The Deuvil is in the Details:
Implementing Flash Page Reuse with WOM Codes

Fabio Margaglia, Gala Yadgatr, Eitan Yaakobi, Yue Li¥, Assaf Schustér André Brinkmani
fJohannes Gutenberg UniveritMainz,
*Computer Science Department, Technion,
$California Institute of Technology

Abstract minimizing user and internal write traffic [14, 19, 20, 28,

Flash memory is prevalent in modern servers and dt- 38: 42, 46, 55] and distributing erasure costs evenly
vices. Coupled with the scaling down of flash techngfcross the drive's blocks [7, 22, 25, 27]. _
ogy, the popularity of flash memory motivates the search” Promising technique for reducing block erasures is to
for methods to increase flash reliability and lifetime. Er&lS€ write-once memory (WOM) codes. WOM codes alter
sures are the dominant cause of flash cell wear, but {&€ logical data before it is physically written, thus allow
ducing them is challenging because flash isrde-once g the reuse of cells for multiple writes. They ensure that,
medium— memory cells must be erased prior to writing®" EVery consecutive write, ones may be overwritten with

An approach that has recently received considerableg0s, but not vice versa. Reusing flash cells with this
tention relies onwrite-once memory (WOMjodes, de- technique might make it possible to increase the amount
signed to accommodate additional writes on write-on&data written to the block before it must be erased.
media. However, the techniques proposed for reusing flastrlash page reuse is appealing because it is orthogonal
pages with WOM codes are limited in their scope. Marig other FTL optimizations. Indeed, the design of WOM
focus on the coding theory alone, while others Sugg@gdes and systems that use them has received much atten-
FTL designs that are application specific, or not applicion in recent years. While the coding theory community
ble due to their complexity or overheads, or due to specifficuses on optimizing these codes to reduce their redun-
constraints of MLC flash. dancy and complexity [9, 10, 13, 17, 44, 49], the storage

This work is the first that addresses all aspects of paggmmunity focuses on SSD designs that can offset these
reuse within an end-to-end implementation of a gener@verheads and be applied to real systems [24, 36, 53].
purpose FTL on MLC flash. We use our hardware im- However, the application of WOM codes to state-of-
plementation to directly measure the short and {ergn the-art flash chips is not straightforward. MLC chips im-
effects of page reuse on SSD durability, I/0 performanpese additional constraints on modifying their voltage lev
and energy consumption, and show that FTL design mett. Previous studies that examined page reuse on real

explicitly take them into account. hardware identified some limitations on reprogramming
) MLC flash, and thus resort to page reuse only on SLC
1 Introduction flash [24], outside an SSD framework [18], or within a

Flash memories have special characteristics that méRaited specialpurpose FTL [31].
them especially useful for solistate drives (SSD). Their Thus, previous SSD designs that utilize WOM codes
short read and write latencies and increasing throughpave not been implemented on real platforms, and their
provide a great performance improvement Comparedh@neﬁts were analyzed by simulation alone, raising the
traditional hard disk based drives. However, once a flagpncern that they could not be achieved in real world stor-
cell is written upon, changing its value from 1 to 0, it mugtge systems. In particular, hardware aspects such as pos-
be erased before it can be rewritten. In addition to the Bible increase in cell wear and energy consumption due
tency they incur, these erasures wear the cells, degradihe additional writes and higher resulting voltage lev-
their reliability. Thus, flash cells have a limited lifetime€ls have not been examined before, but may have dramatic
measured as the number of erasures a block can enduigplications on the applicability of this approach.
Multi-level flash cells (MLC), which support four volt- In this study, we present the first end-to-end evaluation
age levels, increase available capacity but have especiathd analysis of flash page reuse with WOM codes. The
short lifetimes, as low as several thousands of erasuffgsst part of our analysis consists of a ldevel evaluation
Many methods for reducing block erasures have beeffour state-of-the-art MLC flash chips. We examine the
suggested for incorporation in the flash translation laygossibility of several reprogramming schemes for MLC
(FTL), the SSD management firmware. These incluflash and their short and lortgrm effects on the chip’s

durability, as well as the difference in energy consumpti@xtra cells required to encode the original message, (b)
compared to that of traditional use. the encoding and decodirgdficiency and (c) thesuccess

The second part of our analysis consists of a systerate—the probability of producing an encoded output that
level FTL evaluation on the OpenSSD board [4]. Ouwan be used for overwriting the chosen cells. Any two of
FTL design takes into account the limitations identifieghese characteristics can be optimized at the cost of com-
in the lowlevel analysis and could thus be implementgstomising the third.
and evaluated on real hardware. We measure erasures a@bnsider, for example, the code depicted in Table 1,
I/O response time and compare them to those observedtrere encoding and decoding are done by a simple table
previous studies. lookup, and therefore have complexif1) and a success

The discrepancy between our results and previous on&® of 100%. However, this code incurs a capacity over-
emphasizes why understanding level constraints on head of 50% on each write. This means that (1) 0§1Iy
page reuse is crucial for higlvel designs and their ob-of the overall physical capacity can be utilized for logical
jectives. We present the lessons learned from our analy$asa, and (2) every read and write must access 50% more
in the form of guidelines to be taken into account in futureells than what is required by the logical data size.
designs, implementations, and optimizations. The theoretical lower bound on capacity overhead for

The rest of this paper is organized as follows. Sectior@o writes is 29% [40]. Codes that incur this minimal
describes the basic concepts that determine to what extarérhead¢apacity achievinpare not suitable for real sys-
it is possible to benefit from flash page reuse. We identiiyms. They either have exponential and thus inapplica-
the limitations on page reuse in MLC flash in Section Ble complexity, or complexity ofilogn (wheren is the
with the implications on FTL design in Section 4. We dazumber of encoded bits) but a failure rate that approaches
scribe our experimental setup and FTL implementation in10, 56]. Thus, early proposals for rewriting flash pages
Section 5, and present our evaluation in Section 6. We suging WOM codes that were based on capacity achieving
vey related work in Section 7, and conclude in Section &odes were impractical. In addition, they required par-

. . tially programming additional pages on each write, mod-
2 Preliminaries ifying the physical page size [8, 18, 23, 30, 36, 50], or
In this section, we introduce the basic concepts that detepmpressing the logical data prior to encoding [24].
mine the potential benefit from flash page reuse: WOM Two recently suggested WOM code families, Polar [9,
codes, MLC flash, and SSD design. 10] and LDPC [56], have the same complexities as the er-
ror correction codes they are derived from. For these com-
. o plexities, different constructions incur different cajpac
Write-once memory (WOM) codes were first introduceg|,erheads, and the failure rate decreases as the capacity
in 1982 by Rivest and Shamir, for recording informasyerhead increases. Of particular interest are construc-
tion multiple times on a write-once storage medium [40kqn in which the overhead of the first write is 0, i.e., one
They give a simple WOM code example, presented in Tagica| page is written on one physical page. The data
ble 1. This code enables the recording of two bits @hcoded for the second write requires two full physical
mfprma‘uon n three cel!s Data bitg 1st write| 2nd write] pages for one logical page. Such a construction is used in
twice, ensuring that in =7 111 | 000 the design of ReusableSSD [53], where the second write is
both writes the cells 57 011 100 performed by programming pages containing invalid data
change their value only7g 101 010 on two different blocks in parallel.
from 1 to 0. For example,[g 110 001
2.2 Multi-Level Cell (MLC) Flash

if the first message to be .
Table 1:WOM code example _ . .
stored is 00, then 110 is P A flash chip is built from floating-gate cells whose state

written, programming only the last cell. If the secondepends on the number of electrons they retain. Writing
message is 10, then 010 is written, programming tfseedone byprogramminghe cell, increasing thiareshold
first cell as well. Note that without special encoding, O@oltage (/;,) required to activate it. Cells are organized in
cannot be overwritten by 10 without prior erasure. If thalocks, which are the unit of erasure. Blocks are further
first and second messages are identical, then the cellsddaded into pages, which are the read and program units.
not change their value between the first and second writesSinglelevel cells (SLC) support two voltage levels,
Thus, before performing a second write, the cell valussapped to either 1 (in the initial state) or 0. Thus, SLC
must bereadin order to determine the correct encoding.flash is a classic write-once memory, where pages can be
WOM code instances, oconstructions differ in the reused by programming some of their 1's to 0’s. Multi
number of achievable writes and in the manner in whidével cells (MLC) support four voltage levels, mapped to
each successive write is encoded. The applicability ofLla (in the initial state), 01, 00 or 10This mapping, in
WOM code construction to storage depends on three chahich a single bit is flipped between successive states,
acteristics: (a) theapacity overhead—the number of minimizes bit errors if the cell’'s voltage level is distuthe

2.1 Write-Once Memory Codes

Hti)gith L;:V Al6 | A27 | B16 | B29 | C35

@ Feature size | 16nm | 27nm | 16nm | 29nm | 35nm

Figure 1: Normal (11) . Page size 16KB | 8KB | 16KB | 4KB 8KB
prggramming order T Lowbitprogram | pages/block | 256 | 256 | 512 | 256 | 128
and states of MLC ER m Spare area (%) 10.15| 7.81 | 11.42 | 5.47 3.12
flash. ERis the ini- 1) (X0) Lifetime (T) 3K 5K 10K 10K NA

P1 P2 resent different manufacturers. The C35 chip was examimed i

tial (erased) state. A 9 0 L Highbitprogram — Tahle 2: Evaluated flash chip characteristics. A, B and C rep-
ER
(11) | [(01)| [(00) previous study, and is included here for completeness.

The least and most significant bits represented by the valf-redundant bits, chosen according to the expected BER
age levels of a mukltievel cell are mapped to two separatat the end of a block’s lifetime [56].
pages, thdow pageandhigh page respectively. These Write requests cannot update the data in the same place
pages can be programmed and read independently. Hévis stored, because the pages must first be erased. Thus,
ever, programming must be done in a certain order to ewdites are performedut-of-place the previous data lo-
sure that all possible bit combinations can be read cogtion is marked as invalid, and the data is written again
rectly. Triple-level cells (TLC) support eight voltage tevon a clean page. Théash translation layer (FTL)s the
els, and can thus store three bits. Their mapping scherB&D firmware component responsible for mapping logical
and programming constraints are similar to those of ML&atldresses to physical pag&§e discuss relevant compo-
flash. We focus our discussion on MLC flash, which is theents of the FTL further in Section 4.
most common technology in SSDs today. R

Figure 1 depicts a normal programming order of the Io§/ Flash Reliability
and high bits in a mulilevel cell. The cell’s initial state Flash chips do not support reprogramming via their stan-
is the erased/R?) state corresponding to 11. The lowdard interfaces. Thus, the implications of reprogramming
bit is programmed first: programming 1 leaves the cell th the cells’ state transitions and durability cannot be de-
the erased state, while programming 0 raises its level aivéd from standard documentation, and require experi-
moves it to a temporary state. Programming the high bitentation with specialized hardware. We performed a se-
changesthe cell’'s state according to the state it was in afies of experiments with several state-of-the-art flaspghi
the low bit was programmed, as shown in the bottom pa#tevaluate the limitations on reprogramming MLC flash
of the figure! We discuss the implications of this mappingages and the implications of reprogramming on the chip’s
scheme on page reuse in the following section. lifetime, reliability, and energy consumption.

Bit errors occur when the state of the cell changesou:g-1 Flash Evaluation Setup

intentionally, causing a bit value to flip. The reliability)
a flash block is measured by it error rate (BER)—the We used four NAND flash chips from two manufacturers

average number of bit errors per page. The high voltagfad various feature sizes, detailed in Table 2. We also
applied to flash cells during repeated program and erdiglude in our_d|scu35|on_the observations from a previous
operations gradually degrades their ability to retain e a>tUdy on & chip from a third manufacturer [31]. Thus, our

plied voltage level. This causes the BER to increase as Hi2!ysis covers three out of four existing flash vendors.
block approaches the end of its lifetime, which is mea- Chip datasheets include the expected lifetime of the
sured in program/erase (P/E) cycles. chip, which is usually the maximal number of P/E cycles

Bit errors in MLC flash are due mainly tetention er- that can be performed before the average BER reaches

T) o
rors andprogram disturbancgl1]. Retention errors occur10 . However, cycling the chips in a Iak_) setup usually

when the cell’s voltage level gradually decreases beldigars the cells faster than normal operguon because they
the boundaries of the state it was programmed to. P ogram and erase the same block continuously. Thus, the

gram disturbance occurs when a cell's state is altered di] -etSTjOI? BER Is rlea(;hed after feV_/der Pt/hE (i);c::gs the;n ex-
ing programming of cells in a neighboring page. Int cc eh'. n ourheva uation, W? (r:}onsn er 3 e 'ﬁgé 0 ¢
following section, we discuss how program disturban£@e CNiPs as the minimum of the expected number of cy-

limits MLC page reuse, and evaluate the effects of reusiﬂ&é’ ?Zd tr;?_rr:]uewtk;er frgug;? dtocrt?azcr]sanBEtﬁfabz: NASII
a block’s pages on its BER. ur experi w u using ig

commercial NAND flash tester [6]. The tester allows soft-

Error correction codegECC) are used to correct some .
of the errors described above. The redundant bits of tha < control of the physically programmed flash blocks

ECC are stored in each pagejsare area The number of and pages within them. By disabling the ECC hardware

. . . we were able to examine the state of each cell, and to count
bit errors an ECC can correct increases with the numl‘t)ﬁztra bit errors in each page

Lpartially programming the high bit in the temporary statgssigned _Some manufacturers emplgcrambling within t_heir
to reduce program disturbance. chip, where a random vector is added to the logical data

H L H L H L H L

ER ER ER
(11) - (11) (11) _
1 0 o = 1 0 o> 1 0 o
E g g AT z
ER Tmp 8 s A, frm E
(11) (X0) - ® < [ay (X0) -
1 0 0 1 T I ~
\ z =3 g ll : Ol 2
(11) | [(01)} | (00) 8 Q Q@ (11) (X0) “1
T oN-+1\0 0 o] r~ T T 0 0 1
] ﬁ) J g z : g T
ER\ /P1\//P2\ /P3\ T = 9 ER\ /P1\ /P2\ /P3\ 5
@y | /o] ©)) [0} & & [an)[| (o) @0|g
N N N B

(a) LHL reprogramming (b) LHH reprogramming (c) LHH reprogramming (d) LLH reprogramming
Figure 2. State transitions in the three reprogramming schemes. matrow represents an attempted transition. A dashed
arrow represents a failed transition, with a bold arrow egpnting the erroneous transition that takes place inst@ady LLH
reprogramming achieves all the required transitions fgepause without program disturbance.

before it is programmed. Scrambling achieves uniforfully used block. Here, too, two state transitions fail.
distribution of the flash cell levels, thus reducing various A possible reason for the failed transitions in the LHL
disturbance effects. In order to control the exact data tlsaheme is that the voltage applied by the command to pro-
is programmed on each page, we bypass the scramblingm the low bit is not high enough to raigg, from P1
mechanism on the chips that employ it. to P2 and fromER to P3.2 The transition fromP3 to

Our evaluation excludes retention errors, which occif2 in the LHH scheme is impossible, because it entails
when considerable time passes between programming dadreasing’;,. Another problem in the LHH scheme oc-
reading a page. Reprogramming might increase the probrs in state”1 when we attempt to leave the already pro-
ability of retention errors because it increases the celjsammed high bit untouched. Due to an unknown distur-
Vin. However, since it is intended primarily for hot datahance, the cell transitions unintentionally &2, corrupt-

we believe it will not cause additional retention errors. ing the data on the corresponding low page.
Three of these problematic transitions can probably

3.2 Limitations on reprogramming be made possible with proper manufacturer support—the
Flash cell reprogramming is strictly limited by the contransition fromP3 to P2 in the LHH scheme would be
straint thatV};, can only increase, unless the block ipossible with a different mapping of voltage levels to
erased. At the same time, WOM encoding ensures thatates, and the two transitions in the LHL scheme could
reprogramming only attempts to change the value of eagiicceed if a higher voltage was applied during reprogram-
bit from 1 to 0. However, additional limitations are im-ming. While recent technology trends, such as one-shot
posed by the scheme used for mapping voltage levelsptogramming and 3D V-NAND [21], eliminate some con-
bit values, and by the need to avoid additional prograstraints on page programming, applying such architectural
disturbance.Thus, page reuse must followreprogram- changes to existing MLC flaghight amplify program dis-
ming schemavhich ensures that all reprogrammed celtsirbance and increase the BER. Thus, they require careful
reach their desired stat&Ve use our evaluation setup tanvestigation and optimization.
examine which state transitions are possible in practice An alternative to modifying the state mapping is modi-
We first consider three reprogramming schemes in whiyting the WOM encoding, so that the requirement that 1's
a block has been fully programmed, and show why thaye only overwritten by 0's is replaced by the requirement
are impractical. We then validate the applicability of rehat O’s are only overwritten by 1'§igure 2(c) shows the
programming when only the low pages of the block havesulting low-high-high CHH) reprogramming scheme.
been programmed before. Its first drawback is that it corrupts the low pages, so a high
Let us assume that the entire block’s pages have bg@age can be reused only if the data on the low page is ei-
programmed before they are reused. Thus, the statethef invalid, or copied elsewhere prior to reprogramming.
the cells are as depicted in the bottom row of Figure 1. Such reprogramming also corrupted the high pages adja-
thelow-high-low (LHL)reprogramming scheme, depictedent to the reprogrammed one. Thus, this scheme allows
in Figure 2(a), we attempt to program the low bit from thisafe reprogramming of only one out of two high pages.
state. The thin arrows depict possible desired transitiofise benefits from such a scheme are marginal, as these
in this scheme. Two such transitions are impossible, @ages must also store the redundancy of the encoded data.
sulting in an. und.ESIrEd state (depicted by the bold arroW)'ZThe transition from& R to P3 actually succeeded in the older, C35
In the low-high-high (LHH)reprogramming scheme, dezhip [31]. Al other problematic transitions discussed istsection
picted in Figure 2(b), the high page is reprogrammed irfegled in all the chips in Table 2.

Interestingly, reprogramming the high bits in chips from| Num. of Prp i cycles | A16 | A27 | B16 | B29
manufacturer A returned an error code and did not change 7' (= entire lifetime) | 32% | 29% | 20% | 30.5%
their state, regardless of the attempted transition. A pos- 0.6 xT 8% | 9.5% | 8% | 9%
sible explanation is that this manufacturer might block re 04xT 6% | 6.5% | 6% | 6.5%
programming of the high bit by some internal mechanism 0.2 xT _20/‘_’ . 3_% 3% . 3.5%
to prevent the corruption described above. Table 3:Expected reduction in lifetime due to increadég.

The problems with the LHL and LHH schemes moti- se-3
vated the introduction of thiow-low-high (LLH) repro- o LLH 100%
gramming scheme by Margaglia et al. [31]. Blocks in gtﬁgggg —
this scheme are programmed in two rounds. In the firgtle.g.Basglhgij% ________
round only the low pages are programmed. The secogd : :
round takes place after most of the low pages have been
invalidated. All the pages in the block are programmed e
in order, i.e., a low page is reprogrammed and then the |7 5
corresponding high page is programmed for the first time,"**s 500 1000 1500 2000 2500 3000
before mqving on to the r_lext _Pa" of pages. Figure 3:Effects of in(l;/rEe?ayng%i’m on the A16 chip.

We validated the applicability of the LLH scheme on
the chips of manufacturers A and B. Figure 2(d) depidi® 0 is 0.5, is our baseline. With; 1, ;; the probability of
the corresponding state transitions of the cells. Sinck botwas 0.75 and 0.5 in the low and high page, respectively.
programming and reprogramming of the low bit leave thkhis corresponds to the expected probabilities after LLH
cell in either the erased or temporary state, there arer@programming. We read the block’s content and recorded
limitations on the programming of the high page in thée BER after every P/E cycle. We repeated each experi-
bottom row. This scheme works well in all the chips weent onsix blocks, and calculated the average.
examined. However, it has the obvious drawback of leav-The implication of an increase in BER depends on
ing half of the block’s capacity unused in the first roungyhether it remains within the error correction capabili-
This leads to the first lesson from our ldevel evaluation. ties of the ECC. A small increase in BER at the end of

Lesson 1: Page reuse in MLC flash is possible, but cag p|ock's lifetime might deem it unusable, while a large
utilize only half of the pages and only if some of its Ccrease in a ‘young’ block has little practical effegor
pacity has been reserved in advance. FTL designs mysthip with lifetimeT’, let 7/ be the number of cycles re-
consider the implications of this reservation. quired to reach a BER af0—3 in this experiment. Then

3.3 AverageV}, and BER T — T' is thelifetime reductiorcaused by increasinig;, .

In analyzing the effects of reprogramming on a chipt%ur r;:_sults, S“mmf”“é%? n Table_3, we_:trgocongstﬁ_nthm all
durability, we distinguish betweeshort-termeffects on € Chips we examinedrrogramming With, .7, whic

the BER due to modifications in the current P/E cycle, aﬂﬁ?rresponds to a higher averaigg, shortened the chips’

long-termwear on the cell, which might increase the pro lfetime considerably, by 18.5-32%.

ability of errors in future cycles. With this distinctiongy N the next set of experiments, we evaluated the fong
wish to identify asafeportion of the chip’s lifetime, dur- €rm effects of,. Each experiment had two parts: we
ing which the resulting BER as well as the long term weRfogrammed the block witt’, . in the first part, for a
are kept at an acceptable level. portion of its lifetime, and vylt_hP0_5 in the second part,

Reprogramming increases the probability that a cel]’éh'Ch consists of the remaining cycles. Thus, the BER
value is 0. Thus, the averad, of reused pages is higheln the second part represents the laagn effect of the
than that of pages that have only been programmed Or{yg_sed.programmmg in the first part. We varied the length
A higher V;, increases the probability of a bit error. Théf the first part between 20%, 40% and 60% of the block's
shortterm effects of increaseld,, include increased pro-lifetime. Figure 3 shows the BER of blocks in the A16
gram disturbance and retention errors, which are a dir€{P (the graphs for the different chips were similar), with
result of the current/;;, of the cell and its neighboringthe lifetime reduction of the rest of the chips in Table 3.
cells. The longterm wearis due to the higher voltage ap- Our results show that the lortgrm effect of increas-
plied during programming and erasure. ing V1, is modest, though nonnegligible—increasirig

Our first set of experiments evaluated the stiertn ef- early in the block’s lifetime shortened it by as much as
fects of increasedt;;, on a block’s BER. In each chip, we7%, 9% and 13%, with increaséd;, during 20%, 40%
performedT regular P/E cyclesvriting random dataon and 60% of the block’s lifetime, respectively.
one block, wherd is the lifetime of the chip as detailed
in Table 2. We repeated this processwith different distfi- sthe complete set of graphs for all the experiments desciibés
butions of 1 and OF, 5, in which the probability of a bit to section is available in our technical report [54].

le-2

le-3

BER

le-4F"

le-5

L2

Baseline Avg.
L1

0 500 1000

]
1500

i
2000

i
2500

3000

5e-3

T
LLH 60%
LLH 40% —
LLH 20% :
Baseline (p 0.5) ==

te-4l ‘

i
0 500 1000

i
1500

i
2000

i
2500 3000

i P/E cycles . . P/E cycles . .
Figure 4:Shortterm effects of reprogramming on the A16 chipFigure 5:Long-term effects of reprogramming on the A16 chip.

Num. of LLH cycles | Al6 A27 B16 | B29 Operation Baseline (1J) | LLH (uJ)
T (= entire lifetime) | 38% | 59.5% | 99% | 31% Erase 192.79 186.49
0.6 xT 8.5% 8% 7% | 8.5% Read () 50.37 50.37
04xT 5.2% 6% 5% | 5.5% Read H) 51.25 51.25
02xT 1% 25% | 3% 3% Program (1) 68.18 68.55
Table 4:Expected reduction in lifetime due to reprogramming. | Reprogram () NA 63.04
Program {) 195.65 180.85
3.4 Reprogramming and BER Average logical read 50.81 60.79
In the third set of experiments, we measured the effects| Average logical write 132.64 145.71

of reprogramming by performing LLH reprogramming Table 5:Energy consumed by flash operations on chip A16.

cycles on blocks in e{f‘Ch chip. Figure 4 Sho"YS the BEafﬁ but the B16 chips, LLH reprogramming in the first
results fpr t.he Al6 Ch.'p’ and Table 4 summarizes the %09% of the block’s lifetime resulted in BER that was well
pelctecflln;]etlmhe_ redl;]ctlon fOF”‘ﬁ re]:c_malnmg((j:m]?s. within the error correction capabilities of the ECC. We
na the chips, the BER in the first round o program ly on this observation in our FTL design in Section 4.
ming the low pages was extremely low, thanks to the lac We note, however, that the variance between the chips

of interference from the high pages. In the second rour\wlge examined is high, and that short and ldegn effects

however, the BER of all pages was higher than the baﬁ%’not depend only on the feature size. For example, the

line, and resulted in a reduction of lifetime greater the}&'lG chip is “better” than the A27 chip, but the B16 chip is

that Caufsth bé/_f;ncreasmgh. Vt_/e _belt|_eve ih‘f’llt a(;nf"’uotr“Worse" than the B29 chip. This leads to the second lesson
cause of this difference are optimizations tailored for the " =\ o aluation.

regular LH programming order [39]. These optimizations Lesson 2: The portion of the block’s lifetime in which its

are more common in recent chips, such as the B16 Ch'ﬂ)ages can be reused safely depends on the characteristics

In the last set of experiments, we evaluated the 1o % its chip. The FTL must take into account the ldegm
term effects of reprogramming. Here, too, each expel-

iment was composed of two parts: we programmed tTﬁ;plica‘tions of reuse on the chips it is designed for.
block with LLH reprogramming in the first part, and with3-5 Energy consumption
P, 5 and regular programming in the second part. We vaftash read, write and erase operations consume different
ied the length of the first part between 20%, 40% and 608mounts of energy, which also depend on whether the op-
of the block’s lifetime. Figure 5 shows the BER resulteration is performed on the high page or on the low one,
for the A16 chip, and Table 4 summarizes the expectadd on its data pattern. We examined the effect of repro-
lifetime reduction for the remaining chips. gramming on energy consumption by connecting an oscil-
We observe that the lorgrm effects of reprogrammingloscope to the SigNAS tester. We calculated the energy
are modest, and comparable to the ldgagn effects of in- consumed by each of the following operations on the A16
creasingy,. This supports our assumption that the addthip: an erasure of a block programmed with, ; and
tional shortterm increase in BER observed in the previoys=0.5, reading and writing a high and a low page, repro-
set of experiments is not a result of the actual reprogragramming a low page, and programming a high page on a
ming process, but rather of the mismatch between the ppattially-used block.
gramming order the chips are optimized for and the LLH To account for the transfer overhead of WOM encoded
reprogramming scheme. This is especially evident in tata, our measurements of read, program and reprogram
B16 chip, in which the BER during the first part was highperations included the 1/O transfer to/from the registers
above the limit ofl0~3, but substantially smaller in theOur results, averaged over three independent measure-
second part of the experiment. ments, are summarized in Table 5. We also present the
Thus, schemes that reuse flash pages only at the &esrage energy consumption per read or write operation
ginning of the block’s lifetime can increase its utilizatio with baseline and with LLH reprogramming, taking into
without degrading its longerm reliability. Moreover, in account the size of the programmed ddles reading of

L] are moved—read and copied to another available block,

—— Write Write Write and then the block is erased. These additional internal
LH L LH writes, referred to awrite amplification delay the clean-
[Partially-use cond. [Reuse cond ing process, and require, eventually, additional erasures
Write amplification does not accurately represent the uti-
Used Clean Write PartiallyUsed Reused |ization of drives that reuse pages for WOM encoded data,
(S since some redundancy must always be added to the log-
[Use cond.]

ical data to enable second writes [51, 52]. Thus, instead

of deriving the number of erasures performed by the FTL

used pages for supplying the invalid data as input to t]h&, jts \write amplification, we measure them directly.
WOM encoderand the number of pages that can be writ- Low-Low-High (LLH) programming. Blocks in a

ten before each erasure. Low-Low-High FTL cycle between four states, as de-
These results show that page reuse consumes maor S -
. o icted in Figure 6. In the initialcleanstate all the cells
overall energy than the baseline. This is in contrast 10 .
. . . . : are in the erased stateR If all the pages are programmed
previous studies showing possible energy savings. Th:fse

. . . write L1 H), the block reaches thesedstate. Alterna-
studies assumed that the energy is proportional to the nym-, . .
L . . . Ively, if only the low pages are usedfite L), the block
ber of programmedells which is equivalent in a first andr aches thaartiallv-usedstate. A partialivused block
in a second write [18, 53]. However, our hardware eval ® y) P w

. . canbereused, in which case the FTL will reprogram all or
uation shows that the number of reprogrammedesis . .
the dominant factor in energy consumption. While reprSpme ofthe low pages and all the high pagesife L,),
' ?ransitioning the block to thesusedstate. Alternatively,

gramming a lower page consumes less energy than thet _\é' ETL can program the high pages and leave the low

erage Ioglca_ll write in the baseline, the use of WOM el es untoucheduite H), thus transitioning the block
coding entails an extra read and page reprogram for e?&?

. . . he used state. Used and reused blocks return to the
logical write. The low energy consumption of the savea
clean state when they are erased.

erasures does not offset the additional energy consunie i o i

by those operations. We note, however, that when pa él’he ch0|9e of s_tate_ transition is detern_n_ned by the con-

reuse reduces the internal writes by the FTL, some enef§jjons depicted in Figure 6. The conditions that deter-

savings may result. We examine that possibility further ne when tqpartlally use useor reusea block, as well

Section 6, but can already draw the following lesson. &S the encoding scheme used for reprogrammed pages, are
Lesson 3: With WOM encoded data, the energy codn turn determined by the specific FTL design. We next

sumed by the additional flash operations is larger th%escnbd.LH—FTL—the FTL used for our evaluation.

that required by the saved erase operations. Energy sav¥VOM encoding. When WOM codes are employed for

ings are possible only if they reduce the number of writgusing flash pages, the FTL is responsible for determin-

Figure 6:Block life cycle in a Low-Low-High FTL.

operations performed on the flash chip. ing whether a logical page is written in a first or a sec-
) ond write, and for recording the required metadalae
4 FTL Design choice of WOM code determines the data written on the

Following our lessons from Section 3, we describe tfi@W Pages of partialiyused blocks, and the data written on
general design principles for lzow-Low-High FTL—an _them when t_hey are reprogrammed. The encoding scheme
FTL that reuses flash pages using the LLH reprogrammifig-LH-FTL is similar to that of ReusableSSD [53]. Data
scheme We assume such an FTL would run on the SSB the low pages of partla.llylsed blocks is written as is,
controller, and utilize the physical page and block opeﬁglthout stora}ge or encoding overheads. Data'wrltten as
tions supported by the flash controlidhus, it shares the & Second write on low pages of reused blocks is encoded
following basic concepts with the standard FTL and Sshith & Polar WOM code that requires two physical pages
To accommodate out-of-place writes, the physical stdf-Store the encoded data of one logical page [9, T0is
age capacity of the drive is larger than its exported logic4lOM implementation has a 0.25% encoding failure rate.
capacity. The drive’sverprovisionings defined as 7%, ~ We note that the mathematical properties of WOM
whereT andU represent the number of physical and logFodes ensure they can be applied to any data pattern,
cal blocks, respectively [15]. Typical values of overprovincluding data that was previously scrambled or com-
sioning are 7% and 28% for consumer and enterprise cl@ggssed. In fact, WOM encoding also ensures an even
SSDs, respectively [45]. distribution of zeroes throughout the page, and can thus
Whenever the number of clean blocks drops belowr@place data scrambling on second writes.
certain thresholdgarbage collections invoked. Garbage While manufacturers have increased the flash page size
collection is typically performedyreedily picking the (see Table 2), the most common size used by file sys-
block with the minimumvalid count(the lowest number tems remains 4KB. Our LLH-FTL design distinguishes
of valid pages) as the victim faleaning The valid pages between the logical page used by the host and some larger

physical page size. Thus, the FTL maps several logichnces in which a partialysed block is reclaimed, and
pages onto each physical page. This allows LLH-FTL tts high pages will be written without rewriting the low
program the encoded data for a second write on one phyages. Finally, the reuse condition ensures efficient reuse
ical page. In the rest of this section we assume that thiethe low pages. The FTL allows partiallysed blocks to
physical page size is exactly twice the logical page sizccumulate until the reuse condition is met.

We note that the changes required in the design if the physOur LLH-FTL allows accumulation of at most
ical pages are even larger are straightforward. threshold,,, partially-used blocks. This threshold is up-

If the physical and logical page sizes are equal, a Lodated in each garbage collection invocation. An increase
Low-High FTL can utilize the multplane command thatin the valid count of the victim block compared to previ-
allows programming two physical pages in parallel on twaus garbage collections indicates that the effective over-
different blocks, as in the ReusableSSD design. In bgitovisioned space is too low. In this case the threshold is
approaches, the latency required for reading or writing eacreased Similarly, a decrease in the valid count indi-
encoded logical page on a second write is equal to the ¢ates that page reuse is effective in reducing garbage col-
tency of one flash page write. lections, in which case the thresholdngreasedo allow

As in the design of ReusableSSD [53], LLH-FTL admore reuse. Thus, the partially-use and reuse conditions
dresses the 0.25% probability of encoding failure by wrisimply compare the number of partiallised blocks to
ing the respective logical page as a first write on a cleHi¢ threshold. To maintain the separation between hot and
block, and prefetches the content of physical pages that &p&l pages, LLH-FTL does not utilize the use condition.
about to be rewritten to avoid the latency of an additional Expectedbenefit. The reduction in erasures in LLH-
read. Pages are reprogrammed only inght portion of FTL depends on the amount of hot data in the work-
their block’s lifetime (the first 40% in all but one of thdoad, and on the number of valid pages that remain on
chips we examineglthus limiting the longterm effect of partially-used blocks when they are reused. We assume,
reprogramming to an acceptable level. for the sake of this analysis, that the low pages on a

Hot and cold data separation. Workloads typically reused blockas well as all the pages on an erased block
exhibit a certain amount of skew, combining frequentfjave all been invalidated. Without reprogrammitigs
updatechot data with infrequently writtezold data. Sep- Means that there is no write amplification, ate ex-
arating hot and cold pages has been demonstrated as BERted number of erasuresfis=7, where)/ is the num-
eficial in several studies [16, 22, 25, 47]. Previous stuBer of logical page write requests, andis the number
ies alsoshowed that second writes are most beneficial f8f Pages in each block. With LLH programmingyery
hot pages, minimizing the time in which the capacity ¢/0 low pages are reused to write an extra logical page,
reused blocks is not fully utilized [31, 36, 52, 53]. IFON+7 logical pages are written on each block before it
LLH-FTL, we write hot data on partiallpsed and reusediS erased. LeX be the portion of hot data in the work-
blocks, and cold data on used blocks. Hot data on plad,0 < X < 1, and recall that only blocks containing
tially-used blocks is invalidated quickly, maximizing th&0t pages are reused. Then the expected number of era-
benefit from reusing the low pages they are written otres isE’=(1—X)x+X Njf% =E(°%%). The maximal
Reused blocks store pages in first as well as in secarduction in erasures is expected in traces where almost
writes. Nevertheless, we use them only for hot data, in @l the write requests access hot pag&s{ 1), where
der to maintain the separation of hot pages from cold oné%.= 0.8 F, a reduction of 20%.

The classification of hot and cold pages is orthogonal toFor a rough estimate of the resulting lifetime extension,
the design of LLH-FTL, and can be done using a varielgt us assume that all the blocks are reused in the first 40%
of approaches [12, 22, 33, 47]. We describe the classificdtheir lifetime, i.e., during).47T cycles. In each of these
tion schemes used in our experiments in Section 5. cycles,2X logical pages are written on these blocks, a to-

Partially-use, use and reuse conditionsThe number tal of 0.57'N. Assuming we can use the remainiog1’
of partially-used blocks greatly affects the performance eycles, we write an additiondl.67'N pages. The total
a Low-Low-High FTL. Too few mean that the blocks willamount of data written i5.17°N, an increase of 10% com-
be reused too soon, while they still contain too many valighred to regular programming. However, we must also
low pages, thus limiting the benefit from reprogrammingonsider the reduction in lifetime observed in the exper-
Too many mean that too many high pages will remain utments in Section 3.3. A 5%-6% reduction means that
used, reducing the available overprovisioned space, whibe reduction in erasures translates to a modest 4%-5%
might increase internal page moves. The three conditidnerease in lifetime.
in Figure 6 control the number of partiallysed blocks: if ~ Comparing our analysis to that of previous designs is
the partially-use condition does not hold, a clean blockm®t straightforward. Most studies, including of designs
used with regular LH programming. In addition, the FTlhat reuse flash pages with WOM codes, did not consider
may define a use condition, which specifies the circuitine overall amount ofogical datathat could be written

on the device. The only comparable analysis is that ®2 FTL Implementation

ReusableSSD [53], which resulted in an estimated redygre FTL used on the OpenSSD board is implemented in
tion of up to 33% of erasures, assuming that all the blocksftware, and can thus also be used asranlatorof SSD
(storing both hot and cold data) could be reused, and thatformance when executed on a standard server without
both the low and high pages could be reprogrammed. TBising connected to the actual board. Replaying a work-
analysis also excluded the lifetime reduction due to repigad on the emulator is considerably faster than on the
gramming. This discrepancy leads to our nextlesson. hoard itself, because it does not perform the physical flash
Lesson 4: A reduction in erasures does not necessarifperations. We validated this emulator, ensuring that it re
translate to a substantial lifetime increase, due to the |Oﬁ%rts the sameountof flash operations as would be per-
utilization of pages that store WOM encoded data, and fg§ymed on the actual board. Thus, using the emulator, we
the longterm effects of reprogramming. The increase iere able to experiment with a broad set of setups and
lifetime strongly depends on chip characteristics. parameters that are impractical on the Jasmine board. In
. particular, we were able to evaluate an FTL that uses 8KB
5 SSD Evaluation Setup physical pages, rather than the 32KB physical pages man-
In our FTL evaluation, we wish to quantify the possiblgated by the limitations of the board.We refer to the FTL
benefit from reusing flash pages with WOM codes, whe@rsions with 32KB pages d4$'7 L name)-32.
all the limitations of physical MLC flash and practical We firstimplemented baselineFTL that performs only
codes are considered. Thus, we measure the savingfré writes on all the blocks. It employs greedy garbage
erasures and the lifetime extension they entail, as well@slection within each bank and separates hot and cold
the effects of LLH reprogramming on I/O performance. pages by writing them on two different active blocks. The
5.1 OpenSSD evaluation board identi_fication of hot pages is descri_bed i_n Secti(_)n 5.3. We
We use the OpenSSD Jasmineboard [4] for our FTL evaa,-SO implemented LLH—FTL'descnbed n Sectiort 4t .
uses greedy garbage collection for choosing the block with

uation. The board includes an ARM-based Indifix the minimum number of valid logical pages among used
Barefoot controller, 64MB of DRAM for storing the flash 9 pag 9

.)) and reused blocks. Garbage collection is triggered when-
translation mapping and SATA buffers, aaghtslots for &%er a clean block should be allocated and no such block is

35nm MLC flash chips. The chips have two planes aL:_a’la%{ralIabIe.If the number of partially-used blocks is lower

8KB physical pages. The device uses large 32KB virt than the threshold and a hot active block is required, LLH-

. ; L allocates the partially-used block with the minimum
pages for improved parallelism. Thus, erase blocks arel. . : .
4AMB and consist of 128 contiguous virtual pages [4]. valid count. If the threshold is exceeded or if a cold active

lock is required, it allocates a new clean block.
On the OpenSSD board, an FTL that uses 8KB pad%grhe threshold is updateafter each garbage collection,

rather than 32KB virtual pages incurs unacceptable lat Niing into account the valid count in previous oarbage
cies [43]. Thus, we use a mapping granularity of 4K g P 9 9

) callections. Due to lack of space, we present results only
logical pages and a merge buffer that ensures that datg IS - .
written at virtual-page granularity [31, 43]. The downsid®" ¥ = 5, and two initial threshold values, which were the
Lo most dominant factor in the performance of LLH-FTL.

of this optimization is an exceptionally large block size LH-FTL reuses low pages on partially-used blocks

(1024 logical pages) that increases the valid count of usgzny if all the logical pages on them have been invali-

and partiallyused blocks. As a result, garbage collection ted. LLH-FTL-32 writesfour logical pages on each

entails more page moves, and reprogramming is POSSIEEsed physical pages, requiriaigshtconsecutive invalid
on fewer pages.

We were also unable to fully implement WOM encodelgglcal pages in order to reuse a low page. We evaluate the

. . effect of this limitation on LLH-FTL-32 in Section 6.
second writes on the OpenSSD board. While mature an§ur implementation of LLH-FTL does not include ac-

pommonly used error correction codes are |mplemen Al WoM encoding and decodinigr the reasons de-
in hardware, the Polar WOM codes used in our design are. L - .
currently onlv available with software encoding and OIgcnbed abovelnstead, it writes arbitrary data during re-
ently only. . hcoding ogramming of low pages, and ignores the ECC when
coding.These implementations are prohibitively slow, a .
are thusmpractical for latency evaluation purposes. In adreadmg reprogrammed datén a real system, the WOM
re thusmp y purp ' encoding and decoding would be implemented in hard-
dition, in OpenSSD, only the ECC hardware accelerator is . :
ware, and incur the same latency as the ECC. Thus, in
allowed to access the page spare area, and cannot be dis- . . .
our evaluation setup, thedverheads are simulated by the

abled. Thus, reprogrammed pages will always appear C computations on the OpenSSD board. Coding fail-

e L o e =l e simulted by random confp i he appr-
preve 9 page sp Rriate probability. To account for the additional prefetch
area for encoding purposes [53]. We address these limlia-

tions in our FTL implementation described below. 4The code for the emulator and FTLs is available online [1, 2].

]]
< .\\Q;

S & @
<& QJ&Q’Q) @6\ @e@\ 8 \\w\‘\\ @@& Each workload required a different device size, and
N . . .
& D O"\O@Qﬁ’ $<a$‘° %i?;xxo ’\0@@\ thus, a different number of blocks. In order to maintain
Sicis > T 16 3151 075 (02 45 the same <_jegree of paralleli_sm in all experiments, we al-
stg.0 2 336 | 085| 085 | 16 ways configured the SSD with 16 banks, with 256, 512
hm.0 4 | 32] 66 |064] 07 | 23 and 1024 4MB blocks per bank for drives of size 16GB,
rsrch0 15 23710911 095) 11 32GB and 64GB, respectively. Pages were striped across
src20 15 258 | 0.89 | 091 | 10 bank that bel d to bank — 116
ts.0 2 298| 082 094 | 12 anxs, so that pagebelonged to bank = p mod 10.
usr.0 25 37 | 06 | 086 | 14
wdev.0 1 1.89| 0.8 | 085 | 7 6 Evaluation
prxy_0 125| 64 | 20.7 | 0.97 | 0.67 | 83 o _
proj-0 4 6.98 | 0.88 | 0.14 | 145 Reduction in erasures.To verify that the expected reduc-
weh 0 2 336 | 07 | 0.87] 17 tionin erasures from LLH reprogramming can be achieved
online 55 | 16 | 3.14| 0.74 | 031 | 16 in real workloads, we calculated the expected reduction
xgglrjesseigmh g 4156 019 8"3‘; ;3 for each workload according to the formula in Section 4.
webmail 8 T35 43 (082 03 | 24 We then used the emulator to compare the number of era-
web-online 14 7.88 | 0.78 | 0.31| 43 sures performed by the baseline and LLH-FTL. Our re-

[zipf(0.9,0.951)] 125 16 [200 | 1 [05 [48 | sults are presented in Figure 7(a), where the workloads
Table 6:Trace characteristics of MSR (tdx), FIU (middle), are aggregated according to their source (and correspond-
and synthetic (bottom) workloads. ing hot page classification) and ordered by the amount of
ing of the invalid data, this data is read from the flash infifta written divided by the corresponding drive sizeir
the DRAM, but is never transferred to the host. results show that the normal_lze(_j number of erasures is be-

tween 0.8 and 1. The reduction in erasures mostly depends
5.3 Workloads on the workload and the amount of hot data in it.

We use real world traces from two sources. The first isThe amount of overprovisioning (OP) substantially af-
the MSR Cambridge workload [5, 35], which containtects the benefit from reprogramming. With 28% overpro-
week-long traces from 36 volumes on 13 servers. Thisioning, the reduction in erasures is very close to the ex-
second is a set of traces from FIU [3, 29], collected dupected reduction. Low overprovisioning is known to incur
ing three weeks on servers of the computer science depaxtessive internal writes. Thus, with the already low 7%
ment. Some of the volumes are too big to fit on the driveverprovisioning, reserving partially-used blocks fodad
size supported by our FTL implementation, which is lintional writes was not as efficient for reducing erasures; it
ited by the DRAM available on the OpenSSD. We used th&ght increase the number of erasures instead. The adap-
16 traces whose address space fit in an SSD size of 64iGB threshold,,, avoids this situation quite well, as it is

or less, and that include enough write requests to invakecreased whenever the valid countincreases. Still, the re
the garbage collector on that drive. These traces varyduction in erasures is smaller than with OP=28% because
a wide range of parameters, summarized in Table 6. \Weth the low overprovisioning and low threshold result in
also usedhreesynthetic workloads with a Zipf distribu-more valid logical pages on the partially-used blocks, al-
tion with exponential parameter= 0.9,0.95 and1. lowing fewer pages to be reused.

We used a different hot/cold classification heuristic for The time required for the adaptivéreshold,, to con-
each set of traces. For the MSR traces, pages were clagsige depends on its initial value. In setups where the
fied as cold if they were written in a request of size 64KBeservation of partially-used blocks is useful, such a& hig
or larger. This simple online heuristic was shown to peleverprovisioning, LLH-FTL with initialthreshold,,, =
form well in several previous studies [12, 22, 58) the OP/2 achieves greater reduction than witheshold,,, =
FIU traces, all the requests are of size 4KB, so accesse®/4, because a higher initial value means that the opti-
contiguous data chunks appear as sequential accessesn@levalue is found earlier. The difference between the two
applied a similar heuristic by trackimyeviously accessedinitial values is smaller for traces that write more data, al
pages, and classifying pages as cold if they appeared iowing the threshold more time to adapt.
sequence of more thawo consecutive pages. In the syn- The quality of the hot data classification also affected
thetically generated Zipf traces, the frequency of accebe reduction in erasures. While the baseline and LLH-
to pagen is proportional toﬁ. Thus, we extracted theFTL use the same classification, misclassification inter-
thresholdn for each Zipf trace, such that pages with logiferes with page reuse in a manner similar to low overpro-
cal address smaller thanwere accessed 50% of the timeyisioning, as it increases the number of valid logical pages
and pages with logical address larger thawere classi- during block erase and reuse. This effect is demonstrated
fied as cold. While this classification is impossible in re#i the lower reductions achieved on the FIU workloads, in
world settings, these traces demonstrate the benefit fraimich classification was based on a naive heuristic.
page reuse under optimal conditions. We repeated the above experiments with LLH-FTL-32,

[
-

s N o N t Expected mumm t
. Expected Erasures mummm : : : : : : : : : : : : . OP=28% === | o
1.05F--OP=28%, TH=OP/2 C— -ttt : : 1.05¢ - OP=7% mz==m{ E£1.05}
” OP=28%, TH=OP/4 rzz2 B
& 1L OP=7%, TH=OP/2 mmmm = = | H Q
2 OP=7%, TH=0P/4 ez . 5 z 1
< : : il 7] 9}
= . 7 < o
] e e in @ 0. 8095}
2 f 3 g
é e R R ie = = 09
7 . el
5085} f s g g
Z 1 fl S0. =
fire § z g
08 meE M- £
A1 1 3
A il il i 2 08¢
o o o o o o o o o o « = 25 0 40 0? e 0.75
: 8 95 d 5 &g P4 g EB5sesey YR 2229929 Aa9S29
g £ 5§ G EPEES §7§5tsc T 335288 335288
3 = z ° gap -7 Tag "7
(a) LLH-FTL (b) LLH-FTL-32 (c) LLH-FTL-32

Figure 7:(a) Normalized number of erasures (compared to baselinellgfFTL (b) Normalized number of erasures (compared
to baseline-32) of LLH-FTL-32 (c) Normalized 1/O responsed (compared to baseline-32) of LLH-FTL-32 (c).

to evaluate the effect of increasing the physical page singites synchronously.

Indeed, the reduction in erasures was smaller than With’rhe average 1/10 response time does imotreasebe-
8KB pages, although the differences were mifidre av- cause even though the trace is accelerated, the extra buffer
erage difference was 1% with 28% overprovisioning, bflishes usually do not delay the following I/O requests. In
it was 6% with 7% overprovisioning because of the highggdition, due to the allocation of partiallysed and reused
number of leftover valid logical pages on each physicghges for hot data, this data is more likely to reside on low
page in partiallyused blocks. pages, which are faster to read and program [18].

I/0 response time To evaluate the effect of LLH repro- The second reason for the discrepancy is the reserva-
gramming on 1/O response time, we replayed the workon of partially-used blocks for reprogramming. This re-
loads on the OpenSSD board. We warmed up the boalistes the available overprovisioned capacity, potegtiall
by filling the SSD and then replaying the workload twicéncreasing the number of valid pages that must be copied
measuring the 1/0 response time in the last 12 hoursdifring each garbage collection. As a result, although the
each workload. We accelerated the workloads by a factiimber of erasures decreased, the total amount of data
of 10 in order to speed up the experiment. While maigopied by LLH-FTL-32 was similar to that copied by the
taining the original access pattern, the accelerated Btqugaseline, and sometimes higher (by up to 50%). One ex-
rate is more realistic for workloads that use SSDs. ception is the src? workload, where in the last 12 hours,

We use LLH-FTL-32 with the optimal initial garbage collection in LLH-FTL-32 moved less data than
threshold,, for representative MSR traces. Fig- in baseline-32. In the other traces, the total delay caused
ure 7(b) shows the normalized number of erasurey garbage collections was not reduced, despite the con-
compared to baseline-32, and Figure 7(c) shows tsiderably lower number of erasures.
normalized 1/O response time of LLH-FTL-3Despite Energy consumption.We used the values from Table 5
the considerable reduction in erasures, and thus, garbage the operation counts from the emulator to compare the
collection invocations, the average I/O response tin@ergy consumption of LLH-FTL-32 to that of baseline-
is almost unchanged. The 90th and 99th percenti@®. The energy measurements were done on the A16 chip,
were also similar. This contradicts previous simulationhose page size is 16KB. We doubled the values for the
results [53] that correlated the reduction in erasures widtad and program operations to estimate the energy for
a reduction in I/O response time. programming 32KB pages as in LLH-FTL-32. Figure 8

One reason for this discrepancy is that the accumulati@tws that when reprogramming reduced erasures, the en-
of write requests in the merge buffers in OpenSSD cau€$gy consumed by LLH-FTL-32 increased with inverse
writes to behave asynchronously—the write request foportion to this reduction. This is not surprising, since
turns to the host as complete once the page is writtentit@ reduction in erasures does not reduce the amount of
the buffer. Flushing the merge buffer onto a physical flagifernal data copying in most of the workloads. In the FIU
page is the cause for latency in writes. The baseline flusii@ses with 7% OP, reprogramming increased the number
the buffer whenevegightlogical pages are accumulated i®f erasures due to increased internal writes, which, in turn
it. However, a buffer containing WOM encoded data mu8lso increased the energy consumption.
be flushed after accumulatirigur logical pages, possibly Lesson 5: A reduction in erasures does not necessarily
incurring additional latency. This effect was not observerdhnslate to a reduction in 1/O response time or energy
in previous studies that used a simulator that flushes @insumption. These are determined by the overall amount

== ———— on 50nm and 72nm MLC chips demonstrated that after a

i iogpigg%ﬁgnérgy‘ — .+ | fulluse of the block (LH programming), half of the pages
. sooooi---tOP=28%, Erasures === - &------- R
E | OP=7%, Energy | - | are “WOM-safe” [18]. However, they do not present the

OP=7%, Erasures ——

: i exact reprogramming scheme, nor the problems encoun-
tered when using other schemes. A recent study [31]
Al mapped all possible state transitions with reprogramming

on a 35nm MLC chip, and proposed the LLH reprogram-
i ming scheme. Our results in Section 3 show that smaller
feature sizes impose additional restrictions on reprogram
i ming, but that LLH reprogramming is still possible.
12 @65 Previous studies examined the energy consumption of
& ~ £ flash chips as a factor of the programmed pattern and

Figure 8: Normalized energy consumption (compared tpage [34], and suggested methods for reducing the energy

baseline-32) of LLH-FTL-32 with two overprovisioning vals. consumption of the flash device [41]. To the best of our

. . . knowledge, this study is the first to measure the effect of

of data moved during garbage collections. Designs that : .

[eprogramming on the energy consumption of a real flash

are aimed at reducing energy (_:on§umpt|on_ or Vo responc ip and incorporate it into the evaluation of the FTL.
time should address these objectives explicitly.

7 Related Work 8 Conclusions

Several studies proposed FTL designs that reuse pages 't Study is the first to evaluate the possible benefit from
extend SSD lifetime. Some are based on capacity achii<SIng flash pages with WOM codes on real flash chips
ing codes, and bound the resulting capacity loss by limld @n end-to-end FTL implementation. We showed that
ing second writes to several blocks [36] or by assuming tA89€ reuse in MLC flash is possible, but can utilize only
logical data has been compressed by the upper level [24}!T Of the pages and only if some of its capacity has been
The overheads and complexities in these designs are &g€"ved in advance. While reprogramming is safe for at
dressed in the design of ReusableSSD [53]. Howe ’st 40% of the lifetime of the chips we examined, it in-
none of these studies addressed the limitations of repry!S additionalong-termwear on their blocks. Thus, even
gramming MLC flash pages. Some of these limitatiofdth an impressive 20% reductioné@nasuresthe increase
were addressed in the design of an overwrite compatibfidif€time strongly depends on chip physical characteris-
B*-tree data structure, assuming the mapping/afto [ICS: @nd s fairly modest. _

bits can be modified [26]. Like the previous approaches,A redu_ct|o_n in erasures doe_s not necessarily transla_te to
it has been implemented only in simulation. Extended P €duction in 1/O response time or energy consumption.
cycles [31] were implemented on real hardware, but tﬂggse are determlned.bythe oyerall amount of data moved
FTL that uses them relies on the host to supply and in§iZ"Nd garbage collections, which strongly depends on the
cate data that is overwrite compatible. LLH-FTL is th@€rProvisioning. The reduction in physical flash page

first generapurpose FTL that addresses all practical linf!/t€S IS limited by the storage overhead of WOM encoded

itations of WOM codes as well as MLC flash. Thus, Wgata, and is mainly c?nstrained by the limitation of reusing
rg}q half of the block’s pages.

were able to demonstrate its strengths and weaknesseS'9Y ' :
This study exposed a considerable gap between the pre-

real hardware and workloads. , i :
Numerous studies explored the contributors to BER fiously shown benefits of page reuse, which were based on

flash, on a wide variety of chip technologies and maniheoretical analysis and simulations, and those that can be
facturers. They show the effects of erasures, retentiGfi1€ved on current state-of-the-art hardware. However,
program disturbance and scaling down technology on tH& believe that most of the limitations on these benefits

BER [11, 18, 32, 48]. These studies demonstrate a trerf be addressed with manufacturer support, and that the

of increased BER as flash feature sizes scale down, &%¢Fntial benefits of page reuse justify reevaluation of cur

the need for specialized optimizations employed by mai#Nt MLC programming constraints.

ufacturers as a result. Thus, we believe that some of t
interference effects observed in our experiments are a'r&ég—knomnedgments
sult of optimizing the chips for regular LH programmingWe thank the anonymous reviewers and our shepherd, An-
Adjusting these optimizations to LLH reprogramming is drea Arpaci-Dusseau, whose suggestions helped improve
potential approach to increase the benefit from page reubés paper. We also thank Alex Yucovich and Hila Arobas
Several studies examined the possibility of reprografer their help with the low-level experiments. This work
ming flash cells. Most used either SLC chips [24], awas supported in part by BSF grant 2010075, NSF grant
MLC chips as if they were SLC [17]. A thorough studyCCF-1218005, and ISF grant 1624/14.

=
[N

o
©

Normalized Erasures / Energy
-

o
©

o)
]
=

f

users

Zip

&
D
H

:
online [ttt enease oy
i
_

=

References

[1]
(2]
(3]

[4]
[5]
[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

mance.Trans. Storagel0(2):8:1-8:25, Mar. 2014.

[17] E. En Gad, H. W.,, Y. Li, and J. Bruck. Rewriting

https://github.com/zdvresearch/fast2016-ftl.
https://github.com/zdvresearch/fast2016-openssd-
emulator.
I/O deduplication traces. http://sylab-
srv.cs.fiu.edu/doku.php?id=projects:iodedup:start.
Retrieved: 2014.

Jasmine OpenSSD platform. http://www.openssd-
project.org/.

SNIA IOTTA. http://iotta.snia.org/traces/388. Re*
trieved: 2014.

NAND flash memory tester (SigNASII).
http://lwww.siglead.com/eng/innovatigignas2.htmi
2014.

N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis,
M. Manasse, and R. Panigrahy. Design tradeoffs
for SSD performance. IISENIX Annual Technical
Conference (ATGR008.

A. Berman and Y. Birk. Retired-page utilization
in write-once memory — a coding perspective.

I
IEEE International Symposium on Information The[—&z]

ory (ISIT), 2013.

D. Burshtein. Coding for asymmetric side informa-
tion channels with applications to polar codes.
IEEE Int. Symp. on Inf. Theor2015.

D. Burshtein and A. Strugatski. Polar write once
memory codes.IEEE Transactions on Information
Theory 59(8):5088-5101, 2013.

Y. Cai, O. Mutlu, E. Haratsch, and K. Mai. Pro-[24]

gram interference in MLC NAND flash memory:
Characterization, modeling, and mitigation. 3fst
IEEE International Conference onComputer Design
(ICCD), 2013.

M.-L. Chiao and D.-W. Chang. ROSE: A novel flas
translation layer for NAND flash memory based o
hybrid address translationlEEE Transactions on
Computers60(6):753—-766, 2011.

G. D. Cohen, P. Godlewski, and F. Merkx. Linear bi[’26]
nary code for write-once memorielEEE Transac-
tions on Information TheorB2(5):697-700, 1986.

J. Colgrove, J. D. Davis, J. Hayes, E. L. Miller,
C. Sandvig, R. Sears, A. Tamches, N. Vachhar&-n
jani, and F. Wang. Purity: Building fast, highly-
available enterprise flash storage from commodity
components. IlPACM SIGMOD International Con-
ference on Management of Data (SIGMOQR)15. 28
P. Desnoyers. What systems researchers neecj to]
know about NAND flash. Irbth USENIX Workshop

on Hot Topics in Storage and File Systems (HotStor-
age) 2013. 29]
P. Desnoyers. Analytic models of SSD write perfo!—

[18]

[19]

120]

[21]

3]

5]

flash memories by message passing.|HEE Intl.
Symp. on Inform. Theory (ISIT2015.

L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swan-
son, E. Yaakobi, P. H. Siegel, and J. K. Wolf. Char-
acterizing flash memory: Anomalies, observations,
and applications. 1d2nd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO)
2009.

A. Gupta, R. Pisolkar, B. Urgaonkar, and A. Sivasub-
ramaniam. Leveraging value locality in optimizing
NAND flash-based SSDs. lath USENIX Confer-
ence on File and Storage Technologies (FAQULL1.

S. Huang, Q. Wei, J. Chen, C. Chen, and D. Feng.
Improving flash-based disk cache with lazy adaptive
replacement. IEEE 29th Symposium on Mass Stor-
age Systems and Technologies (MS307) 3.

J.-W. Im et al. A 128Gb 3b/cell V-NAND flash mem-
ory with 1gb/s i/o rate. INEEE International Solid-
State Circuits Conference (ISSCQP15.

S. Im and D. Shin. ComboFTL: Improving per-
formance and lifespan of MLC flash memory using
SLC flash buffer. J. Syst. Archif.56(12):641-653,
Dec. 2010.

A. N. Jacobvitz, R. Calderbank, and D. J. Sorin.
Writing cosets of a convolutional code to increase the
lifetime of flash memory. Irb0th Annual Allerton
Conference on Communication, Control, and Com-
puting, 2012.

A.Jagmohan, M. Franceschini, and L. Lastras. Write
amplification reduction in NAND flash through
multi-write coding. In26th IEEE Symposium on
Mass Storage Systems and Technologies (MSST)
2010.

X.Jimenez, D. Novo, and P. lenne. Wear unleveling:
Improving NAND flash lifetime by balancing page
endurance. 112th USENIX Conference on File and
Storage Technologies (FAS2P14.

J. Kaiser, F. Margaglia, and A. Brinkmann. Extend-
ing SSD lifetime in database applications with page
overwrites. In6th International Systems and Storage
Conference (SYSTOR013.

T. Kgil, D. Roberts, and T. Mudge. Improving
NAND flash based disk caches. Bbth Annual
International Symposium on Computer Architecture
(ISCA) 2008.

H. Kim and S. Ahn. BPLRU: A buffer management
scheme for improving random writes in flash stor-
age. In6th USENIX Conference on File and Storage
Technologies (FAST2008.

R. Koller and R. Rangaswami. /O deduplication:

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Utilizing content similarity to improve 1/O perfor-
mance.Trans. Storage6(3):13:1-13:26, Sept. 2010.

X. Luojie, B. M. Kurkoski, and E. Yaakobi. WOM
codes reduce write amplification in NAND flash
memory. InIEEE Global Communications Confer{42]
ence (GLOBECOMRO012.

F. Margaglia and A. Brinkmann. Improving MLC
flash performance and endurance with extended P/E
cycles. InlEEE 31st Symposium on Mass Storadé3]
Systems and Technologies (MSSDIL5.

N. Mielke, T. Marquart, N. Wu, J. Kessenich,

H. Belgal, E. Schares, F. Trivedi, E. Goodness, and
L. Nevill. Bit error rate in NAND flash memories.

In Reliability Physics Symposium (IRPS). IEEE 1{44]
ternational 2008.

C. Min, K. Kim, H. Cho, S.-W. Lee, and Y. |. Eom.
SFS: Random write considered harmful in solid stafé5]
drives. In10th USENIX Conference on File and Stor-
age Technologies (FAST)012. [46]
V. Mohan, T. Bunker, L. Grupp, S. Gurumurthi,
M. Stan, and S. Swanson. Modeling power consump-
tion of NAND flash memories using FlashPower.
IEEE Transactions on Computer-Aided Design ¢47]
Integrated Circuits and System32(7):1031-1044,
July 2013.

D. Narayanan, A. Donnelly, and A. Rowstron. Writ¢4g]
off-loading: Practical power management for enter-
prise storageTrans. Storage4(3):10:1-10:23, Nov.
2008.

S. Odeh and Y. Cassuto. NAND flash architec-
tures reducing write amplification through multij49]
write codes. INEEE 30th Symposium on Mass Stor-
age Systems and Technologies (MS$30)4.

Y. Oh, J. Choi, D. Lee, and S. H. Noh. Caching less
for better performance: Balancing cache size and ygo]
date cost of flash memory cache in hybrid storage
systems. InLOth USENIX Conference on File and
Storage Technologies (FASP2P12.

H. Park, J. Kim, J. Choi, D. Lee, and S. Noh. INf51]
cremental redundancy to reduce data retention errors
in flash-based SSDs. IMass Storage Systems and
Technologies (MSST), 31st Symposiun2ei5.

K.-T. Park, M. Kang, D. Kim, S.-W. Hwang, B. Y. [52]
Choi, Y.-T. Lee, C. Kim, and K. Kim. A zeroing cell-
to-cell interference page architecture with temporary
LSB storing and parallel MSB program scheme for
MLC NAND flash memorieslEEE Journal of Solid- [53]
State Circuits43(4):919-928, April 2008.

R. L. Rivest and A. Shamir. How to Reuse a Write-
Once Memory. Inform. and Contr. 55(1-3):1-19,
Dec. 1982.

M. Salajegheh, Y. Wang, K. Fu, A. Jiang, and

[54]

E. Learned-Miller. Exploiting half-wits: Smarter
storage for low-power devices. #th USENIX Con-
ference on File and Stroage Technologies (FAST)
2011.

M. Saxena, M. M. Swift, and Y. Zhang. FlashTier:
A lightweight, consistent and durable storage cache.
In 7th ACM European Conference on Computer Sys-
tems (EuroSysp012.

M. Saxena, Y. Zhang, M. M. Swift, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. Getting real:
Lessons in transitioning research simulations into
hardware systems. Ihlth USENIX Conference on
File and Storage Technologies (FASZD13.

A. Shpilka. Capacity achieving multiwrite WOM
codes. IEEE Transactions on Information Theory
60(3):1481-1487,2014.

K. Smith. Understanding SSD over-provisioning.
EDN Network January 2013.

G. Soundararajan, V. Prabhakaran, M. Balakrishnan,
and T. Wobber. Extending SSD lifetimes with disk-
based write caches. Bth USENIX Conference on
File and Storage Technologies (FASZD10.

R. Stoica and A. Ailamaki. Improving flash write
performance by using update frequeriesoc. VLDB
Endow, 6(9):733-744, July 2013.

E. Yaakobi, L. Grupp, P. Siegel, S. Swanson, and
J. Wolf. Characterization and error-correcting codes
for TLC flash memories. Innternational Confer-
ence on Computing, Networking and Communica-
tions (ICNC) 2012.

E. Yaakobi, S. Kayser, P. H. Siegel, A. Vardy, and
J. K. Wolf. Codes for write-once memorie$EEE
Transactions on Information Theqryp8(9):5985—
5999, 2012.

E. Yaakobi, J. Ma, L. Grupp, P. H. Siegel, S. Swan-
son, and J. K. Wolf. Error characterization and cod-
ing schemes for flash memories. IBEE GLOBE-
COM Workshops (GC Wkshpg010.

E. Yaakobi, A. Yucovich, G. Maor, and G. Yadgar.
When do WOM codes improve the erasure factor in
flash memories? IHEEE International Symposium
on Information Theory (ISITR015.

G. Yadgar, R. Shor, E. Yaakobi, and A. Schuster. It's
not where your data is, it's how it got there. Tith
USENIX Conference on Hot Topics in Storage and
File Systems (HotStorage)015.

G. Yadgar, E. Yaakobi, and A. Schuster. Write once,
get 50% free: Saving SSD erase costs using WOM
codes. Inl3th USENIX Conference on File and Stor-
age Technologies FASZ015.

G. Yadgar, A. Yucovich, H. Arobas, Y. L. Ei-
tan Yaakobi, F. Margaglia, A. Brinkmann, and

A. Schuster. Limitations on MLC flash page repro-
gramming and its effects on durability. Technical
Report CS-2016-01, Computer Science Department,
Technion, 2016.

[55] J.Yang, N. Plasson, G. Gillis, and N. Talagala. HEC:
Improving endurance of high performance flash-
based cache devices. @th International Systems
and Storage Conference (SYSTOR)13.

[56] K. Zhao, W. Zhao, H. Sun, X. Zhang, N. Zheng,
and T. Zhang. LDPC-in-SSD: Making advanced er-
ror correction codes work effectively in solid state
drives. In11th USENIX Conference on File and Stor-
age Technologies (FAST)013.

