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1. INTRODUCTION 
Rapid social, economic and political changes are leading 

organizations to shift their thinking from reactive to proactive in 

order to detect opportunities and threats that could affect their 

business [6]. Eliminating or mitigating an anticipated problem, or 

capitalizing on a forecast opportunity, can substantially improve 

our quality of life, and prevent environmental and economic 

damage. Changing traffic light policies and speed limits to avoid 

traffic congestions, for example, will reduce carbon emissions, 

optimize public transportation and increase the quality of life and 

productivity of commuters. Similarly, adding credit cards to watch 

lists as a result of forecasting fraud will reduce the cost inflicted 

by fraudulent activities on payment processing companies and 

merchants, and consequently lower credit card rates.  

In energy management, there is a need for real-time optimization 

of power consumption in individual houses and buildings 

equipped with renewable energy sources. This requirement may 

be addressed by forecasting energy consumption and production, 

say for the next 30 minutes, and making decisions about load 

adjustments and/or rescheduling. In post-earthquake disaster 

management, loss forecasts can be vital in planning the actions to 

be taken immediately after an earthquake occurs.  

To prevent problems and capitalize on opportunities before they 

even occur, we propose a methodology for proactive event-driven 

decision-making. Decisions are triggered by forecasting events 

instead of reacting to them once they happen. The motivation for 

proactive computing stems from social and economic factors, and 

is based on the fact that prevention is often more effective than the 

cure. The decisions are made in real-time and require on-the-fly 

processing of Big Data, that is, extremely large amounts of noisy 

data flooding in from various locations, as well as historical data.  

Proactive applications have been developed for several years [19]. 

Consider e.g. proactive security systems and proactive routing in 

mobile ad-hoc networks. Proactive applications have been largely 

developed in an ad hoc manner. In contrast, we aim to develop a 

generic methodology for proactive event-driven computing. 

We are moving from the information economy to the ―intelligent 

economy‖, where it is not only access to information but the 

ability to analyze and act upon it that enables sustainable 

management of communities, and promotes appropriate 

distribution of social, healthcare, and educational services [11]. 

Our methodology for proactive event-based decision-making, 

therefore, comprises the following steps. First, Big Data is 

continuously acquired and aggregated from various types of 

sensor. The aggregated data is analysed and fused in order to 

recognise, in real-time, events and situations of special 

significance. To allow for timely recognition, communication 

volume is minimized by moving as little data as possible from one 

place to another. Second, the events recognised are correlated 

with historical information to forecast problems and opportunities 

that may actually take place in the near future. Third, the forecast 

events along with the recognised events are leveraged for real-

time operational decision-making. Fourth, visual analytics tools 

prioritise and explain possible proactive actions, enabling human 

operators to reach and execute informed decisions.  

Proactive computing requires capabilities for forecasting, real-

time decision-making and visual analytics. These capabilities are 

extremely important in a multitude of application domains. E.g. 

no system supports fraud forecasting. Furthermore, a typical fraud 

detection system may raise up to 9 false alarms for each true 

alarm. Without an appropriate explanation of why a specific 

transaction is considered fraudulent, the operator overseeing 

transactions will not be able to confirm the fraud and will have to 

either let it go through, or contact the end user, spending valuable 

time. We propose exposing the user to how proactive computing 

works through visual analytics. 

To summarize, our methodology supports on-the-fly, low-latency 

processing of extremely large, geographically distributed, noisy 

event streams and historical data, for recognizing and forecasting 

opportunities and threats, making decisions to capitalize on the 

opportunities and mitigate the threats, and explaining, through 

user-interaction, the decisions to human operators in order to 

facilitate informed decision execution. 

2. APPLICATIONS 
Our approach to proactive event-driven decision-making is 

applicable to a wide range of application domains. In the context 

of the SPEEDD project (http://speedd-project.eu/), we will 

evaluate our methodology in two such domains: traffic 

management and credit card fraud management. Proactive traffic 

management is realized following the steps below. 

 Detect. Vehicles along with their speed are detected in a road 

sector and/or at a specific point through a multi-technology 

sensor network. This information is used to recognize traffic 

flow and density patterns along the selected road. Traffic 

accidents are also recognized on the basis of 

acceleration/deceleration patterns, as well as violations of 

road safety (vehicles driving too close to each other, long 

vehicles driving too fast, etc).  

 Forecast. Traffic flow, traffic density and subsequently 

duration of travel will be forecast for different time horizons 

in the future. The carbon print (C02) and energy consumption 



will also be forecast for different waiting times (5, 10, 15, 20 

minutes).   

 Decide. Calculate within 30 seconds the optimal variable 

speed limits and duty cycles for the ramp metering lights. 

 Act. Change the actual values of the variable speed limit 

panels and the operation of lights on the ramp metering 

course. Actions will be taken in a matter of seconds for ramp 

metering and a matter of minutes for the variable speed limits. 

Traffic forecasting requires the analysis of massive data streams 

storming from various sensors, including fixed sensors installed in 

highways and mobile sensors such as smart phones and GPS 

traces, as well as large amounts of historical data.  

In proactive credit card fraud management, the goal is to forecast 

fraudulent activity and make decisions in order to prevent the 

financial loss. In 2010, fraud in the Single Euro Payments Area 

(that includes 27 EU member states) was estimated at 1.26 billion 

Euros [12]. Fraud detection is a needle in the haystack problem as 

fraudulent transactions constitute at most 0.1% of the total 

number of transactions, while new fraud patterns appear on almost 

a weekly basis. Proactive credit card fraud management is realized 

as follows: 

 Detect. Fraudulent activities, such the following, must be 

detected:  

o ‗Cloned card event‘ — a credit card is being used 

simultaneously in different countries.    

o ‗Risky usage event‘ — the card is being frequently used 

by a ‗risky‘ merchant.  

o ‗Potential batch fraud event‘ — many transactions from 

multiple cards are being used in the same point-of-sale in 

high amounts.  

 Forecast. Recognize fraudulent activity that has started to 

take place but is not completed yet. E.g. forecast with a 

certain probability a ‗risky usage event‘ when there are a few 

transactions by ‗risky‘ merchants in some period of time.  

 Decide. Decide to block or review the transaction in less than 

a second after the forecast. 

 Act. Depending on the type of fraud, add the corresponding 

credit card to the black/gray/watch list. 

Credit card fraud forecasting requires the analysis of very large, 

noisy transaction streams storming from all over the world, as 

well as massive amounts of historical data.  

3. APPROACH 
We propose a highly synergetic approach to proactive event-

driven decision-making by combining the research areas of event 

processing, scalable data processing, optimization for decision-

making, and decision support through visual analytics. The 

approach will be realized in a distributed system comprising the 

following components: 

 Real-time event recognition and forecasting under 

uncertainty. Events of special significance are recognized 

and forecast, and then communicated to the decision-

making component. To allow for timely recognition, 

communication volume is minimized by moving as little 

data as possible from one place to another. 

 Real-time event-based decision-making under uncertainty. 

The forecast and recognized events are leveraged for real-

time operational decision-making.  

 Visual analytics for proactive decision support. 

Visualization techniques explain the decisions made and the 

possible proactive actions, enabling human operators to 

reach and execute informed decisions.  

Figure 1 illustrates our methodology in the context of proactive 

traffic management. The following sections present in detail the 

main aspects of the methodology. 

3.1 EVENT RECOGNITION & 

FORECASTING 
Systems for symbolic event recognition [4] (event pattern 

matching) identify composite events of interest — collections of 

events that satisfy some pattern. The ‗definition' of a composite 

event imposes temporal, logical and, possibly, spatial constraints 

on its sub-events, that is, events coming from sensors or other 

composite events. Consider e.g. the recognition of a traffic 

incident in a road segment given the speed of the vehicles passing 

that segment. 

Typically, event recognition systems operate on top of stream 

processing platforms [1]. This way, complex events are defined by 

means of expressive event recognition languages, and efficiently 

detected using the optimized data processing of stream processing 

platforms.  

Event recognition systems have to deal with various types of 

uncertainty, such as incomplete data streams, erroneous data and 

imperfect composite event definitions [5]. E.g. in traffic 

management fixed sensors are often out of order, inappropriately 

calibrated or inaccurate. To address this requirement, we will 

develop a framework for real-time event recognition able to deal 

with the inherent uncertainty of Big Data. The framework will 

exhibit a declarative, formal (probabilistic) semantics. To achieve 

this task, we will build upon existing frameworks combining 

probabilistic reasoning, such as Markov Logic Networks [10], and 

symbolic methods. The starting point will be probabilistic 

extensions of the Event Calculus [2], [5] — a logic programming 

language for representing and reasoning about events and their 

effects. Probabilistic Event Calculi facilitate the integration of 

domain knowledge, such as traffic models, and deal with 

uncertainty both in the input data and the composite event 

definitions. To minimize the performance overhead of uncertainty 

reasoning, we will place emphasis on distributed probabilistic 

reasoning techniques (see Section 3.2). 

To allow for proactive decision-making, we will develop a 

framework for event forecasting able to deal with the volume and 

lack of veracity of Big Data. The framework will indicate the 

probability of a forecast event, as well as the probability of when 

an event will happen; a probability distribution over the expected 

event occurrence time will be provided. The basis of this 

framework will be ‗forward‘ event recognition algorithms that are 

capable of recognizing incrementally composite events, but 

incapable of dealing with lack of veracity [8]. 

The manual development of composite event definitions is a 

tedious, time-consuming and error-prone process. Machine 

learning techniques may be used for the acquisition of domain 

knowledge: constructing and/or refining composite event 

definitions (expressing e.g. traffic congestion) in dynamic and 

evolving environments. A common technique for learning the 

structure of composite event definitions in a supervised manner 

involves the use of Inductive Logic Programming (ILP) (e.g. 

[17]). ILP constructs theories that capture exceptional cases in 

data streams. This is particularly helpful in highly imbalanced 



streams such as those of credit card fraud. On the other hand, ILP 

does not handle numerical reasoning, such as comparing the time-

points of events emitted by vehicles, which is quintessential in the 

representation of composite event definitions. In the case of 

partial supervision, ILP is used in combination with abduction in 

order to learn an event definition. This combination of techniques, 

however, does not scale to Big Data.  

In addition to learning the structure of a composite event 

definition, the confidence values/weights attached to the 

definition can be learned from data. Usually the tasks of structure 

learning and weight learning are separated; that is, first the 

structure of an event definition is learnt and then the weights of 

the definition are estimated. Separating the two learning tasks in 

this way, however, may lead to suboptimal results, as the first 

optimization step (structure learning) needs to make assumptions 

about the weight values, which have not yet been optimized.  

To address these issues and avoid the error-prone process of 

manual composite event definition construction, our methodology 

will consist of incremental learning techniques for successfully 

combining abduction with induction in Big Data. Furthermore, we 

will develop techniques for the simultaneous optimization of the 

numerical parameters of a composite event definition (weights 

and numerical temporal constraints) and its structure. 

3.2 SCALABLE PROCESSING 
The high velocity of incoming events poses challenges both in 

terms of computational resources and in terms of communication 

resources. Computational scalability issues are addressed by 

distributing event recognition tasks among multiple nodes (see 

e.g. [16]), while communication scalability issues are addressed 

by algorithms that perform as much of the processing as possible 

on the nodes where events are generated, thus reducing the 

amount of data that is transferred between nodes (see e.g. [15], 

[9]). 

In traffic management, for example, a common task is counting 

the number of vehicles traversing on a set of paths, where some of 

the paths may have shared locations (consider e.g. paths {A, B, 

C} and {A, D, B}). A simplistic approach that does not take 

uncertainty into consideration would use detectors at each of the 

points (A, B, C and D), and define two patterns consisting of the 

corresponding sequences. The system would detect these 

sequences using finite state automata. The volume and velocity of 

the events that are required to be processed, as well as the 

complexity of some of the automata, require distributing the 

automata processing task among multiple nodes. 

A more realistic solution to the path counting task is to take into 

account the uncertainty in the detection of the locations of 

vehicles. Detectors may fail to detect some vehicles, may have 

false detections, and may report detections that are inherently 

uncertain (e.g. locating vehicles via a cellular network). Automata 

used for detecting patterns over deterministic events are 

unsuitable in this scenario. On the other hand, as discussed in the 

previous section, probabilistic models such as Markov Logic 

Networks are designed to handle uncertainty, and are therefore a 

natural choice for detecting events under uncertainty.  Event 

recognition and forecasting with Markov Logic Networks is done 

by inference over probabilistic graphical models, which is 

fundamentally different than computations over state automata. 

Consequently, distributing these tasks among multiple nodes 

requires fundamentally different algorithms. 

To address the Big Data issues of volume, velocity and the lack of 

veracity, therefore, we will develop methods for distributing event 

recognition and forecasting tasks that incorporate probabilistic 

reasoning. This requires distributing on-line inference tasks 

among multiple nodes, as opposed to state automata used for 

recognition tasks over deterministic events. The proposed 

algorithms exploit the continuous nature of the recognition task 

by incrementally modifying the inference as new events arrive.  

In addition to the computational scalability issues discussed 

above, the increasing number of distributed event-generating 

sources requires that inherently-limited network resources be 

employed efficiently. E.g. in traffic management some sensors 

may be deployed at locations where a high speed wide area 

network is not available, and will therefore be required to 

continuously transmit a high volume of sensor readings via a 

cellular network. Since communication efficiency reduces the 

volume of data sent to a data center for processing, it may also 

improve computational efficiency. Communication efficiency also 

helps in maintaining the privacy of the entities generating the 

events (e.g. terminals in credit card transactions). 

Communication-efficient distributed detection has been an active 

research field in recent years. Proposed methods reduce 

communication by decomposing the recognition task into a set of 

local constraints on the data generated at the nodes. The 

constraints are such that as long as all of them are upheld, it is 

guaranteed that the event of interest has not occurred. 

Consequently, as long as all the constraints are upheld, no 

communication is required. The event to be recognized is usually 

defined using a function over aggregate values derived at the 

nodes. In other words, event recognition is restricted to numerical 

reasoning.   

To support the full range of functionality required by Big Data 

applications, we will develop distributed communication-efficient 

event recognition and forecasting algorithms. This includes events 

defined over aggregates as well as temporal, logical and spatial 

patterns over events as discussed in the previous section. 

Emphasis will be placed in handling functions that do not have a 

closed form, such as inference over probabilistic graphical 

models. 

3.3 EVENT-DRIVEN DECISION-MAKING 
In the proposed methodology, the forecast events along with the 

recognized events are leveraged for real-time operational 

decision-making. A body of tools for real-time proactive decision-

making exploits the event forecasting models presented above, 

with an emphasis on optimization methods that intelligently 

handle forecast uncertainty using robust, stochastic or black-box 

methods.  

In terms of real-time optimization techniques, the state-of-the-art 

is that optimization techniques are being activated mostly off-line 

and use a variety of optimization methods that fit different 

assumptions, e.g. robust (worst-case) optimization or stochastic 

optimization. In the field of robust optimization methods, the 

state-of-the-art focuses on tools for providing strong performance 

guarantees for convex optimization problems [3]. For real-time 

decision-making purposes, the use of robust optimization methods 

involving recourse, that is, modeling the notion that future 

decisions can be deferred until future information is available, is 

an area of intensive ongoing research. E.g. in the context of traffic 

management, ‗recourse‘ decisions refer specifically to traffic 

management actions (such as alteration of speed limits and 



restriction of on-ramp flows) computed as future responses to 

changes in traffic flows resulting from similar actions taken at an 

early time. The use of ‗robust‘ or ‗worst-case‘ models is most 

appropriate for those aspects of traffic management with hard 

limits, such as absolute limits on allowed flows or maximum 

closure time constraints. 

Stochastic optimization focuses on optimizing an expected value 

criterion subject to probabilistic constraints. Aside from the need 

to parameterize policies in the recourse sense discussed above, an 

additional difficulty relates to the interpretation of constraints. 

Due to the probabilistic nature of the uncertainty that enters the 

optimization, the hard, worst-case constraints used in robust 

optimization often turn out to be infeasible. One then has to resort 

to soft interpretations, such as chance constraints ensuring that the 

probability of meeting the constraint is above a certain threshold, 

integrated chance constraints ensuring that the expected value of a 

constraint function is above a certain threshold, or interpretations 

based on distributional robustness and conditional value-at-risk. 

In the context of traffic management problems, stochastic 

optimization methods are most appropriate when handling 

performance constraints that are ‗soft‘ in a probabilistic sense, 

that is, the traffic management system is tasked with respecting 

the constraint with a high likelihood, or respecting it most of the 

time.  Such constraints include expected transit time constraints 

and mean traffic flow targets.  Stochastic optimization methods 

are also most useful for problems in which large amounts of 

historical data can be accessed to provide example ‗scenarios‘ for 

modeling purposes.  In traffic management, historical data relating 

to traffic inflows and congestion supply exactly these scenarios. 

Our methodology for proactive event-driven decision making will 

advance the state-of-the-art in each of the preceding areas in two 

distinct ways. The first is to determine which aspects of the 

application under consideration should be treated in each way. 

The second, and more challenging, task is to develop real-time 

proactive planning tools for traffic and credit card fraud 

management using these optimization methods within an event-

based planning framework. These methods will then be employed 

at a variety of levels of autonomy, ranging from simple decision 

support functions for human operators to fully autonomous 

decision-making. 

3.4 VISUAL ANALYTICS 
While the aim of our methodology is to automate much of the 

decision-making process, key points will require people to make 

choices and the system realizing the methodology will require 

human monitoring. E.g. in traffic management, determining the 

trade-off between minimizing average journey times and setting 

acceptable thresholds on maximum wait times requires human 

monitoring. Other tasks such as communicating traffic state, 

advising road users and road planners, require operators to 

maintain a good mental model of the dynamics of the road system, 

and also of the decision-making system itself (see the previous 

section). The effectiveness of human decisions will be enhanced 

to the extent that the dynamics of the entire system can be made 

transparent.  

We will address these issues through visualization technologies 

that are tuned to what is known about human decision-making 

processes. We will build on work in online information foraging 

for decision-making [20] and in the time signature of the human 

cognitive architecture to drive new designs for visualization. 

Subtle changes in the time costs of making comparisons can lead 

to macroscopic changes in decision strategy [13] and, indeed, we 

contend it is this regularity that provides the key opportunity for 

visualization technologies. For example, it is known that requiring 

users to mouse-over icons in order to reveal decision critical 

information reduces the amount of information that users retrieve, 

despite the fact that it only adds hundreds of milliseconds to the 

interaction. More interestingly, mouse-over designs can shift users 

from using non-compensatory to more compensatory strategies. 

Conversely, presenting too much information all at once leads to 

visual ‗crowding‘ and the potential for feature swap, e.g. 

numerical transposition errors, and therefore error. 

Visualization technologies work not simply because they are 

visual, but because, by enhancing the efficiency with which 

people can compare results, visualization can fundamentally 

modify the processes by which decisions are made. In the 

proposed system for proactive decision-making, visualization 

design will emphasize comparison, as others have done, but will 

do so as directed by recent theory in the cognitive sciences [21]. 

We also need to push beyond the individual. While much research 

on visualization has focused on understanding the performance of 

individuals engaged in diagnosis tasks, we contend that there is 

considerable potential for new insights for the design of 

collaborative visualization technologies. Visual Analytics is not 

simply the visualization of the output from analysis processes, but 

the creation of insight in the decision-makers working with these 

visualizations, that is, the analysts are active participants in 

constructing the manner in which these data are to be processed, 

creating and revising associations between parts of the dataset by 

manipulating the graphical user interface [7].   

To develop visual analytics for decision support in Big Data 

applications, we will apply concepts and principles from 

Ecological Interface Design [18]. ‗Ecological Interfaces‘ are 

designed to visualize the manner in which physical components of 

the system map onto the (more abstract) functions that the system 

performs. So, they are views of the process which are not simply 

maps of how physical components connect to each other but are 

abstractions which show how types of physical components affect 

particular functions. The purpose of such designs is to improve 

operator decision-making and diagnosis when dealing with faults 

relating to those specific functions. For our system, this means 

that the visualization will not only display the model‘s input and 

output, but also the relationships between elements in the decision 

space. One element of Ecological Interface Design is simply the 

reflection of the constraints in the work domain through 

constraints in the user interface. In this way, the ‗ecologies‘ of the 

work domain, of the environment and of the organization become 

reflected in the user interface through the definition and 

management of these constraints. Added to these ecological 

constraints are constraints from the analyst/modeler, such as 

expectations and mental models. 

4. DISCUSSION 
Passively waiting until a plan is missed is an expensive way to 

solve the problem and increasingly risky, particularly when 

prevention and problem optimization can be designed into the 

process [14]. We proposed a methodology for proactive event-

driven decision-making in order to eliminate or mitigate 

anticipated problems, and capitalize on forecast opportunities. By 

facilitating proactive decision-making, we expect to open up a 

range of new opportunities for services that will help people in 

their everyday lives. Indeed, there is an ever increasing need for 



knowing how to forecast that something will happen and when it 

will happen (e.g. a heart attack, or an act of violence), and 

knowing what to do before it happens. Therefore, our 

methodology is expected to have a significant impact on time-

critical and often life-critical situations, where it is vital to prevent 

problems and capitalize on forecast opportunities. 
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Figure 1. Proactive Traffic Management. Sensors and actuators are labeled with ‗N‘ and ‗M‘ on the motorway.  
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