
One for All and All for One: Simultaneous Approximation of
Multiple Functions over Distributed Streams

Arnon Lazerson
Moshe Gabel

lazerson@cs.technion.ac.il
mgabel@cs.technion.ac.il

Technion
Haifa 32000 Israel

Daniel Keren
dkeren@cs.haifa.ac.il
University of Haifa
Haifa 31905 Israel

Assaf Schuster
assaf@cs.technion.ac.il

Technion
Haifa 32000 Israel

ABSTRACT
Distributed monitoring methods address the di�cult problem of
continuously approximating functions over distributed streams,
while minimizing the communication cost. However, existing meth-
ods are concerned with the approximation of a single function at a
time. Employing these methods to track multiple functions will mul-
tiply the communication volume, thus eliminating their advantage
in the �rst place.

We introduce a novel approach that can be applied to multiple
functions. Our method applies a communication reduction scheme
to the set of functions, rather than to each function independently,
keeping a low communication volume. Evaluation on several real-
world datasets shows that our method can track many functions
with reduced communication, in most cases incurring only a negli-
gible increase in communication over distributed approximation of
a single function.

CCS CONCEPTS
•Computing methodologies →Distributed algorithms;

KEYWORDS
distriubted streams, continous approximation, multiple fuinctions
ACM Reference format:
Arnon Lazerson, Moshe Gabel, Daniel Keren, and Assaf Schuster. 2017. One
for All and All for One: Simultaneous Approximation of Multiple Functions
over Distributed Streams. In Proceedings of DEBS ’17, Barcelona, Spain, June
19-23, 2017, 12 pages.
DOI: h�p://dx.doi.org/10.1145/3093742.3093918

1 INTRODUCTION
In the data streaming model, a single site observes a large (possibly
in�nite) data stream, and keeps an approximation of a prede�ned
function f , using sublinear space [43]. Extensions to this model
[3, 15] addressed the problem of approximating multiple functions
over a single stream. �e inherently distributed nature of the data in
many applications (e.g. sensor networks [45] or network operation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
DEBS ’17, Barcelona, Spain
© 2017 ACM. 978-1-4503-5065-5/17/06. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3093742.3093918

centers [13]), as well as the size of the data, inspired wide interest
in the distributed case, and motivated the continuous distributed
monitoring model [12]. �is model addresses the common situation
where physically distributed sites must keep a continuous approxi-
mation of a function applied to the union of their observations.

Previous works on continuous function approximation (tracking)
over streams can be roughly categorized as addressing:

SFSS – a single function over a single stream;
MFSS – multiple functions over a single stream;
SFDS – a single function over distributed streams.

�e goal of SFSS is to optimize for the space/time performance
of approximating a single function. Most work on MFSS focuses on
resource sharing of the underlying data structures to achieve faster
performance and be�er space utilization. In SFDS the primary
concern is communication cost, since communication is the major
energy drain in sensor-networks, and excess communication in a
data-network interferes with its normal operation [33].

MFSS approaches have been used to improve multi-function
performance, but not in the distributed case, where communica-
tion cost is the primary concern. Previous work on distributed
approximation (SFDS) developed communication-e�cient track-
ing solutions for many important functions. However, they dealt
with the approximation of a single function at a time. Yet, in real
distributed systems, we are seldom interested in only one type of
function; for example, we may want to simultaneously track both
the mean and the variance of a distributed histogram. Previous
work did not address the problem of tracking multiple functions in
a distributed se�ing, implicitly assuming that multiple functions
must be tracked independently.

We pose a new question: is it possible to simultaneously track
a combination of arbitrary functions, using less communication
than required to track the functions independently? To the best
of our knowledge, this important problem has not been addressed
before. We introduce a new tracking category called MFDS that
addresses multiple functions over distributed streams. �is is a
natural extension of both MFSS and SFDS.

Distributed query processing addresses a similar question in the
context of SQL-like queries over aggregates. It is discussed in more
detail in Section 2.

Our Contribution
We de�ne the problem of tracking multiple functions over dis-
tributed steams, which rises in many real-life scenarios, and show
that non-trivial communication reduction is possible. We show

DEBS ’17, June 19-23, 2017, Barcelona, Spain Arnon Lazerson, Moshe Gabel, Daniel Keren, and Assaf Schuster

that a simple extension of the geometric monitoring framework
provides a general approach to the problem of e�cient simulta-
neous approximation of multiple functions over the aggregate of
distributed streams. We empirically validate our work on four
real-life datasets. Our evaluation addresses complex non-linear,
non-monotonic functions, applied to multi-dimensional data. Our
simulations show that our approach can be used to approximate
multiple functions with nearly the same communication cost of the
worst (in terms of communication cost) function, rather than the
sum of costs of all functions.

2 RELATEDWORK
SFDS approaches – monitoring a single function over distributed
streams observed by remote sites while reducing communication
– has received a lot of a�ention, due to increased data rate and
volumes.

Sketching approaches [11] provide a compact summary of the
data, which is then used to approximate the value of a function.
Sketching approaches were originally intended for single stream
se�ings (SFSS), but they were extended to �t the distributed case.
Sketching reduces the size of each message but not the number
of messages. A particular sketch can be used to approximate only
a speci�c function or a speci�c set of functions [11]. For exam-
ple, AMS sketches [1] were designed to approximate frequency
moments (and join sizes), but not percentiles.

Closer to our work in spirit are SFDS approaches based on local
constraints. Carefully constructed constraints are placed at the
distributed sites to guarantee the desired approximation. In these
approaches the sites communicate only when their local constraints
are violated, thus decreasing the number of messages. Sketching
is commonly combined with these approaches, to reduce message
size. [23, 33, 37].

Early work on monitoring distributed streams via local con-
straints mainly addressed speci�c functions, initially linear or mono-
tonic functions. �resholding of linear functions is explored in [31,
33]. Distributed monitoring of monotonic functions was studied
in [14, 42]. Non-monotonic functions were discussed in [2]. In [46]
non-monotonic functions were addressed by representing them
as a di�erence of monotonic functions. Top-k monitoring was
studied in [4]. Distributed HillOut was proposed in [44] to detect
outliers in grid systems. In [48] local constraints were placed on
one-dimensional variables to monitor the value of a polynomial.
Perturbative analysis of eigenvalues was proposed in [28], and
was applied to tra�c volume data to monitor system health. A
theoretical study of the monitoring problem is provided in [14].

�ese earlier papers constitute a large collection of special-
purpose algorithms, each tailored to the type of function of interest
(similar to sketches in that sense).

A general approach, geometric monitoring (GM), was introduced
in [50], initially to monitor threshold crossings using spherical
local constraints (covering spheres). �e covering spheres method
can be used to monitor any arbitrary function of the aggregate of
distributed streams. Follow-up work [25] extended the covering
spheres method with a prediction model; the more general notion
of Safe Zones (SZs) was introduced in [35]. A privacy-preserving
variant was proposed in [17]. In [37], GM was extended by the

convex decomposition (CD) approach, which breaks complex global
constraints into an intersection of half-spaces. �e convex bound
method (CB) [36] directly derives simple local constraints, allowing
for highly improved runtime over the covering spheres method.
Very recently, [22] proposed a systematic SFDS approach, which
constructs a complex safe zone from simpler safe zones.

Distributed multi-query processing is somewhat related to our
work. Research in this area is focused on optimizing the com-
munication cost of multiple SQL-like queries over aggregates of
distributed streams. �e optimization techniques are based on ex-
ploiting reuse opportunities (e.g. sharing partial results common
to several aggregates or sharing data between overlapping slid-
ing windows) [27, 29, 40]. �ese techniques reduce the size of the
messages sent (like sketches), but not their number, which is the
primary goal of our work. Moreover, multi-query processing tar-
gets queries and SQL-like aggregates, whereas we are concerned
with the approximation of arbitrary general functions.

3 MFDS PROBLEM DEFINITION
Following [12, 14, 23], we consider a system of k remote sites (or
nodes), each observing a local stream of events, and a designated
coordinator site. Remote sites only communicate with the coor-
dinator, and vice versa; we assume latency is smaller than event
arrival rate. �e goal is to continuously approximate the value
of a predetermined set of functions { f1... f`}, with corresponding
error bounds {ϵ1...ϵ`}, de�ned over the aggregate of the local data
streams.

Formally, let v j be the local vector of node j , j ∈ {1, ..,k}, where
v j is incrementally updated by node j as new event arrives. Let the
global vector v be the aggregate of current local vectors.

We wish to maintain a set of approximations f̂i such that:

∀i ∈ 1 . . . ` : fi (v) − ϵi ≤ f̂i ≤ fi (v) + ϵi ,

or, alternatively, relative or multiplicative approximation bounds.
We discuss arbitrary functions of the average or weighted mean
of the local vector: v = 1

k
∑k
j=1v

j . Many aggregations can be
expressed in this form. For example, [19] shows how to express
least square regression of the union of local matrices to f de�ned
on the average.

�e MFDS problem is an extension of the SFDS problem, where
` = 1. �e challenge is to approximate all functions fi while
minimizing the number of messages sent between nodes and the
coordinator.

In the naive approach each node forwards every observation
to the coordinator. Since the coordinator knows the true global
aggregate, it can compute the values of all functions directly with
no loss of accuracy. Moreover, tracking multiple functions bears no
extra communication cost relative to the approximation of a single
function. In other words, the communication cost for the naive
approach is independent of the number of functions. However, the
communication cost of the naive method can be prohibitively high.
Indeed, this is the entire motivation for SFDS approaches.

�e second approach to approximating multiple functions is to
independently track each one, using communication-e�cient SFDS
tracking algorithms. SFDS algorithms can substantially reduce com-
munication, and if the sum of total messages is below that of the

One for All and All for One DEBS ’17, June 19-23, 2017, Barcelona, Spain

naive, then this approach can be e�ective. �is approach is not scal-
able, however, as the total cost of communication strongly depends
on the number of functions: it is the sum of costs for monitoring
individual functions. As ` grows, performance deteriorates, and
the naive approach becomes preferable.

It would be ideal to �nd an approach that combines the best
of both worlds: one that is communication-e�cient and indepen-
dent of (or at least weakly dependent on) the number of functions.
However, since each traditional SFDS algorithm is tailored to a par-
ticular function (or set of functions), it seems impossible to combine
arbitrary algorithms. For example, it is hard to see how one could
combine monitoring entropy [2] and quantiles [53] of distributed
streams.

4 TRACKING MULTIPLE FUNCTIONS
�e root problem with combining most SFDS algorithms is that
they share no unifying principle. Combining several algorithms
for di�erent functions may be di�cult (if not impossible), since the
monitored functions may be very di�erent.

Our key observation is that while the outputs of arbitrary func-
tions on the global aggregate may be very di�erent, they all share
the same input v . �is allows us to take advantage of two key
principles of the geometric monitoring (GM) approach. First, the
GM approach expresses the constraint on the value of the function
f (v) as a constraint in the domain of the function rather than a con-
straint on its image. In other words, we constrain the input vector
v , and not the output value f (v). Second, GM works by decom-
posing the global constraints to convex local constraints: all local
constraints, regardless of the monitored function fi , are convex con-
straints de�ned on v j . �e convexity requirement plays a key role
in GM (Section 4.1) and in our approach (Section 4.2). �ese two
common properties mean that GM algorithms are composable: we
can e�ciently combine multiple algorithms for arbitrarily di�erent
functions in one tracking algorithm.

�e rest of this section is organized as follows. Section 4.1 re-
views the geometric monitoring framework, and explains how the
threshold crossing problem is applied for tracking. Section 4.2
describes our approach, showing how multiple single-function al-
gorithms can be combined to create a multi-function algorithm.

4.1 Geometric Monitoring Framework
Recall that we consider a system of k remote nodes and a coordina-
tor, where node j maintains a local vector v j , and the monitored
function is applied the aggregated vector, de�ned as v = v1+..+vk

k .
One of the fundamental problems in such a distributed system is the
distributed threshold problem: given a function f and a threshold
T , we wish to know whether f (v) ≤ T .

GM was originally designed to address the distributed threshold
problem. We next describe how GM is applied to monitor threshold
crossings, and then show how to use it as a building block for
tracking function values.

The Distributed Threshold Problem. Given a thresholdT , we wish
to know whether f (v) ≤ T . GM rests on a geometric interpretation
of this problem. De�ne the admissible region A , {u | f (u) ≤ T },
and ask the equivalent question: is v ∈ A?

Protocol description. Let v j be the current local vector at node
j, and let v be the current global vector . Let v j0, v0 be the values
of v j and v time t = 0, respectively. At time t = 0, the coordinator
performs a synchronization step: it collects the local vectors {v j0}

from the nodes, computes the estimate vector v0 =
v1

0+..+v
k
0

k , and
shares it with the nodes. Note that the estimate is simply v at t = 0.
As time passes, the local vectors {v j} change, and their values dri�
away from their initial values {v j0}. De�ne the the dri� vector at
node j as δ j = v j −v j0. �e following property always holds [50]:

v =
v1 + · · · +vk

k
= v0 +

δ1 + · · · + δk
k

.

Let the safe zone, SZ , be a convex subset of A (containing v0).
�e convexity of SZ guarantees that if for all j , w j , v0 + δ j ∈ SZ ,
then v ∈ SZ . Since SZ ⊆ A, then f (v) ≤ T . Each node can
independently check whether w j ∈ SZ , as both v0 and δ j are
computed from local data at the node. As long as all these local
constraints hold, the global constraint (f (v) ≤ T) also holds. Upon
every new observation, node j updates δ j and checks whether
its local constraint w j ∈ SZ holds. If the constraint is violated,
the node noti�es the coordinator, which resolves the violation by
repeating the synchronization step.

Observe that a set S can be used as a safe zone if and only if it has
the three following properties: (1) S is convex ; (2) it is contained
in the admissible region: S ⊆ A ; and (3) v0 ∈ S . Properties 1 and 2
guarantee that v is in the admissible region. To avoid a violation at
t = 0, property 3 must be maintained.

Ideally, a “good” safe zone would contain not onlyv0, but a large
neighborhood around it, to reduce local violations. �e geometric
monitoring literature o�ers several methods for �nding a “good”
safe zone, givenv0, a function and a threshold [36, 37, 50, 51]. �ere
are also safe zones designed for speci�c functions [19].

From Threshold Crossing to Tracking. Consider the task of ap-
proximating (at the coordinator) the value of a function f over
the global vector v =

∑
v j
k , within ϵ absolute error (relative and

multiplicative errors are handled in a similar manner). In other
words, the coordinator must keep an approximation f̂ , such that
f̂ − ϵ ≤ f (v) ≤ f̂ + ϵ .

As in the distributed threshold problem, at time t = 0, the co-
ordinator collects the data from all the nodes and calculates the
estimate v0, and the approximation f̂ , f (v0). �en, the co-
ordinator shares v0 with the nodes. Each node calculates f (v0)
and sets two thresholds: f (v0) − ϵ from below and f (v0) + ϵ
from above (alternatively, we can set multiplicative or relative
bounds). Note that the estimate vector de�nes the admissible region
A = {u | f (v0) − ϵ ≤ f (u) ≤ f (v0) + ϵ}, and that v0 ∈ A.

Having reduced approximation to a threshold crossing problem,
we continue as before: nodes monitor local constraints and the
coordinator resolves any violations. �is protocol guarantees that
f (v0)−ϵ ≤ f (v) ≤ f (v0)+ϵ , at all times. Algorithms 1 and 2, outline
the protocols of the coordinator and a single node, respectively. For
simplicity, we describe the simplest violation recovery protocol,
known as eager synchronization [23, 50].

DEBS ’17, June 19-23, 2017, Barcelona, Spain Arnon Lazerson, Moshe Gabel, Daniel Keren, and Assaf Schuster

Algorithm 1 Synchronization (Coordinator)

1: Poll all nodes for v j
2: Calculate the estimate v0 ←

∑
v j
k

3: Distribute v0 to all nodes

Algorithm 2 Node j is updated with new observation

1: Update the local vector v j
2: Compute the dri�: δ j ← v j −v j0 and w j ← v0 + δ j

3: satis�ed← w j ∈ SZ
4: if not satis�ed then
5: Notify the coordinator to trigger synchronization
6: Wait for new v0 from the coordinator
7: Calculate f (v0)
8: Set new bounds f (v0) − ϵ and f (v0) + ϵ
9: Compute the respective safe zone SZ

10: Set v j0 ← v j

4.2 �e Common Admissible Region
�e geometric monitoring framework is based on the notion of the
admissible region. Using GM to track multiple functions requires
multiple admissible regions.

Our approach is based on a simple, yet powerful observation:
given a set of ` functions { f1 . . . f`} with corresponding error
bounds {ϵ1 . . . ϵ`}, the common admissible regionCA for the entire
set is the intersection of individual admissible regions:

CA , {v | v ∈ Ai , i = 1 . . . `} =
⋂̀
i=1

Ai ,

where Ai is the admissible region for (fi , ϵi). Note that CA is not
empty, and must contain at least v0, since v0 ∈ Ai for all Ai . As
in Section 4.1, applying each function fi to the common estimate
vector v0 yields its current approximated value: fi (v0).

Figure 1 shows an example of a common admissible region CA,
which is the intersection of Af and Aд . Af and Aд are de�ned
by f (x ,y) = y − x2 − 0.8 and д(x ,y) = x2 + y2 − 1 with absolute
approximation bounds ϵf = 1 and ϵд = 0.5, respectively.

Having de�ned the admissible region CA we can apply one of
the existing methods to �nd a good safe zone within it.

Direct Optimization. One method for �nding a safe zone is pre-
sented in [35]. Given the admissible region A and v0, this approach
searches for “good” convex subset C , by solving the following opti-
mization problem:

maximize
∫
C
p(x)d(x) , such that C is convex, C ⊆ CA, v0 ∈ C,

where p(x) is the probability distribution of the monitored data.
While in theory this approach can be used over the common ad-

missible region, in practice, optimizing over all convex the subsets
is impossible [35]. Even if we limit ourselves to convex polygons,
the optimization problem is nontrivial, especially if the data is high
dimensional [35]. Worse, CA is the intersection of multiple admis-
sible regions, which increases the di�culty of the optimization
problem.

2 1 0 1 2
2

1

0

1

2

CA

Af
Ag

Figure 1: �e common admissible region CA (yellow) is
the intersection of two admissible regions Af (blue) and Aд
(green). As long as (x ,y) ∈ CA, both f and д maintain their
respective approximation bounds.

Covering Spheres. �e covering spheres method [35, 50] relies on
the bounding lemma [50]: Let B(p,q) be the sphere whose diameter
is pq. If for every node j B(v0,v0 + δ j) ⊆ A, then v ∈ A. As before,
each node checks its local constraint: B(v0,v0 + δ j) ⊆ A. �e
equivalent safe zone is the set of all vectors u, such that the sphere
B(u,v0) is fully contained in the admissible region.

We can apply the covering spheres method directly to the com-
mon admissible region by extending the local constraint so that the
sphere must be included in all individual admissible regions Ai . In
other words, each node j now checks whether B(v0,v0 + δ j) ⊆ Ai
for all i .

While this strategy may be useful in some cases, it su�ers from
two drawbacks. First, other methods such as convex decomposition
(CD) [37] and convex bound (CB) [36] are known to achieve be�er
results in terms of communication. More importantly, covering
spheres su�ers from a prohibitively long runtime in many cases,
since checking whether a sphere is entirely inside the admissible
region can be very di�cult [36]. With multiple admissible regions,
the problem becomes even worse.

Common Safe Zone (CSZ). To avoid the complications of dealing
with the common admissible region directly, we suggest an alterna-
tive approach that is simpler to apply in practice. First we �nd a
safe zone for each constraint separately, and then intersect the safe
zones. Formally, the common safe zone is given by:

CSZ ,
⋂̀
i=1

SZi ,

where SZi is the safe zone for (fi , ϵi).
Observe that theCSZ is indeed a legal safe zone for the combined

constraints, that is, it ful�lls the three required properties of a safe
zone (Sec 4.1). First, CSZ is convex, because it is an intersection
of convex sets. Second, CSZ ⊆ CA, since the intersection of the
admissible regions contains the intersection of safe zones (each
safe zone is contained in its respective admissible region). �ird,
v0 is contained in CSZ , because v0 is contained in each individual
safe zone. Moreover, good safe zones include a large neighborhood
of v0, therefore, it is likely that their intersection also includes a
neighborhood of v0; namely, CSZ , in some sense, is also a “good”

One for All and All for One DEBS ’17, June 19-23, 2017, Barcelona, Spain

Algorithm 3 Node j is updated with new observation

1: Update the local vector v j
2: Compute the dri�: δ j ← v j −v j0 and w j ← v0 + δ j

3: satis�ed← ∧`
i=1w

j ∈ SZi
4: if not satis�ed then
5: Notify the coordinator to trigger synchronization
6: Wait for new v0 from the coordinator
7: for i in 1 . . . ` do
8: Calculate fi (v0)
9: Set new bounds fi (v0) − ϵ and fi (v0) + ϵ

10: Compute respective safe zone SZi
11: Set v j0 ← v j

safe zone. Note that since v0 is contained in all individual safe
zones, we can compute the approximated values by applying the
functions to v0: f1(v0) . . . f`(v0).

Rather than explicitly computing the common safe zone, nodes
can simply test whether the vector is inside all of the individual
safe zones. �e CSZ method requires a small modi�cation to the
algorithm of the node (Algorithm 2). In the new algorithm, Algo-
rithm 3, node j must check whether v j is included in the safe zones
of all functions. �e algorithm of the coordinator is unchanged.

�e CSZ method is applicable to multiple functions with di�er-
ent approximation error bounds. It can handle both relative and
absolute error bounds as part of the same tracking algorithm, and
di�erent variants of GM can be combined. Moreover, GM frame-
work extensions naturally complement our method. For example:
lazy violation resolution [50], where the polling of all nodes in Al-
gorithm 1 is replaced with more e�cient, incremental polling; local
violation resolution [34] where disjoint node pairs are locally bal-
anced; and reference point prediction [25, 26], which predicts the
current value of v from past values of v0 to avoid synchronizations.

Example. Consider a simple scenario in which we track f (x ,y) =
x2 − y − 0.4 and д(x ,y) = y2 − x , within an absolute approxima-
tion bound of ϵ = 1. �at is, we want to maintain an estimate
v0 = (x0,y0), such that f (x0,y0) − 1 ≤ f (x ,y) ≤ f (x0,y0) + 1 and
д(x0,y0) − 1 ≤ д(x ,y) ≤ д(x0,y0) + 1.

Figures 2a and 2b illustrate the admissible regions of f and д and
the respective safe zones induced by CB [36] for v0 = (x0,y0) =
(0, 0). While the functions and their respective admissible regions
and safe zones are very simple, the shape of the common admissible
is quite complicated (Figure 2c). Finding a “good” safe zone in this
admissible region is not trivial, since we need to �nd a large convex
neighborhood of v0. �e common safe zone induced by the CSZ
method is shown in Figure 2d. �is is a “good” safe zone, in the
sense that it cannot be expanded without violating convexity.

5 EVALUATION
Geometric monitoring has previously been applied to many prob-
lems, but always in an SFDS se�ing. Applications include ef-
�cient outlier detection in sensor networks [9]; variance moni-
toring and outlier detection for multivariate time series [18, 21,
49]; sketch-based monitoring of norm, range-aggregate, and join-
aggregate queries over distributed streams [23, 37]; monitoring

least-squares regression models [19]; monitoring the prediction
error of a global model [30]; inducing decision trees in a large
distributed network [5]; distributed entropy approximation [20];
and monitoring highly distributed data streams using sample based
techniques [24].

In this section we present and evaluate four applications requir-
ing the approximation of multiple functions: regression and condi-
tion number; top-k PCA scores; distance metrics; and �ve-number
summary. �ese applications utilize both existing and newly de-
rived safe zones. �e functions used by the applications are non-
linear and non-monotonic, and are applied to multi-dimensional
data. We also demonstrate tracking a complicated function by de-
composing it to simpler primitives, and tracking those. Additionally,
we compare the CSZ and covering spheres methods.

Our evaluation shows that in most cases the CSZ method incurs
almost the same communication as tracking a single function in
each application, and is always below the communication required
to independently track all functions. Finally, we demonstrate that
our approach scales with the number of nodes.

5.1 Evaluation Methodology
We applied theCSZ tracking method to the four applications listed
above, and compared its cost to independently approximating each
function (“indep”). Four di�erent real-life datasets were used in the
evaluation process. We assumed a sliding window scenario: for a
sliding window of size w , the local vectors are computed from the
last w records.

We simulated the tracking protocol for k streams: at each simula-
tion step, every node observes a new event. We counted the number
of messages, including synchronization overhead, sent during the
simulation; latency is assumed to be smaller than event arrival rate.
Our main cost metric is the ratio to naive: the number of messages
divided by the number of messages sent by the naive method, in
which each node forwards every observation to the coordinator.

Our main criterion for success is reducing the cost below that
of the independent method; in other words, we want the ratio
to independent metric to be below 1.0. In the best case, the CSZ
method would cost the same as the maximum cost of tracking the
independent functions. Note that the CSZ method can never do
worse than the sum of independent methods.

5.2 Data Sets
We used four datasets: Intel Lab Data (ILD) [7], the Reuters Corpus
(REU) [38], a Twi�er crawl (TWIT) [39], and the 10 percent sample
supplied as part of KDD Cup 1999 Data (KC)[32]. For KC, REU, and
TWIT, we used round-robin order to assign observation to the k
simulated nodes, with k = 10 by default.

ILD contains data collected from 54 sensors deployed in the
Intel Berkeley Research lab between February 28th and April 5th,
2004. �e sensors collected humidity, temperature, light and voltage
values once roughly every 30 seconds. Since some sensors have a
lot of missing and/or out of range values, we selected 16 sensors
with (relatively) high quality data1. We used data from nine days
(March 1–9, 2004). �e data was normalized to zero-mean and unit

1Sensors 24, 25, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, and 42.

DEBS ’17, June 19-23, 2017, Barcelona, Spain Arnon Lazerson, Moshe Gabel, Daniel Keren, and Assaf Schuster

1 0 1 2

1

0

1

2

v0

(a) Admissable region (light blue),
and safe zone (dark blue) for f .

1 0 1 2

1

0

1

2

v0

(b) Admissable region (light green),
and safe zone (dark green) for д.

1 0 1 2

1

0

1

2

v0

(c) Common admissable for f and д
(yellow).

1 0 1 2

1

0

1

2

v0

(d) Common safe zone for f and д
(red).

Figure 2: While the shapes of the admissible regions of f and д and their safe zones are simple (Figures (a), (b)), the shape of
the common admissible region (Figure (c)) is quite complicated. �e CSZmethod easily �nds a good common safe zone (Figure
(d)) by intersecting the individual safe zones.

variance and re-sampled to 60 second intervals. Missing values
were �lled in using linear interpolation.

KC was used in the “�ird International Knowledge Discovery
and Data Mining Tools Competition” for the task of intrusion detec-
tion. It contains information about TCP connections described by
41 features, such as duration, protocol, bytes sent, or bytes received.
Out of these we extracted the 37 real-valued a�ributes. Our experi-
ments were performed on the top 50K records of the normalized
(zero mean, unit variance) data.

REU (RCV1-v2 collection) consists of 804,414 categorized news
stories reported by Reuters between August 20, 1996, and August
19, 1997. Each document is represented as a feature vector of length
47,236. We used the top 2050 features le� a�er removing features
that appear in less than 1% of the documents.

TWIT (Dataset-UDI-Twi�erCrawl-Aug2012) was collected in
May 2011 and contains 50 million tweets. It was originally collected
for pro�ling users and relationships in a social network. We �ltered
the dataset to obtain only hashtagged tweets, which le� us with 9
million tweets from 140,000 users. We used the NLTK [6] package
to tokenize and stem the text of the tweets in TWIT, and then
selected the top 1250 features, ignoring features appearing in less
than 0.1% of the tweets.

5.3 Regression and Condition Number
Linear regression �ts a linear model to a set of observations, and is
commonly used for prediction and analysis tasks. Some linear sys-
tems are very sensitive to measurement errors, meaning solutions
may be inaccurate. �e condition number is a common metric to
assess the stability of a linear system. �erefore, we are interested
in tracking both a least squares regression model and its condition
number.

Regression. Assume the data consists of n observations, where
observation i is composed of a vector of m predictors xi and a
response variable (scalar) yi . Let X be the n ×m matrix of predictor
row vectors X , (xT1 , ...,x

T
n)T , and let and y be the column vectors

of the response variables y , (y1, ...,yn)T . �e Generalized Least
Squares (GLS) regression model is a linear transformation β ∈ Rm

that minimizes the Mahalanobis distance (y − Xβ)T S−1(y − Xβ).
�e optimal solution to GLS is given by:

β = (XT S−1X)−1XT S−1y .

where S is error correlation matrix [47]. GLS is designed to handle
correlated measurements and is very useful in time-series analysis.
Se�ing S = I yields β = (XTX)−1XTy, the solution to the Ordinary
Least Squares (OLS) model y = Xβ .

Continuous tracking of a regression model was studied in [19].
Given a sliding window of n observations, we aim to maintain a
continuous approximation β0 of the current GLS model β , such that
| |β0 − β | | ≤ ϵ , for some user de�ned ϵ .

�e local vector at node j is de�ned as the pair v j = (Aj , c j),
where

Aj =

n∑
i=1

S−1xix
T
i , c j =

n∑
i=1

xiS
−1yi ,

and {(xi ,yi)} are the observations pairs at the node. �e global
vector v = (A, c) is the average of the local vectors {v j }. �e
estimate vector v0 = (A0, c0) is v at t = 0 as usual. �e dri� is
given by (∆j ,δ j), where ∆j = Aj −Aj

0 and δ j = c j − c j0. �e model
at t = 0 is de�ned by β0 = A0−1c0. �e safe zone is described in
Appendix A.1.

Condition Number. �e condition number κ is the ratio between
the largest to smallest singular values [41]. For the symmetric
sca�er matrix A = XT S−1X used in GLS, it is the ratio between
maximal eigenvalue λ1 and the minimal eigenvalue λm : κ = λ1(A)

λm (A) .
�e task is to track the condition number of A with ϵ relative

error: (1− ϵ)κ0 ≤ κ ≤ (1+ ϵ)κ0, where κ0 is the approximation and
κ is the current true value of the condition number. �e safe zone
of the condition number is described in Appendix A.2

Empirical Evaluation. We simulated the tracking algorithms us-
ing the ILD dataset, with a sliding-window of size 600. Our goal
here was to track a global regression model where the predictors
x are temperature, light, and voltage, and the response variable

One for All and All for One DEBS ’17, June 19-23, 2017, Barcelona, Spain

0.2 0.3 0.4 0.5
Model Error ε

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
at

io
 to

 N
ai

ve

reg cond CSZ indep

Figure 3: Regression and condition number communica-
tion costs relative to the naive method. �e cost of the CSZ
method is nearly the same as the worst of the two.

y is humidity. Following [19], we used a Toeplitz autocorrelation
matrix S , such that the values on diagonal i are 0.98i .

Figure 3 shows the relative communication cost of tracking the
regression model and condition number for di�erent values of
model approximation error ϵ . �e condition number was allowed
a relative error of 0.2 in all cases. �e communication cost of the
CSZ method is only 5–15% higher than the costliest independent
function (regression for ϵ ≤ 0.3 and condition number for ϵ ≥ 0.4),
regardless of model error . �e CSZ method requires about 60% of
the communication volume required by the sum of independent
methods.

5.4 PCA-Score
PCA (Principal Component Analysis) is a popular dimension reduc-
tion technique with numerous applications. Given a set of vectors,
PCA �nds a low-dimensional approximation of the vectors.

�e PCA-Score or ”proportion of the total variance explained”
tk is a simple and popular stopping rule [10], measuring the cumu-
lative variance explained by the �rst k principal components. To
compute tk given a sca�er matrixAm×m , �rst compute its eigenval-
ues λ1 ≥ λ2 ≥ · · · ≥ λm (each eigenvalue represents the variation
explained by the associated principal component). �en divide the
sum of the top-k eigenvalues by the sum of all eigenvalues:

tk =

∑k
i=1 λi∑m
i=1 λi

.

�e top ` PCA-Score’s t1 . . . t` can be used to construct a scree-
plot [10], or �nd how many dimensions must be retained to guar-
antee a speci�c percentage of the variance. Furthermore, using
ti − ti−1 the contribution of a speci�c eigenvalue λi can be approxi-
mated. �is has applications in graph theory when A is a adjacency
matrix or graph Laplacian [8, 52].

Our objective is to approximate tk (for multiple values of k) with
an additive approximation bound ϵ : tk,0 − ϵ ≤ tk ≤ tk,0 + ϵ , where
tk is the current PCA-Score and tk,0 is the PCA Score at time t = 0,
as always.

Given a sliding window of n observations {xi} ∈ Rm , the local
vector at node j is the sca�er matrix:

Aj =

n∑
i=1

xix
T
i .

0 5 10 15 20 25 30 35 40
Number of Components

10-1

100

101

R
at

io
 to

 N
ai

ve
 [L

og
] indep

CSZ

(a) ϵ = 0.01

0 5 10 15 20 25 30 35 40
Number of Components

10-2

10-1

100

R
at

io
 to

 N
ai

ve
 [L

og
] indep

CSZ

(b) ϵ = 0.2

Figure 4: Communication cost for tracking increasing num-
ber of PCA scores (log scaled) for strict and relaxed error
bounds. Independent tracking scales poorly: in both cases,
the communication cost of indep grows sharply. For strict
ϵ = 0.01 indep quickly becomes worse than naive. �e CSZ
method scales much better: its cost grows slowly and be-
comes constant a�er the �rst few scores. In both cases, the
cost of CSZ remains well below both naive and indep.

�e global vector v = A is the average of the local vectors, and the
estimate vector is v0 = A0 (v at time t = 0). v j0 = A

j
0 is the local

vector at t = 0, ∆j = Aj − Aj
0. �e safe zone of the PCA score is

described in Appendix A.3

Empirical Evaluation. We simulated our algorithm using the KC
dataset with a sliding window of size 1000 in each node.

Figure 4 illustrates how communication costs of CSZ and indep
scale when varying the number of tracked scores ` from 1 to 37
(the data has 37 dimensions). Figure 4a shows communication costs
with an absolute error bound ϵ = 0.01. �e cost of indep grows
above that of the naive method a�er only 6 components, eventually
reaching over 3 times that of naive. Conversely, the cost of theCSZ
method reaches its maximum cost of about 25% of the naive method
a�er 10 components. Figure 4b shows costs for a more relaxed
additive error bound, ϵ = 0.2. �e cost of indep grows almost
linearly, reaching 40% of the naive method for monitoring the full
PCA spectrum, while CSZ reaches the maximum 2% of naive a�er
7 components. In both cases, CSZ communication is substantially
lower than the indep cost (13 times and 25 times, respectively).
Additionally, monitoring additional components beyond the �rst
few is practically free with the CSZ method.

Figure 5 shows the cost for tracking each of the top ` = 10
PCA scores and the cost of the CSZ method, divided by the sum of
independent costs (i.e., ratio to independent). All functions t1 . . . t10
have the same additive error bounds ϵ , and we show communication
costs for di�erent values of ϵ . �e cost of the CSZ method is at
most 15% of the total cost of independently monitoring each score,
and is only 9–32% higher than the maximum of independent costs
in each case. We observe that the costliest single component is
di�erent for di�erent error bounds, meaning that tracking a single
component is insu�cient to guarantee all approximation bounds.

Figure 6 demonstrates the tradeo� between accuracy ϵ and com-
munication when tracking the top 10 PCA scores. Both indep and
CSZ o�er similar tradeo�s, but CSZ can still maintain reasonable
communication reduction even for strict approximation accuracy.

DEBS ’17, June 19-23, 2017, Barcelona, Spain Arnon Lazerson, Moshe Gabel, Daniel Keren, and Assaf Schuster

k=
1

k=
2

k=
3

k=
4

k=
5

k=
6

k=
7

k=
8

k=
9

k=
10

CS
Z

ind
ep

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 to

 In
de

pe
nd

en
t

ε= 0.01

k=
1

k=
2

k=
3

k=
4

k=
5

k=
6

k=
7

k=
8

k=
9

k=
10

CS
Z

ind
ep

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 to

 In
de

pe
nd

en
t

ε= 0.05

k=
1

k=
2

k=
3

k=
4

k=
5

k=
6

k=
7

k=
8

k=
9

k=
10

CS
Z

ind
ep

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 to

 In
de

pe
nd

en
t

ε= 0.1

k=
1

k=
2

k=
3

k=
4

k=
5

k=
6

k=
7

k=
8

k=
9

k=
10

CS
Z

ind
ep

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 to

 In
de

pe
nd

en
t

ε= 0.2

Figure 5: PCA-Score communication relative to the independent combination (the sum of individual communication costs).
�e CSZ method requires only slightly more communication than tracking the worst individual function, and reduces com-
munication by a factor of 7 relative to indep.

0.01 0.05 0.1 0.2
Additive Error ε

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

R
at

io
 to

 N
ai

ve

CSZ
indep

Figure 6: Communication cost for top 10PCA scores relative
to the naive method. For ϵ = 0.01 indep is actually worse
than the naive method, while CSZ is better by a factor of 4.

5.5 Distance Metrics
Distance metrics (and similarity measures) are key to many data-
mining tasks such as information retrieval, clustering, and classi�-
cation. Di�erent tasks require di�erent metrics, possibly at di�erent
accuracy levels.

Given two n-dimensional vectors x and y, we simultaneously
track three important distance metrics: inner product (ip), cosine
similarity (csim), and Euclidean distance (euc). In other words,
we monitor three di�erent similarity functions over the same
pair of vectors (x ,y): the inner product fip(x ,y) = 〈x ,y〉, the co-
sine similarity fcsim(x ,y) = 〈x,y 〉

‖x ‖ ‖y ‖ , and the Euclidean distance
feuc(x ,y) = ‖x − y‖.

�e local vector is the pair v j = (x j ,y j), where x j and y j are
computed from the current sliding window of node j . As usual, the
global vector v is the average of the local vectors. �e estimate
vector v0 = (x0,y0) equals v at t = 0. v j0 is the value of the local
vector at t = 0, and δ j = v j − v j0. We approximate f within a
relative error of ϵ : (1−ϵ)f (x0,y0) ≤ f (x ,y) ≤ (1+ϵ)f (x0,y0). �e
safe zones of the distance metrics are described in Appendix A.4.

Empirical Evaluation. We tracked the three distance metrics on
REU with relative errors ϵ ∈ 0.05, 0.1, 0.2 and a sliding window of
the last 1,000 documents. Following [23], each document is assigned
as vector x or y according to its category. Figure 7 displays the
relative communication cost results for the di�erent values of ϵ .
�e cost of CSZ is only 4–10% higher than that of euc which is the
costliest of the three distance metrics (for all error bounds).

0.05 0.1 0.2
Error Threshold ε

0.00

0.02

0.04

0.06

0.08

0.10

R
at

io
 to

 N
ai

ve

csim
ip
euc
CSZ
indep

Figure 7: Communication costs of distance metrics relative
to the naivemethod. �e communication incurred by CSZ is
roughly the same as communication cost for tracking euc.

5.6 Five Number Summary
Given a vector v = {v1 . . .vn } the p percentile fp (x) is vp , such
that p% of {vi } are below vp .

We wish to track the p-percentile parametric family { fp1 . . . fp` }.
One well known family is Tukey’s �ve-number summary. It con-
sists of the �ve important percentiles: the minimum (p0), the �rst
quartile (p25), the median (p50), the upper quartile (p75), and the
maximum (p100). Another example of such a family is p90, p95,
p99, p99.9, common for characterizing latency in web services.

In our evaluation we track the �ve-number summary
fp0, fp25 . . . fp100 of a (distributed) vector with absolute error
bounds ϵp0, ϵp25 . . . ϵp100: fp (v0) − ϵp ≤ fp (v) ≤ fp (v0) + ϵp .

�e local vectorv j is computed from the sliding window at node
j, v j0 is the value v j at time t = 0, and δ j = v j − v j0. �e global
vector v is the average of the local vectors, and the estimate vector
v0 equals v at time t = 0. �e safe zone for the percentile function
is given in Appendix A.

Empirical Evaluation. We applied the �ve-number summary to
REU and TWIT datasets with additive error bounds. We used a
sliding window of the last 6,700 documents for REU, and the last
1,000 tweets for TWIT. �e local vector at each node is composed
of the feature counts.

Feature counts are distributed according to a power law: most
features have very low counts, while high counts are rare. In
other words, low percentiles change rarely, while high percentiles
vary widely and o�en. Hence, we use non-uniform approximation

One for All and All for One DEBS ’17, June 19-23, 2017, Barcelona, Spain

p=
0

p=
25

p=
50

p=
75

p=
10

0
CSZ

ind
ep

0.00

0.02

0.04

0.06

0.08

0.10

0.12

R
at

io
 to

 N
ai

ve

(a) REU

p=
0

p=
25

p=
50

p=
75

p=
10

0
CSZ

ind
ep

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

R
at

io
 to

 N
ai

ve

(b) TWIT

Figure 8: Communication cost for the �ve-number sum-
mary. In both cases the CSZ method is considerably better
than independently tracking all percentiles.

bounds: ϵp0 = 1, ϵp25 = 2, ϵp50 = 4, ϵp75 = 8, ϵp100 = 16 in REU,
and ϵp0 = 2, ϵp25 = 3, ϵp50 = 4, ϵp75 = 5, ϵp100 = 6 in TWIT (where
the window is smaller and counts are lower).

Figure 8 shows communication cost for tracking the di�erent
percentiles, as well as the costs of CSZ and indep. �e total com-
munication cost is dominated by p = 0 (min) and p = 100 (max). In
both datasets the CSZ method requires less communication than
the independent method. In REU, theCSZ method achieves 45% re-
duction in communication compared to independently tracking all
percentiles. Unlike previous cases, however,CSZ is more expensive
than the single costliest independent function (76% more communi-
cation than p0). In TWIT, theCSZ method reduces communication
to only 70% of indep. In this data set, however, the communication
cost of costliest single percentile, p100, is 56% of indep on its own.

5.7 Function Decomposition
Given a single function to track, we would ideally derive a special-
ized safe zone for the function, then use GM directly. However, de-
riving a safe zone for a complicated function may require non-trivial
technical work, while using the more general methods (covering
spheres or direct optimization) may be impractical (Section 4.1).

We demonstrate a di�erent approach: decomposing the function
into simpler primitives and tracking those simultaneously. In other
words, we use multiple approximations to provide an approxima-
tion for a single, more complicated function. �e downside of this
decompositional approach is possible loss of communication e�-
ciency compared to the direct approach: a specialized safe zone for
the original function is likely to be more optimal than the safe zone
created by the CSZ method.

Consider the cosine similarity function f (x ,y) = 〈x,y 〉
‖x ‖ ‖y ‖ , for

example. It is neither convex nor concave, and its safe zone is quite
complicated (Section A.4) and requires non-trivial application of
the CB method [36]. We can decompose cosine similarity into three
simpler primitives, namely the inner product 〈x ,y〉 and the norms
of x and y ‖x ‖, ‖y‖, which have much simpler safe zones that are
easier to derive (Sections A.4 and A.6). Instead of tracking the
cosine similarity directly we can track these components.

Given a relative approximation bound ϵcsim for the cosine similar-
ity function, we must allocate appropriate bounds for the three com-
ponents ϵip, ϵ ‖x ‖ , and ϵ ‖y ‖ such that: 1+ϵip

(1−ϵ‖x ‖)(1−ϵ‖y ‖) = 1 + ϵcsim.

Since individual bounds ϵip, ϵ ‖x ‖ , and ϵ ‖y ‖ must be smaller than
the direct bound ϵcsim, we expect that the decomposition will result
in more communication.

Empirical Evaluation. How much do we lose by using the decom-
positional approach rather than directly deriving a specialized safe
zone? We compare tracking the components of cosine similarity
(inner product and the two norms) using CSZ to tracking the cosine
similarity directly using the safe zone derived in [36]. We used the
TWIT dataset with a sliding window of size 1000. For simplicity,
we assign both norm components the same approximation error
ϵ ‖x ‖ = ϵ ‖y ‖ = ϵnorm. We �x the error bound for cosine similarity
ϵcsim = 0.1, and vary the ratio α = ϵnorm

ϵip
.

Figure 9 shows the communication results for several values
of α . �ough both CSZ and the direct method are be�er than
independently tracking all components (13% and 45% of indep com-
munication, respectively), the direct method is be�er than CSZ ,
and in fact incurs less communication than each component indi-
vidually. �e communication cost of the CSZ method is at most
3–24% above the worst of the individual components, and nearly
an order of magnitude be�er than the naive method.

We also observe that the allocation of approximation bounds (α)
a�ects the communication cost of the CSZ method. �e optimal
allocation depends on the data and the monitored functions; we
leave this problem for future work.

5.8 Covering Spheres
�e covering spheres method (Section 4.2) monitors the common
admissible region directly. Figure 10 compares it to CSZ using
the TWIT and REU datasets (with a sliding window of size 1000),
when tracking fip, the inner product of x and y, and fnorm, the
norm of the entire vector (the concatenation of x and y), with
relative error 1 ± ϵ . Solid bars represent CSZ as before, while
bars represent covering spheres (COV). We also show the cost of
tracking individual functions using the derived safe zone (for CSZ)
or covering spheres with the individual admissible region (COV).
We speci�cally selected fip and fnorm since they can be tracked with
COV in reasonable time, unlike the other functions we discuss. For
example, fcsim with COV is 106 times slower than with CSZ [36].

Communication costs for both COV and CSZ are be�er than
indep: their cost is similar to tracking the worst respective individ-
ual function. As discussed in Section 4.2, COV sometimes requires
more communication than the CSZ method, since using the special-
ized safe zone for inner product (Appendix A.4) is superior to using
the generic covering spheres approach, as shown in [36]. On the
other hand, when communication costs are dominated by fnorm,
COV is equivalent to CSZ, because the safe zone induced by COV
is identical to the one derived by CD.

5.9 Scalability With Number of Nodes
�eCSZ method is scalable, in the sense that its advantage over the
independent method does not depend in any way on the number
of nodes k . �e increase in communication cost of theCSZ method
is the result of the increased cost of the worst individual function.

We demonstrate this by tracking fcsim and fip using the TWIT
dataset with up to 1000 simulated nodes. Figure 11 show that

DEBS ’17, June 19-23, 2017, Barcelona, Spain Arnon Lazerson, Moshe Gabel, Daniel Keren, and Assaf Schuster

0.6 0.8 1.0 1.2
Epsilon ratio α

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
at

io
 to

 N
ai

ve

ip
‖x‖
‖y‖
CSZ
indep
direct

Figure 9: Communication cost for tracking cosine similarity directly and via decomposition to three simpler components,
with ϵcsim = 0.1, and di�erent values for the ratio α = ϵnorm

ϵip . �e CSZ method costs roughly as much as the worst single
component. Tracking the cosine similarity function directly is more e�cient still, due to the use of a specialized safe zone.

εip = 0.10
εnorm = 0.05

εip = 0.10
εnorm = 0.03

0.000

0.005

0.010

0.015

0.020

0.025

0.030

R
at

io
 to

 N
ai

ve

ip (CSZ)
ip (COV)

norm (CSZ)
norm (COV)

CSZ
COV

indep (CSZ)
indep (COV)

(a) REU

εip = 0.10
εnorm = 0.06

εip = 0.10
εnorm = 0.03

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

R
at

io
 to

 N
ai

ve

ip (CSZ)
ip (COV)

norm (CSZ)
norm (COV)

CSZ
COV

indep (CSZ)
indep (COV)

(b) TWIT

Figure 10: Communication costs for COV and CSZ on the
REU (a) and TWIT (b) datasets. COV requires more commu-
nication than CSZ. For both, cost is similar to tracking the
worst respective single function.

the cost of the CSZ method is nearly the same as that of the worst
function. Moreover, the di�erence between the two does not change
as k grows. As Figure 11a shows, with ϵip = ϵcsim = 0.1 csim
dominates the communication cost, and the cost of theCSZ method
is almost identical. Figure 11b shows that with ϵip = 0.05, ϵcsim =
0.1, the CSZ method matches ip – the costliest function in this
con�guration.

For simplicity, both indep and CSZ use the eager synchronization
protocol described in Algorithm 1, whose overhead scales linearly
with the number of nodes. �is can be easily mitigated with more

250 500 750 1000
Number of Nodes

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

R
at

io
 to

 N
ai

ve ip
csim
CSZ
indep

(a) ϵip = 0.1, ϵcsim = 0.1

250 500 750 1000
Number of Nodes

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

R
at

io
 to

 N
ai

ve ip
csim
CSZ
indep

(b) ϵip = 0.05, ϵcsim = 0.1

Figure 11: Scalability of the CSZ method with up to 1,000
nodes when tracking cosine similarity (csim) and inner-
product (ip). �e advantage of CSZ does not depend on the
number of nodes. �e cost of CSZ is almost similar to that
of the worst function in both cases: csim in (a), and ip in (b).

sophisticated violation resolution protocols such as as lazy synchro-
nization [50] and local violation resolution [34] (Section 4.2).

6 CONCLUSIONS
We presented a new approach for simultaneously approximating
multiple functions over the aggregate of distributed streams (MFDS).
Our approach takes advantage of the underlying unifying prin-
ciples of the geometric monitoring framework: monitoring the
domain of functions, and de�ning local convex safe zones. Un-
like most single function approximations for distributed streams

One for All and All for One DEBS ’17, June 19-23, 2017, Barcelona, Spain

(SFDS), these unifying principles allow us to easily combine ex-
isting single-function GM algorithms, while paying less than the
sum of individual communication costs. Indeed, our evaluation on
di�erent sets of functions with real-world datasets demonstrates
that in most cases our method results in a small communication
overhead over the distributed approximation of a single function.

Clearly, di�erent sets of approximated functions result in di�er-
ent common safe zones. We are exploring the inter-dependence
between the functions, and its e�ect on CSZ.

ACKNOWLEDGMENTS
�e research leading to these results has received funding from the
European Union’s Seventh Framework Programme under grant
agreements no. 619491 and no. 619435, and from the Eropean
Union’s Horizon 2020 Research And Innovation Programme under
grant agreements no. 688380. �e authors would like to thank the
anonymous referees for their valuable comments and suggestions.

A APPENDIX: SAFE ZONES
�is section describes the safe zones for the functions monitored in
Section 5. For completeness, we include summaries of existing work
(regression [19], cosine similarity [36], and inner product [36]), as
well as newly-derived safe zones (condition number, percentiles,
PCA-score, Euclidean distance, and norm).

A.1 Regression
Let (A, c) be as de�ned in Section 5.3, and similarly denote by
(A0, c0) the estimate vector at time t = 0. We track ‖β − β0‖ ≤ ϵ ,
where β = A−1c and β0 = A−1

0 c0. �e safe zone for the regression
model is [19]:{

(A, c) | ‖A0
−1δ ‖ + ‖A0

−1∆β0‖ + ϵ ‖A0
−1∆‖ ≤ ϵ

}
,

where ∆ = A −A0 and δ = c − c0.

A.2 Condition Number
For a symmetric matrixA the condition number is the ratio between
maximal eigenvalue λ1 and the minimal eigenvalue λm : κ = λ1(A)

λm (A) .
�e task is to track the condition number with ϵ relative error:
(1 − ϵ)κ0 ≤ κ ≤ (1 + ϵ)κ0, where κ0 is the approximation and κ is
the current true value of the condition number.

�e upper bound is convex and can be used as is. �e lower
bound is neither convex nor concave. To get a convex constraint,
we apply the method described in [36], replacing λ1 and λm with
their respective tangent planes at A0.

Let A be as de�ned in Section 5.3, and similarly denote by A0 the
estimate vector at time t = 0. Let Hi (A) be the linear approximation
of λi (A) around A0: Hi (A) , λi (A0) + 〈ei (A0)eti (A0),A −A0〉. �e
safe zone of the condition number is:

{A | λ1(A) ≤ (1 + ϵ)κ0λm (A) ∧ H1(A) ≤ (1 − ϵ)κ0Hm (A) } .

A.3 PCA-Score
�e kth PCA score tk of a sca�er matrix A ∈ Rm×m is:

tk =

∑k
i=1 λi∑m
i=1 λi

.

�e objective is to approximate tk with an additive approxima-
tion bound ϵ : tk,0 − ϵ ≤ tk ≤ tk,0 + ϵ , where tk is the current
PCA-Score and tk,0 is the estimate vector.

Previous work has derived a safe zone for the squared PCA
score [36] t2

k . We use similar techniques to derive safe zones
for tk directly. Using the convexity property of the sum of top-
k eigenvalues, stating that for a symmetric A, the sum of top k

eigenvalues
∑k
i=1 λi is convex [16], and applying CB [36], we get

the following safe zone for the PCA score:

{
A

�� k∑
i=1

Hi (A) ≥ (tk,0 − ϵ)
m∑
i=1

λi (A) ∧ (tk,0 + ϵ)
m∑
i=1

Hi (A) ≥
k∑
i=1

λi (A)
}

,

A,A0 are as de�ned in Section 5.4, andHi (A) is the linear approxi-
mation of λi (A) aroundA0: Hi (A) , λi (A0)+〈ei (A0)eti (A0),A−A0〉.

A.4 Distance Metrics
�e task is to approximate inner product (ip), cosine similarity
(csim), and Euclidean distance (euc) within a relative error of ϵ :
(1−ϵ)f (x0,y0) ≤ f (x ,y) ≤ (1+ϵ)f (x0,y0). Let the estimate vector
be v0 = (x0,y0) and let (x ,y) be two vectors such that x ∈ Rm ,y ∈
Rm . �e safe zones for the functions are given below:

Safe zone for inner product. We use the safe zone from [36]:

{ (x ,y) | ‖x − y‖2 ≤ ‖x0 + y0‖2 − 4(1 − ϵ)〈x0,y0〉 +
2〈(x0 + y0,x0 + y0), (x − x0,y − y0)〉 ,

‖x + y‖2 ≤ ‖x0 − y0‖2 + 4(1 + ϵ)〈x0,y0〉 +
2〈(x0 − y0,y0 − x0), (x − x0,y − y0)〉 } .

Safe zone for cosine similarity. Let f (x ,y) = 〈x,y 〉
‖x ‖ ‖y ‖ be the cosine

similarity function, and de�ne two convex axillary functions д,h:

д(x ,y) = ‖x − y‖2 + (1 − ϵ)f (x0,y0)
(
4‖x ‖‖y‖ + 2(‖x ‖2 + ‖y‖2)

)
h(x ,y) = ‖x + y‖2 + 2(1 + ϵ)f (x0,y0)(‖x ‖2 + ‖y‖2) .

�e safe zone for cosine similarity is given by [36]:

{ (x ,y) | h(x ,y) ≥ д(x0,y0) + 〈∇д(x0,y0), (x − x0,y − y0)〉,
д(x ,y) ≥ h(x0,y0) + 〈∇h(x0,y0), (x − x0,y − y0)〉 } ,

where ∇h(x0,y0) and ∇д(x0,y0) are the gradients of h and д at
(x0,y0), respectively.

Safe zone for Euclidean distance. Let f (x ,y) = ‖x − y‖2 be
the euclidean distance function. �e upper bound f (x ,y) ≤
(1+ϵ)f (x0,y0) is convex. �e lower bound f (x ,y) ≥ (1−ϵ)f (x0,y0)
is not convex, so we apply the method in [36] to derive a convex
lower bound. Using both convex bounds the safe zone for the
euclidean distance is:

{ (x, y) | ((1 + ϵ) ‖x0 − y0 ‖)2 ≥ ‖x − y ‖2 ,

((1 − ϵ)f (x0, y0))2 ≤ ‖x0 − y0 ‖2+
2〈(x0 − y0, y0 − x0), (x − x0, y − y0)〉 } .

DEBS ’17, June 19-23, 2017, Barcelona, Spain Arnon Lazerson, Moshe Gabel, Daniel Keren, and Assaf Schuster

A.5 Percentiles
For tracking percentiles, we derive convex lower and upper bounds,
and de�ne the safe as the set of all vectors {x} that satisfy both.
�is generalizes [37], where a safe zone for the median (p = 50)
was derived using the CD method.

We start with describing the lower bound. Given a percentile
0 ≤ p ≤ 100, the global estimate v0 ∈ Rn , the local vector v ∈ Rn ,
and the lower boundT = (1− ϵ)fp (v0), de�ne: x̂0 = (v01 −T ,v02 −
T , . . . ,v0n−T) and v̂ = (v1−T ,v2−T , ..,vn−T). LetL be the number
of positive r̂i , and let s be the sorted vector of the products v̂0iv̂i :
s = Sort ({v̂0iv̂i |1 ≤ i ≤ N }) , then the lower bound constraint is:
N−L+1∑
i=1

si ≥ 0 . To derive the upper bound, invert the signs of v0

and v , set T = −(1 + ϵ)fp (v0), and continue as before.

A.6 Norm
Let f (v) = ‖v ‖ be the norm function, and let v0 be the estimate
vector. We aim to track the norm within a relative approximation
bound ϵ : (1 − ϵ)‖v0‖ ≤ ‖v ‖ ≤ (1 + ϵ)‖v0‖. �e upper bound
‖v ‖ ≤ (1+ϵ)‖v0‖ is convex. We apply convex decomposition [37] to
derive a convex lower bound: 〈v0 − (1 − ϵ)v0 , v − (1 − ϵ)v0〉 ≥ 0.
�e safe zone for the norm function is a combination of both bounds:
{v | ‖v ‖ ≤ (1 + ϵ)‖v0‖, 〈v0 − (1 − ϵ)v0 , v − (1 − ϵ)v0〉 ≥ 0 } .

REFERENCES
[1] Noga Alon, Phillip B. Gibbons, Yossi Matias, and Mario Szegedy. 1999. Tracking

Join and Self-Join Sizes in Limited Storage. In PODS ’99.
[2] Chrisil Arackaparambil, Joshua Brody, and Amit Chakrabarti. 2009. Functional

monitoring without monotonicity. In ICALP ’09.
[3] Arvind Arasu and Jennifer Widom. 2004. Resource sharing in continuous sliding-

window aggregates. In VLDB ’04.
[4] B. Babcock and C. Olston. 2003. Distributed top-k monitoring. In SIGMOD ’03.
[5] Amir Bar-Or, Daniel Keren, Assaf Schuster, and Ran Wol�. 2005. Hierarchical

decision tree induction in distributed genomic databases. TKDE (2005).
[6] Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural Language Processing

with Python. O’Reilly Media.
[7] Peter Bodik, Wei Hong, Carlos Guestrin, Sam Madden, Mark Paskin, and Romain

�ibaux. 2004. Intel Lab Data. (2004). h�p://db.csail.mit.edu/labdata/labdata.html
[8] Andries E Brouwer and Willem H Haemers. 2011. Spectra of graphs. Springer

Science & Business Media.
[9] Sabbas Burdakis and Antonios Deligiannakis. 2012. Detecting Outliers in Sensor

Networks Using the Geometric Approach. In ICDE ’12.
[10] Richard Cangelosi and Alain Goriely. 2007. Component retention in principal

component analysis with application to cDNA microarray data. Biology direct
(2007).

[11] Graham Cormode. 2011. Sketch techniques for approximate query processing.
Synposes for Approximate �ery Processing: Samples, Histograms, Wavelets and
Sketches, Foundations and Trends in Databases. NOW publishers (2011).

[12] Graham Cormode. 2013. �e continuous distributed monitoring model. SIGMOD
Record (2013).

[13] Graham Cormode and Minos Garofalakis. 2008. Approximate continuous query-
ing over distributed streams. TODS (2008).

[14] Graham Cormode, S Muthukrishnan, and Ke Yi. 2011. Algorithms for distributed
functional monitoring. TALG (2011).

[15] Alin Dobra, Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi. 2004.
Sketch-based multi-query processing over data streams. In EDBT ’04.

[16] Ky Fan. 1949. On a �eorem of Weyl Concerning Eigenvalues of Linear Trans-
formations I. In PANS ’49.

[17] Arik Friedman, Izchak Sharfman, Daniel Keren, and Assaf Schuster. 2014. Privacy-
Preserving Distributed Stream Monitoring.. In NDSS ’14.

[18] Moshe Gabel, Daniel Keren, and Assaf Schuster. 2013. Communication-e�cient
Outlier Detection for Scale-out Systems.. In BD3 @ VLDB.

[19] Moshe Gabel, Daniel Keren, and Assaf Schuster. 2015. Monitoring least squares
models of distributed streams. In KDD ’15.

[20] Moshe Gabel, Daniel Keren, and Assaf Schuster. 2017. Anarchists, Unite: Practical
Entropy Approximation for Distributed Streams. In KDD ’17.

[21] Moshe Gabel, Assaf Schuster, and Daniel Keren. 2014. Communication-e�cient
distributed variance monitoring and outlier detection for multivariate time series.

In IPDPS ’14.
[22] Minos Garofalakis and Vasilis Samoladas. 2017. Distributed �ery Monitoring

through Convex Analysis: Towards Composable Safe Zones. In ICDT ’17.
[23] Minos N. Garofalakis, Daniel Keren, and Vasilis Samoladas. 2013. Sketch-based

Geometric Monitoring of Distributed Stream �eries. PVLDB (2013).
[24] Nikos Giatrakos, Antonios Deligiannakis, and Minos Garofalakis. 2016. Scalable

approximate query tracking over highly distributed data streams. In SIGMOD’16.
[25] Nikos Giatrakos, Antonios Deligiannakis, Minos Garofalakis, Izchak Sharfman,

and Assaf Schuster. 2012. Prediction-based geometric monitoring over distributed
data streams. In SIGMOD ’12.

[26] Nikos Giatrakos, Antonios Deligiannakis, Minos Garofalakis, Izchak Sharfman,
and Assaf Schuster. 2014. Distributed geometric query monitoring using predic-
tion models. TODS (2014).

[27] Shenoda Guirguis, Mohamed A Sharaf, Panos K Chrysanthis, and Alexandros
Labrinidis. 2011. Optimized processing of multiple aggregate continuous queries.
In CIKM ’11.

[28] Ling Huang, XuanLong Nguyen, Minos N. Garofalakis, Joseph M. Hellerstein,
Michael I. Jordan, Anthony D. Joseph, and Nina Ta�. 2007. Communication-
E�cient Online Detection of Network-Wide Anomalies. In INFOCOM ’07.

[29] Ryan Huebsch, Minos Garofalakis, Joseph M Hellerstein, and Ion Stoica. 2007.
Sharing aggregate computation for distributed queries. In SIGMOD ’07.

[30] Michael Kamp, Mario Boley, Daniel Keren, Assaf Schuster, and Izchak Sharfman.
2014. Communication-e�cient distributed online prediction by dynamic model
synchronization. In ECML ’14.

[31] Srinivas R. Kashyap, Jeyashankher Ramamirtham, Rajeev Rastogi, and Pushpraj
Shukla. 2008. E�cient Constraint Monitoring Using Adaptive �resholds. In
ICDE ’08.

[32] KDD. 1999. KDD99 cup dataset. (1999). h�ps://kdd.ics.uci.edu/databases/
kddcup99/kddcup99.html

[33] Ram Keralapura, Graham Cormode, and Jeyashankher Ramamirtham. 2006.
Communication-e�cient distributed monitoring of thresholded counts. In SIG-
MOD ’06.

[34] Daniel Keren, Guy Sagy, Amir Abboud, David Ben-David, Assaf Schuster, Izchak
Sharfman, and Antonios Deligiannakis. 2014. Geometric monitoring of hetero-
geneous streams. TKDE (2014).

[35] Daniel Keren, Izchak Sharfman, Assaf Schuster, and Avishay Livne. 2012. Shape
Sensitive Geometric Monitoring. TKDE (2012).

[36] Arnon Lazerson, Daniel Keren, and Assaf Schuster. 2016. Lightweight Monitoring
of Distributed Streams. In KDD ’16.

[37] Arnon Lazerson, Izchak Sharfman, Daniel Keren, Assaf Schuster, Minos N. Garo-
falakis, and Vasilis Samoladas. 2015. Monitoring Distributed Streams using
Convex Decompositions. PVLDB (2015).

[38] David D Lewis, Yiming Yang, Tony G Rose, and Fan Li. 2004. Rcv1: A new
benchmark collection for text categorization research. JMLR (2004).

[39] Rui Li, Shengjie Wang, Hongbo Deng, Rui Wang, and Kevin Chen-Chuan Chang.
2012. Towards social user pro�ling: uni�ed and discriminative in�uence model
for inferring home locations. In KDD ’12.

[40] Wen Liu, Yan-Ming Shen, and Peng Wang. 2016. An E�cient Approach of
Processing Multiple Continuous �eries. JCSIT (2016).

[41] Charlo�e H Mason and William D Perreault Jr. 1991. Collinearity, power, and
interpretation of multiple regression analysis. JMR (1991).

[42] Sebastian Michel, Peter Trianta�llou, and Gerhard Weikum. 2005. KLEE: a
framework for distributed top-k query algorithms. In VLDB ’05.

[43] Shanmugavelayutham Muthukrishnan and others. 2005. Data streams: Algo-
rithms and applications. FnT-TCS (2005).

[44] Noam Palatin, Arie Leizarowitz, Assaf Schuster, and Ran Wol�. 2008. Mining
for miscon�gured machines in grid systems. Data Mining Techniques in Grid
Computing Environments (2008).

[45] �emistoklis Palpanas, Dimitris Papadopoulos, Vana Kalogeraki, and Dimitrios
Gunopulos. 2003. Distributed deviation detection in sensor networks. SIGMOD
Record (2003).

[46] Guy Sagy, Daniel Keren, Izchak Sharfman, and Assaf Schuster. 2010. Distributed
threshold querying of general functions by a di�erence of monotonic represen-
tation. PVLDB (2010).

[47] Aušra Saudargienė. 1999. Structurization of the covariance matrix by process
type and block-diagonal models in the classi�er design. Informatica (1999).

[48] Shetal Shah and Krithi Ramamritham. 2008. Handling Non-linear Polynomial
�eries over Dynamic Data. In ICDE ’08.

[49] Izchak Sharfman, Assaf Schuster, and Daniel Keren. 2007. Aggregate threshold
queries in sensor networks. In IPDPS ’07.

[50] Izchak Sharfman, Assaf Schuster, and Daniel Keren. 2007. A geometric approach
to monitoring threshold functions over distributed data streams. TODS (2007).

[51] Izchak Sharfman, Assaf Schuster, and Daniel Keren. 2008. Shape sensitive geo-
metric monitoring. In PODS ’08.

[52] Daniel A Spielman. 2007. Spectral graph theory and its applications. In FOCS’07.
[53] Ke Yi and Qin Zhang. 2009. Optimal tracking of distributed heavy hi�ers and

quantiles. In PODS ’09.

http://db.csail.mit.edu/labdata/labdata.html
https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

	Abstract
	1 Introduction
	2 Related Work
	3 MFDS Problem Definition
	4 Tracking multiple functions
	4.1 Geometric Monitoring Framework
	4.2 The Common Admissible Region

	5 Evaluation
	5.1 Evaluation Methodology
	5.2 Data Sets
	5.3 Regression and Condition Number
	5.4 PCA-Score
	5.5 Distance Metrics
	5.6 Five Number Summary
	5.7 Function Decomposition
	5.8 Covering Spheres
	5.9 Scalability With Number of Nodes

	6 Conclusions
	Acknowledgments
	A Appendix: Safe Zones
	A.1 Regression
	A.2 Condition Number
	A.3 PCA-Score
	A.4 Distance Metrics
	A.5 Percentiles
	A.6 Norm

	References

