting by n =
∑k
i=1

bi the total number of observations, the

entropy estimate is

HMLE(P) = −
k∑
i=1

pi lnpi ,

wherepi = bi/n and P is the vector [p1,p2, . . . ,pk ]. For a continuous
X , the widely used histogram estimator is computed in the same

way: divide the range of X to k bins and define {bi }ki=1
to be the
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number of observations in each respective bin, n =
∑k
i=1

bi , and
pi = bi/n (we also define pi lnpi = 0 if pi = 0).

In the continuous distributed monitoring model [14], there are

m nodes, each observing an infinite stream of events {(t , i)}, where
t is the arrival time, and i ∈ {1 . . .k} is observed event: Xi or a
value in bin i . Each node j maintains a sliding window holding the

last nj observations seen in the window: in fixed-size windows the
number of observations nj is fixed, while in time-based windows

this number changes dynamically and is determined by the number

of observations seen during the window interval. For example, nj

for a five-minute window is the number of observations that arrived

in the last five minutes, which can be two or two million.

Let the local count b ji be the number of observations of type i (Xi
or bin i) in the local sliding window of node j, with local size nj =∑m
j=1

b j . Note that b
j
i ’s can increase or decrease as observations

enter or exit the window, but can never be negative
4
. We also define

the local probability vector of node j, P j = [p j
1
,p

j
2
, . . . ,p

j
k ], where

p
j
i =

b ji/n j . The global sliding window is the union of all local

sliding windows. It contains n =
∑m
j=1

nj observations, with global

counts bi =
∑m
j=1

b
j
i . We denote by P the global probability vector

P = [p1, . . . ,pk ] where pk = bi/n.
We aim to maintain an arbitrarily accurate approximation of

HMLE(P) = −
∑k
i=1

pi lnpi . At any time, all nodes must provide h0:

an approximate value of HMLE(P), such that LB(h0) < HMLE(P) <
UB(h0), where LB(h0) and UB(h0) are user-defined error bound

functions set by the user, and h0 is identical at all nodes.

This formulation can express any additive or multiplicative ap-

proximation, with relative or absolute error, by appropriately defin-

ing the functions LB andUB. For example, to maintain a (1 ± 0.2)
approximation, we define LB(h0) = h0 × 0.8 andUB(h0) = h0 × 1.2.

We do require that LB(h0) < HMLE(P) < UB(h0).

4 THE CIDER ESTIMATOR
Our basic strategy is to convert the entropy approximation problem

to a threshold monitoring problem of the form HMLE(P) < TL or

HMLE(P) > TU . Nodes initially forward their local probabilities to a

coordinator node, which computes the current h0 = HMLE(P), and
thresholds TL = LB(h0), TH = UB(h0); we call this procedure syn-
chronization. We then proceed with the following basic algorithm,

which guarantees that h0 is close to the current value HMLE(P):
(1) As long as TL ≤ HMLE(P) ≤ TU : output approximation h0

(Alg. 1).

(2) Otherwise, sync and continue with the new h0, TL , and TH
(Alg. 2 or Alg. 3 from Section 4.6).

By using h0 as the estimate and continuously monitoring for thresh-

old crossings, we provide an accurate approximation to HMLE(P).
Since h0 is constant, the estimate is identical at all nodes. For ex-

ample, if h0 is currently 3.5 and we aim to maintain a (1 ± 0.2)
approximation, we setTL = h0 × 0.8 = 2.8 andTU = h0 × 1.2 = 4.2.

Now suppose that we later detect a threshold violation. After syn-

chronizing, we see that HMLE(P) is now 4.3. We therefore update

h0 = 4.3, TL = 3.44, TU = 5.16, and resume monitoring.

4
Hence this is the strict turnstile streaming model [37].

Algorithm 1: Node j when events enter or exit the window.

1 increase (or decrease) counts nj ,b
j
i

2 update local vector: P j ← B
n j

3 re-weight slack: S j ← n j
0

n j S
j
0

4 if P j − S j < CL or P j − S j < CU then
5 report safe zone violation and P j , nj to coordinator

6 wait for response with updated h0, CL , CH , S
j
0
, and/or n

j
0

Algorithm 2: Coordinator violation resolution (eager sync).

1 poll nodes for their P j , nj

2 compute updated h0, CL , CH , S
j
0
, n

j
0
and send to nodes

We have reduced the problem to a simpler one: given h0 and

thresholdsTL = LB(h0),TH = UB(h0), we need to detect whenever

the global entropy HMLE(P) crosses belowTL or aboveTU . Geomet-
ric monitoring [32, 33] is a recent framework for communication-

efficient monitoring of such threshold queries. In geometric moni-

toring, we convert the thresholds to constraints on the global proba-

bilities, and decompose these global constraints to local constraints

on the individual input streams that can be tested independently

at each node. Nodes only communicate when local constraints are

violated, in which case the coordinator can resolve the violation,

for example by synchronizing as above. Geometric monitoring

and its variants [24, 25, 35, 36, 43, 45] have previously been ap-

plied for datacenter monitoring [20], least-squares regression [21],

privacy-preserving data mining [19], graph mining [49], linear clas-

sifiers [30], and more. See [34] for a recent review.

Sections 4.1 and 4.2 describe geometric monitoring (GM) and

apply it to the entropy problem. Entropy monitoring, however,

poses a unique challenge when using GM, which we address in

Section 4.3. We also provide an entropy sketch version for high

dimensional problems to reduce both bandwidth and memory (Sec-

tion 4.4). To support estimating entropy of time-based windows,

Section 4.5 extends the GM formulation to this setting using a new

slack re-weighting scheme. Section 4.6 describes an alternative to

sync on all violation, extends it to the new time-based formulation,

and proposes a new balancing strategy. Finally, we briefly discuss

estimating generalizations of entropy (Section 4.7).

The resulting CIDER estimator is detailed in Alg. 1, 2, and 3.

4.1 Basic Geometric Monitoring
Let f be the function we wish to monitor for threshold crossings. In

our case, f (P) = HMLE(P) = −
∑k
i=1

pi lnpi . Let P0 be the reference
point, the value of P during last sync, and similarly P

j
0
denotes the

value of P j during last sync. Finally, define weights α j = n j
n and

the weights during last sync α
j
0
=

n j
0

n0

. We initially assume that

each sliding window has a fixed, constant size: nj = n
j
0
, n = n0 and

α
j
0
= α j . Section 4.5 extends the formulation to time-based sliding

windows where nj ’s change over time and global n is unknown.

Applying geometric monitoring can be distilled to two steps. In

the first, we show how to compute f (P) from the weighted mean
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(b) Time to findQ with f = HMLE.

Figure 1: Safe zone for upper threshold. (a) shows the tan-
gent plane at Q . The shaded area is the convex safe zone CU .
(b) Optimization time to find closest point Q .

of local vectors P j at each node. In our case, the global probability

vector P =
∑m
j=1

α jP j since pi =
1

n
∑
j b

j
i =

1

n
∑
j n

jp
j
i =

∑
j α

j
i p

j
i .

In the second step we convert each threshold constraint to a

convex set of probability vectors called the safe zone, such that if

local probabilities lie inside the safe zone, the constraint is satisfied.

Setting convex constraints in the function domain is the key insight

in geometric monitoring [34, 47]: if all local vectors lie inside a

convex set, then their weighted mean (i.e., the global vector) must

also lie inside it, and since entropy is a function of this weighted

mean, it follows that the threshold constraint is satisfied. Formally,

for any convex safe zone C: ∀j : P j ∈ C =⇒ P =
∑
j α jP

j ∈
C. Local constraint violations are possible even when the global

aggregate vector is still inside the safe zone; these spurious local

violations may incur extra synchronizations. However, the reverse

is impossible: if f (P) crosses the threshold at any point, at least one
local f (P j ) also crosses it. Since there can be no missed violations

of the global thresholds, our approximation bounds are guaranteed.

The following lemma shows how to derive convex safe zones

for the two thresholds for any concave function.

Lemma 4.1 (Safe Zones for Concave Approximations). Let P j

and P =
∑m
j=1

α jP j be the current local and global vectors, P j
0
and P0

their values during the last sync, and assume that TL ≤ f (P0) ≤ TU .
Then for a concave function f (P):
Lower Threshold: The optimal convex safe zone for the lower thresh-
old is CL = {P j : f (P j ) ≥ TL}, and ∀j : P j ∈ CL =⇒ f (P) ≥ TL .
Upper Threshold: The optimal convex safe zone for the upper thresh-
old is CU = {P j :

〈
P0 −Q, P j −Q

〉
≥ 0}, where ⟨⟩ denotes the inner

product and Q is the point on the surface f (P) = TU closest to P0. It
guarantees: ∀j : P j ∈ CH =⇒ f (P) ≤ TU .
Closest Point: Q can be found via convex optimization or with a
closed-form solution.

Proof. Lower Threshold:We aim to find a convex local con-

straint CL such that ∀j : P j ∈ CL =⇒ f (P) ≥ TL . Since f
is concave, the set f (P) ≥ TL is convex, so we can simply use

f (P j ) ≥ TL as our local constraint:

CL = {P j : f (P j ) ≥ TL} .

CL is optimal as it contains all points that satisfy the constraint.

Since CL is convex, ∀j : P j ∈ CL =⇒ P ∈ CL =⇒ f (P) ≥ TL .

Upper Threshold: We aim to find a convex local constraint CU
such that ∀j : P j ∈ CU =⇒ f (P) ≤ TU . Since f is concave, the set

f (P) ≤ TU is not convex, but its complement f (P) > TU is convex.

Let Q be the closest point to P0 on the surface f (P) = TU . P0 −Q
is perpendicular to this convex surface; thus it is the normal to

the tangent plane to f at Q (its direction is equal to the gradient

at Q). This tangent plane is the boundary of the optimal convex

subset [36, Theorem 3] so the local constraint is:

CU = {P j :

〈
P0 −Q, P j −Q

〉
≥ 0} .

Since CU ⊂ {P j : f (P) ≤ TU } and is convex, it follows that

∀j : P j ∈ CU =⇒ f (P) ≤ TU .

Closest Point: Q is the closest point on the surface f (P) = TU
to the reference point P0. Finding the closest point on a convex

surface or set is a well-studied problem, and for many functions very

efficient and even closed-form solutions are known. Here we limit

ourselves to showing that this is a convex optimization problem:

Q = argminP ∥P − P0∥2 s.t. TU − f (P) ≤ 0

Since f is concave, the above constraint f (P) ≥ TU is convex and

guarantees the minimizer Q will have f (Q) = TU . Both objective

and constraint are convex, and therefore this is always a convex

minimization problem
5
. �

Convex Functions. The equivalent lemma for convex f is sym-

metric: the upper safe zone becomes CU = {P j : f (P j ) ≤ TU },
while the lower safe zone is CL = {P j :

〈
P0 −Q, P j −Q

〉
≥ 0},

where Q is the closest point to P0 on the surface f (P) = TL .
Entropy Approximation. We can finally apply Lemma 4.1 to derive

local safe zones for f = HMLE. Recall that the entropy function

f (P) = −∑k
i=1

pi lnpi is a concave function in P . We also need to

add a second constraint to the optimization problem, sumk
i=1

pi = 1,

to ensure that the probabilities in Q sum to 1. This is a convex

constraint, and so the problem remains a convex minimization

problem. Figure 1a demonstrates the shape of the lower safe zone.

Figure 1b shows the time it takes to find Q with different values

of k on an Intel Core i7-4500U CPU running at 1.80GHz, using the

CVXPY convex optimization package [16].

Binary Search For Tangent Plane. When k is too high or if the co-

ordinator is processing-limited, we replace the convex optimization

procedure with a heuristic: denote by Pmax the point with highest

entropy [1/k, . . . , 1/k], and use the tangent plane at Q̃ , defined as

the point where the surface f (P) = TU intersects with the segment

P0Pmax. Since f is concave and Pmax is a global maximum, f ’s value
on the segment is monotonic, meaning we can efficiently find Q̃ to

arbitrary precision using binary search. The resulting safe zone is

not optimal, but in practice we find it performs well.

4.2 Additive Slack and Drift
Consider the following example with 2 nodes: P1

0
= [1/2, 1/2], P2

0
=

[1, 0], and P0 = (P 1

0
+P 2

0
)/2 = [3/4, 1/4]. Node 1 has maximum possible

entropy f (P1

0
) = ln 2 while node 2 has minimal entropy f (P2

0
) =

0. Any non-trivial safe zones we compute from f (P0) u 0.562

would be immediately violated. In other words, if P
j
0
is too far from

P0, synchronization may not resolve local violations. Moreover, it

5
For convex f , the first constraint becomes f (P ) −TL ≤ 0, which is still convex.
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P0
P 1

0

P 2

0

P 2

P 1

P

S1

0

S2

0

W 1

W 2

S1

0

S2

0

D1

D2

Figure 2: Global, local, drift, and slack vectors with two
nodes. The local vectors are outside the safe zone (shaded
gray), whileW 1,W 2 and P = W 1+W 2

2
are inside the safe zone.

becomes more likely that P ∈ C while P j < C. We use drift, a form
of additive slack, to address these problems.

Additive Slack. Recall that the global vector is the weighted mean

of the local vectors, P =
∑
j α

jP j , that α
j
0
= α j , and that the safe

zone C is convex. Let S
j
0
be node j’s slack vector, allocated by the

coordinator during synchronization such that

∑m
j=1

α jS
j
0
= 0k ,

where 0k is the zero vector of length k . Each node now checks if

W j = P j −S j
0
∈ C rather than P j ∈ C. Since ∑

j α
jW j =

∑
j α

jP j −
0k = P , and from convexity of the safe zones, it follows that if

W j ∈ CU andW j ∈ CL for all nodes, then TL ≤ f (P) ≤ TU . We

can avoid unnecessary synchronization by choosing S
j
0
such that

f (W j ) is closer to f (P) than to f (P j ).
Drift. The drift vector D j = P j − P j

0
is the change in the local

vector of node j since the last sync. Changes in the data are expected
to be gradual, so drifts are likely small, meaning P0 + D

j
is close

to P0 and hopefully closer to P than to P j . Since P =
∑
j α

jP j =

P0 +
∑
j α

jD j
, nodes can check P0 + D j ∈ C instead of P j ∈ C,

and retain the threshold monitoring guarantee. (In an equivalent

formulation, C is shifted to center on 0k and nodes check D j ∈ C
directly.) Defining slack to be S

j
0
= P

j
0
− P0 gives us exactlyW

j =

P j − S j
0
= P0 + D

j
. Figure 2 illustrates drift slack with two nodes.

We use drift slack for both the lower and upper threshold monitors.

Returning to the example, after sync we have S1

0
= [−1/4, 1/4]

and S2

0
= [1/4,−1/4], thus P1

0
− S1

0
= P2

0
− S2

0
= P0 ∈ C.

4.3 Extending the Domain of HMLE
One complication unique to entropy is that elements of P are

assumed to be probabilities: pi ≥ 0 and

∑k
i=1

pi = 1. Entropy

f (P) = −∑k
i=1

pi lnpi is undefined if any pi < 0. Subtracting the

slack vectors from the probabilities may cause them to fall outside

f ’s domain, making it impossible to compute f (W j )when checking
whetherW j ∈ CL . One simple solution is for nodes to declare a

safe zone violation and force a synchronization if any element of

W j
is above 1 or below 0, but this may result in many spurious

violations since P j changes while S
j
0
was fixed during the last sync.

We address this in two ways. First, we allocate slack vectors S
j
0

such that their elements sum to zero so

∑k
i=1

W
j
i = 1. For drift slack,

this happens naturally. Second, we “extend” the domain of f by

defining another function
˘f such that: (a)

˘f is defined everywhere

(its domain is Rk ); (b) ∀P ∈ Rk+ :
˘f (P) ≤ f (P); and (c)

˘f is concave.

Unfortunately, it is impossible to extend f ’s domain to the neg-

ative range and maintain concavity: limx→0
+ д′(x) = ∞, where

0.2 0.4 0.6 0.8 1.0

x

0.1

0.2

0.3

0.4

g(x)

ğ(x)

Figure 3: д(x) = −x lnx and its concave “extension” to the
negative domain, д̆(x). x0 is set to 0.2 for illustration.

д(x) = −x lnx . Instead, we define ˘f (P) = ∑k
i=1

д̆(pi ), where:

д̆(x) =
{
−x lnx if x ≥ x0

−x lnx0 if x < x0

and x0 ∈ (0, 1] is a suitable small constant. Note that
˘f meets the

above criteria since д̆ is defined everywhere, д̆(x) ≤ д(x) for all
x > 0, and д̆(x) is concave6.

Figure 3 shows д(x) and д̆(x). There is a tradeoff in setting x0: if

x0 is too high, then
˘f is too far below f meaning that f (W j ) < TL

more often. Yet setting x0 too low makes lnx0 large, so negative

elements ofW j
could overwhelm the positive ones. In practice, our

experience shows that negative elements inW j
are rare and tend

to be much smaller than the positive ones, so it is safe to set x0 to a

very small number. We propose the heuristic x0 u 1

100k .

Having defined concave
˘f , we can monitor the lower bound

using geometric monitoring: the new convex lower safe zone is

˘CL = {W j
:

˘f (W j ) ≥ TL}. If ˘f (W j ) ≥ TL for all nodes, then

f (P) ≥ ˘f (P) ≥ TL . Each node simply checks whetherW j ∈ ˘CL .

4.4 Entropy Sketch
What happens when k , the number of bins or event types, is too

large? For example, for networkmonitoringwe estimate the entropy

of IP addresses [7], where k = 2
32

(for IPv4), or even k = 2
64

(origin-

destination pairs [50]). It is infeasible to have so many counters in

memory or send messages with local vectors of such size. In such

cases we use sketching to estimate entropy.

An entropy sketch Ĥ is a data structure Y of size s and corre-

sponding functions h(Y ) such that s ≪ k and HMLE u h(Y ) with
probabilistic error bounds that usually depend on the relative size of

s and k . Incoming and outgoing observations in the stream update

Y instead of P . Sketching is also effective in reducing bandwidth,

since s ≪ k , and is often proposed as a distributed entropy approx-

imation [27, 50].

We describe a CIDER variant that allows high k and bandwidth

reduction by adopting Clifford and Cosma’s near-optimal entropy

sketch [13]. This sketch is surprisingly simple: Y is a linear projec-

tion of P , and h(Y ) is a concave function. Denote by B the vector

of global counts [b1,b2, . . . ,bk ]. Then Y = R ·B
n = R · P where

R is a s × k random projection matrix with i.i.d elements drawn

from F (x ; 1,−1,π/2, 0) andh(Y ) = − ln

(
1

s
∑s
i=1

exp(yi )
)
. Since the

sketch is linear, the global sketch vector Y = RP is the weighted

6
It is continuous and ∀a, b ∈ R, α ∈ [0, 1] : д̆(αa+(1−α )b) ≥ αд̆(a)+(1−α )д̆(b).



KDD ’17, August 13-17, 2017, Halifax, NS, Canada Moshe Gabel, Daniel Keren, and Assaf Schuster

mean of the local sketch vectors Y j = RP j :

Y = RP = R
m∑
j=1

α jP j =
m∑
j=1

α jRP j =
m∑
j=1

α jY j
.

Y j
and Y replace P j and P entirely in the algorithm: nodes only

maintain and communicate sketches of size s , and need notmaintain

k explicit counters in memory. We monitor Ĥ in the same way that

wemonitor HMLE: we generate a fixed R (using the procedure in [13,

Table 1]), apply the sketch to obtain local vectors Y j
([13, Table 2]

offers an equivalent incremental formulation of the sketch), and

use local safe zones for the lower and upper bound to guarantee

the approximation. Since h(Y ) is a function of the weighted mean

of local vectors, and since it is concave
7
, we can directly apply

Lemma 4.1 to derive local safe zones. Since Y j
are not probabilities,

we need not constrain Q’s elements to sum to 1. Moreover, h is

defined everywhere so we do not use the domain extension trick

from Section 4.3. The resulting approximation is probabilistic rather

than deterministic, since we are estimating Ĥ and not HMLE (see

[13] for details).

4.5 Dynamically-sized Sliding Windows
So far we have assumed fixed window size: nj is constant, and
nj = n

j
0
. Yet in many entropy monitoring settings (e.g., network

montitoring [22]) observations can arrive to different nodes at

different times and rates, so that the same node can have (some-

times vastly!) different numbers of observations in the window.

Though geometric monitoring has been previously used to build

communication-efficient approximations [20, 21, 35], previous work

has always assumed fixed-size windowswith identical sizesnj = n
m ,

and that events arrive to all streams at a constant, identical rate.

To support true time-based sliding windows, we must extend geo-

metric monitoring to support variable-sized windows using a new

slack re-weighting scheme. This new scheme is applicable to most

geometric monitoring applications.

We first observe that the original convexity argument holds even

if nodes do not actually know the values of α j . Since nj , the current
number of observations in node j’s sliding window, changes dynam-

ically, the global n is unknown to any node, even the coordinator.

Nevertheless, by definition, α j are still positive and sum to 1, so

P =
∑m
j=1

α jP
j
. As before ∀j : P j ∈ C =⇒ P ∈ C. This applies to

both entropy and entropy sketch.

Slack Re-weighting. One problem with variable-size windows is

that previous additive slack schemes, including drift, no longer work

correctly, because they assume that the number of observations at

each node is fixed. Since we now allow nj to change, the current

weights α j do not match the original slack weights α
j
0
.

Denote by �0 the value of quantity � during last sync and recall

that α
j
0
=

n j
0

n0

, α j = n j
n , P =

∑
j α

jP j , and P0 =
∑
j α

j
0
P
j
0
. For drift

slack, S
j
0
= P

j
0
−P0, and from Section 4.2we know that

∑
j α

j
0
S
j
0
= 0m .

Yet applying the original additive slacks S
j
0
to the current P j will not

7
The function ln (∑i expyi ) is known as Log-Sum-Exp and is convex [10].

Algorithm 3: Lazy synchronization with slack re-weighting.

Input: S the set of violating nodes, m̃ max nodes to lazy sync

1 while |S| < m̃ do
2 nV ,nV

0
← ∑

j ∈S n
j ,

∑
j ∈S n

j
0

3 PV , SV ← ∑
j ∈S

n j
nV P j ,

∑
j ∈S

n j
0

n j S
j
0

4 if PV − SV ∈ CL and PV − SV ∈ CU then break
5 pick node j < S to poll with balance strategy, add j to S
6 if |S| = m̃ then switch to eager synchronization (Alg. 2)

7 forall j ∈ S do

8 send update to j: n
j
0
, S

j
0
← nV

0

nV n
j
0
, n

jnV

n j
0
nV

0

(
P j −

(
PV − SV

))

preserve P , even though

∑
j α

j
0
S
j
0
= 0m , since in general α j , α

j
0
:∑

j
α j

(
P j − S j

)
= P −

∑
j
α jP

j
0
+

∑
j
α jP0 , P .

We address this problem using a novel slack re-weighting scheme:

S j =
n j

0

n j S
j
0
. Though the global n is unknown, nodes know the values

of their local nj and n
j
0
so each can individually update its slack.

With the new scheme:∑
j
α j

(
P j − S j

)
=

∑
j

(
α jP j − α j

n
j
0

nj
S
j
0

)
= P −

∑ nj

n

n
j
0

nj
S
j
0

= P − n0

n

∑
α
j
0
S
j
0
= P − n0

n
0m = P .

It follows that for a convex safe zone C, if for all nodesW j =

P j − S j ∈ C, then P ∈ C. This slack re-weighting applies to any

valid additive slack, as long as

∑
j α

j
0
S
j
0
= 0m . Moreover, it does

not depend on the function being monitored and can be applied to

other geometric monitoring algorithms.

4.6 Violation Resolution
When a node reports safe zone violation, the coordinator must

resolve it. The simplest policy is full or eager synchronization [23]:

poll all nodes for their local vectors and recompute P0, approxi-

mation h0 = f (P0), thresholds TL = LB(h0), TU = UB(h0), safe
zones CL , CU , local counts n

j
0
, and slack vectors S

j
0
; updated values

are sent to nodes and monitoring resumes. Eager sync is costly,

however, and can be wasteful since many local safe zone violations

occur when the current approximation is still within bounds [20].

An alternative policy is lazy synchronization [23]: poll the other

nodes one at a time, and add them to a balancing set S until either

theweightedmean of their local vectors PV =
(
1/∑j∈S n j

) ∑
j ∈S n

jP j

is inside the safe zones, or an upper limit m̃ < m on the size of S
has been reached. If the set of nodes with violations can indeed

be balanced, the coordinator updates S
j
0
and n

j
0
for the nodes in S

(making sure the weighted sum is unchanged), all without contact-

ing or sending updates to nodes not in S. If |S| is too large, we

assume that P itself is outside the safe zone and trigger an eager

sync. Lazy sync with dynamically-sized sliding windows requires

careful re-weighting of slack; Alg. 3 contains the full details.

Given the set of violating nodes, which node should the coordina-

tor poll next? In random balancing, the coordinator simply chooses
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a random node. Previous work has proposed the least-used (LU)

strategy: choose the non-violating node that been used least often

in balancing [20] or the one that has been polled least recently [23].

We propose a new balancing strategy we call opposite slack
(“oslack”): the coordinator polls the non-violating node j whose

slack S
j
0
has the opposite direction to the weighted mean of local

slacks of the nodes combined so far (SV in Alg. 3). The coordinator

knows the values of S
j
0
for all nodes, so no extra communication is

incurred. The intuition behind oslack is that since the current safe

zone is “centered” around P0, we want to poll a node j such that

P j − P0 balances PV − P0. If V “pulls” P in one direction, we want

to find a node that “pulls” it back into the safe zone. P j is unknown

for unpolled nodes, however. The idea behind oslack is that slack S
j
0

can serve as as a proxy for P j −P0. Drift slack is P
j
0
−P0, and if local

vectors have not shifted by much, S
j
0
is close to P j − P0. Figure 2

illustrates this intuition: though P1 , P1

0
and P2 , P2

0
, the slacks S1

0

and S2

0
still give a rough idea of the directions P1 − P0 and P2 − P0.

4.7 Approximating Rényi and Tsallis Entropies
We briefly discuss approximating two parametric generalizations

of entropy: the Tsallis entropy

Hβ =
1

1 − β

( k∑
i=1

Pr[Xi ]β − 1

)
,

and the Rényi entropy

Hα =
1

1 − α ln

( k∑
i=1

Pr[Xi ]α
)

.

The Tsallis entropy is convex for β < 0 and concave for β >
0 [28], and can be computed from the weighted mean of local

probabilities P j . Therefore, we can apply Lemma 4.1 to derive safe

zones and monitor it the same way we do for Shannon entropy and

the sketch. Hβ is defined everywhere, so we can safely use slack.

The Rényi entropy is concave for α ∈ (0, 1] (so Lemma 4.1

applies directly) and quasiconcave for all α ≥ 0 [28]. Quasicon-

cave functions have convex upper level sets, so the lower bound

constraint {P |Hα (P) ≥ TL} is convex, and the upper constraint

{P |Hα (P) ≤ TH } is “reverse convex”. Therefore we can use the

same half-plane trick from Lemma 4.1 to derive optimal safe zones.

The optimization problem of finding the closest point Q now has

a quasiconvex constraint. Though quasiconvex optimization prob-

lems have been extensively studied, we consider this beyond the

scope of this work.

5 EMPIRICAL EVALUATION
We evaluate CIDER’s performance on several public datasets rep-

resenting real-world application scenarios. We simulate running

the nodes and coordinator using the recorded timestamps in the

dataset, keep track of the estimated and true entropy, and count

any messages sent. Unless otherwise noted, we use absolute error

bounds LB(h0) = h0 − ϵ andUB(h0) = h0 + ϵ where ϵ is the desired
accuracy.

Our baseline is the centralized estimator where each node sends

new observations to the coordinator as they arrive (unlike CIDER,

it does not provide the global estimate to the nodes themselves).
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Figure 4: Entropy of source IP addresses in the CTU1 dataset,
with 10 nodes and a five minute sliding window (top) and
CIDER approximation error (black, bottom) with accuracy
ϵ = 0.5 (dashed horizontal line). CIDER maintains the de-
sired accuracy with 1.2% communication. An equivalent pe-
riodic estimator (green) is unable to maintain this accuracy.

Our main performance metric is communication fraction, defined as
the ratio of messages sent by CIDER to those sent by the centralized

algorithm. For both algorithms, we exclude messages sent in the

first window.

5.1 Network Traffic Monitoring
Traffic entropy (e.g., of IP addresses, ports, or origin-destination

flows) is a commonly-suggested feature for network health monitor-

ing [3, 7, 22, 40, 50]. Estimating traffic entropy is a thorny problem,

however, due to the volume and rate of incoming network packets,

distributed input sources (often routers), and the need for timely

detection. Existing systems use a combination of periodic reporting

(increasing latency), sketching (increasing error), and sub-sampling

(increasing both error and risk of missed events). CIDER offers an

alternative: low communication, deterministic bounds, and near-

realtime detection of changes in entropy.

We evaluate CIDER’s performance on the CTU-13 collection [22],

a set of publicly available annotated traffic captures. We use the bidi-

rectional NetFlow files from the CTU1, CTU4, CTU9 and CTU10
datasets, each containing 1.1M–2.8M NetFlows recorded over 4–6

hours. NetFlows are assigned to simulated “routers” (nodes) by

uniformly dividing the 3rd octet of the destination IP tom bins, and

we approximate the entropy of source IP address (k = 2
32
) with

sketch of size s = 100. Unless otherwise noted, we simulatem = 10

nodes with five minute sliding windows, use lazy synchronization

with up to m̃ = 3 nodes and oslack balancing, and require accuracy

ϵ = 0.5. Section 5.4 uses CTU2 to select m̃ and balance strategy.

Figure 4 shows an example of such a simulation on CTU1 (length

6 hours and 15 minutes). CIDER maintains accurate approxima-

tion using only 1.2% communication of the centralized algorithm –

equivalent to nodes sending updates every 4 minutes and 30 sec-

onds. Such a periodic estimator would be unable to maintain the

desired accuracy ϵ = 0.5, however: its estimation error reaches

almost 3.0. This translates to a four minute delay in detecting any

changes, and short entropy spikes can be missed entirely. CIDER’s
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Figure 5: Communication for CIDER at different approxima-
tion accuracies when monitoring source IP entropy in the
CTU datasets.
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Figure 6: Larger sliding windows smooth out variations in
probabilities and therefore entropy (left), resulting in lower
communication when monitoring the CTU1 dataset (right).

approximation error, on the other hand, is always within bounds

and guarantees no detection latency or missed spikes.

Accuracy ϵ . Figure 5 shows CIDER’s communication with dif-

ferent approximation accuracies on the CTU1, CTU4, CTU9, and

CTU10 datasets. Lazy synchronization with oslack is considerably

more communication-efficient than eager synchronization, with

up to an order of magnitude difference. In general, communication

is reduced by roughly two orders of magnitude, even with a fairly

strict ϵ = 0.5. Even with highest accuracy ϵ = 0.1, 0.5% of the total

entropy range 0–ln 2
32
, CIDER only sends 10% messages as the

centralized algorithm. On the other hand, with a relaxed ϵ = 2.0,

enough to catch the large entropy spikes in CTU1 (Figure 4), CIDER

yields 0.7% communication.

Window Size. CIDER’s performance does not inherently depend

on the window size, and instead reflects the behavior of local and

global probabilities. Figure 6 illustrates this on the CTU1 dataset.

Increasing window size means more observations, which in turn

means that probabilities change gradually rather than abruptly. As

entropy spikes become smaller and even disappear, CIDER adapts

and requires less communication to maintain the same accuracy.
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Figure 7: Communication vs. number of simulated nodesm
in the CTU1 dataset. Communication with eager synchro-
nization quickly grows above that of centralized. Lazy sync
scales better, with oslack balancing yielding a considerable
improvement over LU.
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Figure 8: Left: entropy of the WC98 dataset (m = 27, k = 13)
with 10 minute sliding window. Right: CIDER’s communi-
cation at different approximation accuracies, reaching 0.8%

with ϵ = 0.05, enough to detect larger entropy fluctuations.

Number of Nodesm. Figure 7 explores how different violation

resolution strategies scale as we increase the number of simulated

nodesm in CTU1. Eager synchronization scales poorly, and with

50 nodes it performs no better than the centralized algorithm. Lazy

sync with LU or random balancing can scale up to 70 nodes while

still reducing communication. The oslack policy, however, scales

much better and can monitor even 100 nodes with only 30% com-

munication. Section 5.4 describes how we set lazy sync parameters.

5.2 Load Balancing
In the classic load balancing scenario, work items from an input

stream must be assigned to one of k workers (e.g., based on a

hash function). Entropy of worker load distribution can be used

to identify load imbalance, and react accordingly (add workers,

change work distribution, etc.). Consider the case where there

are m distributed streams. Though each node (“balancer”) has a

local count of worker assignments, it cannot know whether global

workload is balanced. Similar situations arise in key-value stores,

distributed stream processing systems [38], and more. We observe

that in this settings sketching approaches cannot help, since k is

typically low. CIDER provides a view on global entropy to every

node, allowing them to adjust work allocation as needed.

The WorldCup‘98 dataset [5] contains access logs for the 1998

World Cup web site for a 3 months period. We define the WC98
dataset as the access logs from June 10, 1998 (day 46, with 50M

requests), where server ID for each request is used as the node
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Figure 9: Left: entropy of the TAQ dataset (m = 23, k = 20)
with 24 hour sliding window. Right: CIDER’s communica-
tion at different approximation accuracies.

(m = 27), and the request type (image, html, etc., k = 13) serves

as the assigned worker (the observation). For this dataset we use

ϵ = 0.05, 10 minute sliding windows, and max m̃ = 5 in lazy sync.

We used data from day 44 to tune these parameters (Section 5.4).

Figure 8 shows CIDER’s performance on the WC98 dataset for

accuracies in the very tight range 0.005–0.05 (which is 0.2%–2% of

maximum entropy, ln 13 =∼ 2.565). In this range, CIDER reduces

communication by between one and two orders of magnitude. Lazy

sync is even more critical here, with an almost 10 times commu-

nication reduction compared to full synchronization. In practice

we might only care about large changes in entropy. With ϵ = 0.25

(10% of entropy range), for example, CIDER almost never syncs,

requiring only 0.25% communication – a three orders of magnitude

communication reduction. This illustrates one advantage of CIDER

over existing approaches: when entropy changes slowly, practically

no communication is necessary; if entropy starts to change rapidly,

CIDER will ramp up communications to adapt.

5.3 Air Quality Monitoring
The Revised Air Quality Index [12] (RAQI) combines metrics from

five air pollutants
8
into a single number, and incorporates Shannon

entropy as one of its components to represent variations within the

measurement period. This component is the entropy over a window

of 24 hours of max{A1 . . .A5}, where Ai are individual pollutant
measurements converted to AQI scores using the piecewise linear

transformation described in [1].

We used pollutant data from North Taiwan available from the

Taiwan Air Quality Monitoring Protection Agency
9
to track this

entropy component. The TAQ dataset is defined as the hourly data

from January 1 through July 31 2015 for them = 23 monitoring

stations that report the five pollutants. The first two months are

used to tune m̃ for lazy synchronization (Section 5.4), and the rest

for evaluation.We divided the AQI range of 1–500 tok = 20 uniform

bins. We use lazy sync with oslack balancing, with m̃ = 11 max

nodes, and the standard RAQI sliding window of 24 hours.

Performance of CIDER on the TAQ dataset is shown in Figure 9.

Entropy fluctuates widely, both due to large hourly differences, but

also because local windows only have nj = 24 observations in the

window so the MLE estimator is at the lower range of accuracy

(where nj ∼ k [39, 41]). CIDER must sync often (as would any

8
PM10 , O3 , SO2 , CO, and NO2

9
http://taqm.epa.gov.tw/taqm/en/YearlyDataDownload.aspx
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Figure 10: Communication vs. max number of balancing
nodes on different datasets. On CTU2, random balancing
works as well as LU, while oslack performs considerably bet-
ter than both. On the other datasets all three perform simi-
larly at the optimal m̃.

other algorithm), but is still able to reduce communication to 17%–

85%. For example, in remote, battery-operated wireless monitoring

stations, this would translate to substantial increases in battery life.

5.4 Lazy Synchronization
Lazy synchronization is superior to eager synchronization, but we

must still set m̃, the maximum size of the balancing set, and select

a balancing strategy (random, LU, or oslack).

Figure 10 shows CIDER’s performance with different values of m̃,

for each of the three datasets. To avoid overfitting, we used different

data to tune m̃ . LU and random achieve similar communication

on all datasets, and are essentially equivalent. On the WC98 and

TAQ datasets, oslack performance is equivalent to the other two,

especially at the optimal value of m̃. On the CTU2 dataset, however,

oslack is substantially better, especially with 70 simulated nodes.

We conclude that oslack performs as well or better than other bal-

ancing strategies, and use it throughout. This is further confirmed

by Figure 7 where LU performance is identical to that of random,

while oslack balancing is essential to good scaling.

6 CONCLUSIONS
We present CIDER, a practical, communication-efficient entropy

estimator for distributed streams. Unlike previous work, CIDER

provides deterministic approximation bounds, and supports both

insertions and deletions, allowing for variable-sized or time-based

windows. Like previous work, it allows the use of entropy sketches

to both reduce message size and to handle very high cardinality (k
in the billions). We also extend geometric monitoring with variable-

sized windows using a novel slack (drift) re-weighting scheme,

which can be used in other geometric monitoring algorithms.

CIDER adapts to the underlying data and the user-specified

bounds, and provides no guarantees for reduced communication,

other than the trivial. This is consistent with Arackaparambil et

al. [4] conclusion that nontrivial savings cannot be guaranteed

http://taqm.epa.gov.tw/taqm/en/YearlyDataDownload.aspx


KDD ’17, August 13-17, 2017, Halifax, NS, Canada Moshe Gabel, Daniel Keren, and Assaf Schuster

when monitoring non-monotone functions with deletions. Nev-

ertheless, in practice we see that CIDER achieves considerable

communication savings on real datasets: up to three orders of mag-

nitude with relaxed accuracy, and often two orders of magnitude

with strict approximation bounds.
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