
Efficient, Non-Cooperative

Sharing of Computing

Resources

Orna Agmon Ben-Yehuda

Efficient, Non-Cooperative

Sharing of Computing

Resources

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Orna Agmon Ben-Yehuda

Submitted to the Senate of

the Technion — Israel Institute of Technology

Tamuz 5773 Haifa June 2013

The research thesis was done under the supervision of Prof. Assaf Schuster

in the Computer Science Department.

The generous financial support of the Technion and the Hasso-Plattner

Institute is gratefully acknowledged.

Publication List

(J-1) Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan

Tsafrir. “Deconstructing Amazon EC2 Spot Instance Pricing.” ACM

Transactions on Economics and Computation (TEAC). Accepted. ACM

TEAC’s impact factor is still undefined.

I did the research as well as most of the writing. The other authors

helped with the structuring of the paper and the writing, as well as

with obtaining data from IBM Research.

(C-1) Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and

Dan Tsafrir. “Deconstructing Amazon EC2 Spot Instance Pricing.”

In Proceedings of the 3rd IEEE International Conference on Cloud

Computing Technology and Science (CloudCom) 2011. Acceptance ra-

tio: 24%. I did the research as well as most of the writing The other

authors helped with the structuring of the paper and the writing.

(C-2) Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Alexandru Iosup, As-

saf Schuster, Mark Silberstein, Artyom Sharov, and Dan Tsafrir. “Ex-

PERT: Pareto-Efficient Task Replication on Grids and a Cloud.” In

Proceedings of the 26th IEEE International Parallel and Distributed

Processing Symposium (IPDPS), 2012. Acceptance ratio: 21%. I did

the writing and the theoretical analysis, designed and wrote the Ex-

PERT code, ran the simulated experiments and analyzed both the

simulated experiments and the real ones. Prof. Iosup acted as a co-

adviser. Mr. Sharov conducted the real experiments. Dr. Silberstein

helped with the real experiments’ system setup, and suggested the ini-

tial research problem.

(C-3) Orna Agmon Ben-Yehuda, Muli Ben Yehuda, Assaf Schuster, Dan

Tsafrir. “The Resource-as-a-Service (RaaS) Cloud.” In Proceedings

of the 4th USENIX Workshop on Hot Topics in Cloud Computing

(HotCloud), June 2012. Acceptance ratio: 32%. The paper was solicited

for publication in the Communications of the ACM (CACM). CACM

had an ISI impact factor of 1.92 for 2011, and it was rated 2/18 in the

field of software engineering. I did the research and most of the writing.

This paper represents a vision that Mr. Ben-Yehuda and I share.

Contents

Abstract 1

Abbreviations and Notations 2

1 Introduction 8

2 Related Work 11

2.1 Pareto-Efficient Task Replication on Grids and a Cloud . . . 11

2.2 Amazon EC2 Spot Instances 13

2.3 Ginseng and Resource-as-a-Service 15

3 ExPERT: Pareto-Efficient Task Replication on Grids and a

Cloud 19

3.1 Abstract . 19

3.2 Introduction . 20

3.3 The Basic System Model . 22

3.3.1 Terminology . 22

3.3.2 Model and Assumptions 24

3.4 The Scheduling Strategy Space 25

3.5 The ExPERT Framework . 27

3.6 The Experimental Setup . 35

3.7 The Experimental Results . 38

3.8 Conclusion . 45

4 Deconstructing Amazon EC2 Spot Instance Pricing 46

4.1 abstract . 46

4.2 Introduction . 46

i

4.3 Pricing Cloud Instances . 48

4.4 Methodology . 49

4.5 Evidence for Artificial Pricing Intervention 50

4.5.1 Market-Driven Auctions 50

4.5.2 Evidence: Availability as a Function of Price 50

4.5.3 Dynamic Random Reserve Price 54

4.6 Pricing Epochs . 58

4.7 Spot Price Simulation . 59

4.7.1 Simulator Event-Driven Loop 60

4.7.2 Workload Modeling 60

4.7.3 Customer Bid Modeling 61

4.7.4 Price Change Timing 62

4.7.5 Simulation Results . 63

4.8 Dynamic Reserve Price Benefits 64

4.9 Reexamination of Prior Work 65

4.10 Conclusions . 66

4.11 Epilogue . 67

5 The Resource-as-a-Service (RaaS) Cloud 78

5.1 abstract . 78

5.2 Introduction . 79

5.3 Recent IaaS Trends . 80

5.3.1 Duration of Rent and Pricing 80

5.3.2 Resource Granularity 81

5.3.3 Market-Driven Resource Pricing 82

5.3.4 Tiered Service Levels 84

5.4 Economic Dynamics . 85

5.4.1 Forces Acting on Clients 85

5.4.2 Forces Acting on Providers 86

5.4.3 Implications of Increased Competition 87

5.5 The RaaS Cloud . 88

5.5.1 Trading in Fine-Grained Resources 88

5.5.2 Prioritized Service Levels 90

5.6 Implications, Challenges, Opportunities 92

ii

6 Ginseng: Market Driven Memory Allocation (Memory-as-a-

Service) 96

6.1 Abstract . 96

6.2 Introduction . 97

6.3 System Architecture . 99

6.4 Memory Auctions . 99

6.4.1 Non-concave Valuation Functions 101

6.4.2 Memory Waste . 103

6.5 Repeated Auction Protocol 104

6.6 The Auction . 106

6.6.1 Allocation Rule . 107

6.6.2 Payment Rule . 107

6.6.3 Complexity . 107

6.6.4 Example of a Single Round 108

6.7 Guest Strategy . 109

6.7.1 Choosing the bid price p 109

6.7.2 Choosing qm . 110

6.7.3 Evaluating Guest Utility 111

6.8 Experimental Setup . 111

6.9 Performance Evaluation . 115

6.9.1 Comparing Social Welfare 115

6.9.2 Reclaim Factor Analysis 117

6.9.3 Simulated Experiments 119

6.9.4 Impact of Off-Line Profiling 121

6.10 Conclusions . 121

7 RaaS: Additional Research Directions 127

7.1 Single Resource . 127

7.1.1 Game-Theoretic Challenges 127

7.1.2 Guest Logic . 128

7.1.3 Host Logic . 128

7.1.4 Provider Logic: Global Cloud View 129

7.1.5 Minimal Price . 129

7.1.6 Memory Shedding . 129

7.2 Multi-Resource Allocation . 130

7.2.1 Bidding Language . 131

iii

7.2.2 Allocation Rule . 132

7.3 Side-Channel Attacks . 134

7.3.1 Information Leakage 136

7.3.2 Disruptive Activity . 138

7.3.3 Prevention of Disruptive Activity 138

8 Conclusion 140

Appendix:Software 141

Abstract in Hebrew `

iv

List of Figures

3.1 Remaining tasks over time . 23

3.2 A Pareto frontier . 23

3.3 NTDMr task instance flow 26

3.4 ExPERT stages . 27

3.5 CDF of single result turnaround time 32

3.6 Pareto frontier and sampled strategies 33

3.7 Pareto frontier and examples of best points 34

3.8 Static strategies compared . 39

3.9 Pareto frontiers obtained for various Mr values 43

3.10 Reliable pool use by efficient strategies. 44

4.1 Availability of Windows-running spot instance types 51

4.2 Availability of Linux-running spot instance types 52

4.3 Availability of Windows types as a function of normalized price 53

4.4 Standard deviation of white noise 56

4.5 Periodogram . 56

4.6 Autocorrelation of mean daily values 68

4.7 Time epochs of us-east.windows.m1.small 69

4.8 CDF of runtime on various systems 70

4.9 Inter-arrival time autocorrelation 71

4.10 CDF of time interval between price changes 71

4.11 Simulation results for various bidding models, with constant

and AR(1) reserve price, on the basis of a grid trace (LPC-

EGEE) . 72

4.12 Simulation results for various bidding models, with constant

and AR(1) reserve price, on the basis of a trace of cloud 1 . . 73

v

4.13 Simulation results for various bidding models, with constant

and AR(1) reserve price, on the basis of a trace of cloud 2 . . 74

4.14 Simulation results for various bidding models, with constant

and AR(1) reserve price, on the basis of a trace of cloud 3 . . 75

4.15 Availability in the second epoch 76

4.16 Running time truncation . 76

4.17 The history of this paper and a price trace 77

5.1 Correlated cloud price reduction dates for three major cloud

providers during 2012 . 86

6.1 Ginseng system architecture 100

6.2 Application performance as a function of guest physical memory102

6.3 Strategies for choice of unit price for two maximal quantities 110

6.4 Valuation functions for different loads 117

6.5 Social welfare comparison . 118

6.6 Performance comparison . 123

6.7 Impact of reclaim factor on social welfare for a mixed workload124

6.8 Two mixed-workload experiment traces of utility and memory

allocation . 124

6.9 Simulation results of Ginseng performance 125

6.10 Comparison of predicted performance with measured perfor-

mance . 126

7.1 Indivisible multi-resource allocation 134

7.2 Forbidden bounding box (bandwidth first) 135

7.3 Forbidden bounding box (memory first) 135

7.4 Indivisible multi-resource allocation branching 136

vi

List of Tables

3.1 User-defined parameters . 28

3.2 Values for user-defined parameters 35

3.3 Workloads . 36

3.4 Real resource pools used in our experiments 37

3.5 Experimental parameters . 41

3.6 Experimental results . 42

6.1 Guest configuration . 114

vii

viii

Abstract

The defining characteristic of cloud computing platforms is money. In clouds,

non-cooperative clients pay their providers for the shared computing re-

sources they use as they use them. The introduction of monetary compen-

sation thus gives rise to a host of new possibilities for efficiently sharing

computing resources. We investigate the economic foundations of cloud com-

puting systems and propose new mechanisms for non-cooperative clients and

providers to share cloud resources efficiently. We (1) demonstrate how clients

can co-optimize both the run-time and costs of their workloads by running

them on the right combination of cloud and grid resources; (2) analyze how

the leading cloud provider, Amazon EC2, prices its spare capacity (”spot

instances”) and show that contrary to popular belief, spot instance prices,

supposedly based on supply and demand, were actually artificially generated

by Amazon; (3) propose the Resource-as-a-Service (RaaS) economic model

of cloud computing, where clients pay the right price for the resources they

need as they need them; and (4) present a prototype RaaS cloud computing

platform that efficiently rents physical memory to non-cooperative clients at

a fine-grained time and resource granularity.

1

Abbreviations and Notations

Chapter-local symbols, which might be used differently in different chapters,

are marked with ∼.

Introduction and Related Work

BoT — Bag of Tasks,

a group of tasks that needs to be completed in full

IaaS — Infrastructure-as-a-Service,

a cloud model in which full virtual machines are rented

EC2 — Elastic Compute Cloud, Amazon’s IaaS offering

VMM — Virtual Machine Manager, also referred to as host or hypervisor

VM — Virtual Machine, also referred to as guest

MB — MegaByte

CPU — Central Processing Unit

RaaS — Resource-as-a-Service,

a cloud model in which resources are rented to virtual machines

Ginseng — Our RaaS prototype: a memory allocation framework

ExPERT — Our grids and cloud recommendation system

m1.small — An EC2 instance type

ap-southeast — An EC2 region

SLA — Service Level Agreement

I/O — Input Output

PSP — Progressive Second Price, a divisible good auction

MPSP — Memory Progressive Second Price, a divisible memory auction

GSP — Generalized Second Price, Google’s auction

VCG — Vickrey-Clarke-Groves,

the original second price auction [37,55,138]

ExPERT (Chapter 3)

2

Ttail — The tail phase start time

GridBoT — A user scheduling system for grid and cloud BoTs

BOINC — Berkeley Open Infrastructure for Network Computing

Tur — Mean CPU time of a successful task instance

on an unreliable machine [second]

NTDMr — Our replication strategy model,

which is composed of the parameters N , T , D, and Mr

N ∼ The maximal number of instances sent for each task

to the unreliable system since the start of the tail phase.

D ∼ A deadline for an instance,

measured from its submission to the system [second]

T ∼ A timeout, the minimal waiting time before

submitting another instance of the same task. [second]

Mr ∼ The ratio of the effective sizes of reliable and unreliable pools

Tr ∼ Task CPU time on a reliable machine [second]

Cur ∼ Cents-per-second cost of unreliable machine

Cr ∼ Cents-per-second cost of reliable machine

Mmax
r ∼ Maximal ratio of reliable machines to unreliable machines

CDF — Cumulative Distribution Function

F (·) ∼ The CDF of result turnaround time

]ur ∼ The effective size of the unreliable pool [number of nodes]

t ∼ Instance turnaround time [second]

t′ ∼ Instance sending time [second]

Fs(t) ∼ The CDF of successful task instances

γ(t′) ∼ The unreliable pool’s reliability at time t′

Fs2(t) ∼ The CDF of successful instances during the second epoch

Fs1(t) ∼ The CDF of successful instances during the first epoch

F̂ (t, t′) ∼ F (t, t′) as was computed for instances sent at time t′

FCFS — First Come First Served

x ∼ A random variable

WL — Workload

WM — University of Wisconsin Madison

ACP — AMD’s Average CPU Power metric

Tech — Technion

OSG — Open Science Grid

3

W — Watt

AR ∼ All to Reliable (a user strategy)

TR ∼ all Tail to Reliable (a user strategy)

AUR ∼ All to UnReliable (a user strategy)

B = 7.5 ∼ Budget of $7.5 for a BoT of 150 tasks (a user strategy)

CN∞ ∼ Combine resources, no replication (a user strategy)

CN1T0 ∼ Combine resources, replicate at tail with N = 1, T = 0

TMS ∼ Tail phase MakeSpan

C ∼ Cost per task

∆ ∼ Deviation of simulated values from real ones

[same units as values]

RI ∼ The number of task instances sent to the reliable pool.

Avg. — Average

Spot Instance Pricing (Chapter 4)

D ∼ Declared bid price

H ∼ A spot price trace file, a history

Tb ∼ the Beginning of a time interval within a history [hour]

Tb ∼ The End of a time interval within a history [hour]

TH
b→e ∼ The time between Tb and Te [hour]

N ∼ The number of goods sold in an auction

F ∼ Floor price [$/hour]

C ∼ Ceiling price[$/hour]

∆ ∼ price changes in a price trace [$/hour]

AR(1) — An auto-regressive process of the first order

a1 ∼ A coefficient of the AR(1) process

epsilon ∼ White noise [$/hour]

sigma ∼ White noise standard deviation [$/hour]

Pi ∼ A price in the list, whose index is i[$/hour]

x ∼ band width [$/hour]

y ∼ Matched white noise of AR(1) process [$][$/hour]

PSD — Power Spectral Density [dB/rad/sample]

LPC-EGEE — LHC Physics Center-Enabling Grids for E-sciencE

RC2 — Research Compute Cloud

LANL-CM5 — Los Alamos National Laboratory Connection Machine 5

SDSC-Paragon — San-Diego Supercomputer Center Paragon

N — Normal distribution

4

The Resource-as-a-Service (RaaS) Cloud (Chapter 5)

SaaS — Software-as-a-Service

PaaS — Platform-as-a-Service

X ∼ A minimal unavailability period that is considered

a breach of contract

Y ∼ A minimal fraction of the service period that

is considered a breach of contract

Z ∼ A service period

HP — Hewlett-Packard

S3 — Amazon Simple Storage Service

API — application programming interfaces

QoS — Quality of Service

GB — GigaByte

RAM — Random Access Memory

GPGPU — General-Purpose Graphics Processing Unit

FPGA — Field-Programmable Gate Array

SR-IOV — Single-Root Input/Output (I/O) Virtualization

Gbps — Giga bit per second

Ginseng: Market Driven Memory Allocation (Memory-as-a-Service) (Chapter 6)

KVM — Kernel Virtual Machine

TCP/IP — Transmission Control Protocol / Internet Protocol

V (mem, load) ∼ The memory valuation function (for a given load)

V (mem) ∼ The memory valuation function

(for the load the guest is currently experiencing)

perf(mem, load) — The performance the guest can achieve

given certain load and memory quantity.

Measured as performance rate, e.g., [Khit/second]

Vp(perf) ∼ The guest’s owner’s (i.e., the client’s)

valuation of performance function [$/second]

p — Bid unit-price ([$/second/MB])

q — Bid maximal required quantity [MB]

i ∼ Guest index

barei ∼ The bare minimal physical memory a guest requires to operate

α — Reclaim factor

t ∼ Auction round index

5

basei ∼ Base memory for guest i, a round’s reference point [MB]

finali(t) — The total memory allocated to guest i in round t [MB]

mi ∼ The number of desired ranges in guest i’s bid

[rji , q
j
i] ∼ Desired range j in guest i’s bid [MB2]

q′i ∼ Memory quantity won by guest i [MB]

p′i — Unit-price paid by guest i[$/second/MB]

SW — Social welfare[$/second]

N ∼ The number of guests

g ∼ A guest

R ∼ A forbidden range of guest g [MB2]

si ∼ The strategy (bid) used by guest i

s−i ∼ The strategies (bids) used by the rest of the guests, excluding i

M ∼ The total number of forbidden ranges in all the guests’ bids

Uest ∼ Guest utility, as estimated by it[$/second]

pmin ∼ The lowest price the guest can offer

and still have a chance of getting any memory

at all[$/second/MB]

qest ∼ The memory amount that the guest will get,

as estimated by it[MB]

pest ∼ The unit-price that the guest will get,

as estimated by it[$/second/MB]

Y ∼ The known part of the cost

LLC — Last Level Cache

EIST — Enhanced Intel SpeedStep R©Technology

NUMA — Non-Uniform Memory Access

C-STATE — CPU state, a power mode

BIOS — Basic Input/Output System

KSM ∼ Kernel Samepage Merging

Tmemory ∼ A typical time that passes

before the change in physical memory

begins to affect performance [second]

Tauction ∼ The time between auction rounds[second]

Tload ∼ A typical time scale in which conditions (e.g., load) change[second]

fi ∼ A guest specific coefficient, weight [$/Khit]

Waste ∼ An upper bound on memory waste [MB]

SWmax ∼ The social welfare that originates from the optimal allocation

6

Additional Directions of RaaS (Chapter 7)

Ui ∼ Utility of guest i

Uhost ∼ The utility of the host

A,B ∼ Guest indices

D ∼ Number of resources (also number of problem dimensions)

RD
+ ∼ The multi-resource allocation space

~d ∼ A multi-resource allocation vector

V (~d) ∼ A multi resource valuation function

v ∼ A vector holding either 0 or 1 for each of the resources

~a ∼ Multi-resource valuation function local approximation coefficients

~r ∼ Start point of a desired range (in all the resources)

~q ∼ End point of a desired range (in all the resources)

Ak ∼ The amount of resource k that is available for auction

MPI — Message Passing Interface

7

Chapter 1

Introduction

Shared computers are liable to be inefficiently utilized due to conflicts of

interest: the hardware and electricity bill are paid for by one economic entity,

while the workloads that make use of the computers benefit other economic

entities: the clients. Examples of such shared computers are clouds and grids.

Grids are a way for privileged clients to barter surplus computing resources.

The grid privileges of a client are defined by a complex system that involves

the client’s historical use of the grid, the amount of computing resources

that the client’s employer shared, and the client’s type of business (with a

preference to academic researchers, or specific scientific domains). The basic

compute unit in the grid is called a job or a task. It is a process group on

the shared machine that is controlled by the client. Tasks can be combined

in larger dependency structures such as Bags of Tasks (BoTs): groups of

tasks that need to be completed in full. To ensure a timely completion of

such BoTs, clients often use replication: they execute the same task several

times.

Clouds, on the other hand, rent computing resources to clients for a fee,

in a simple exchange system. Unlike grids, Clouds allow for many models

of resource sharing. When we analyze clouds in this work we focus on the

model that supplies the closest environment to the one in grids: sharing of full

operating systems, denoted Infrastructure-as-a-Service (IaaS). A major IaaS

provider nowadays is Amazon, offering the Elastic Compute Cloud (EC2) at

three commitment levels: reserved (where an instance is partially paid for

in advance, and the client is guaranteed its availability for a low price); on-

demand (where the client gets an instance if the provider has one to let);

8

and spot (where the provider may terminate the instance if it needs it back).

We examine resource utilization strategies available to clients in a tradi-

tional environment of grids, assisted by an on-demand IaaS cloud. Due to the

unreliable nature of the grids, which suffer from deliberate task preeemption,

these strategies involve task replication. The less reliable the grids are, the

more wasteful the strategies are. The role of the cloud in these replication

strategies is to limit BoT makespan by verifying that the task is performed

within a deadline. We propose a model for task replication on grids and a

cloud, and develop a recommendation system that finds a Pareto-efficient op-

tion within the model, which we demonstrate is extensive enough to include

the required efficient solutions. Strategic client behavior is also required, for

example, in Amazon EC2’s spot instances, which are unreliable due to rapid

price change. Spot instance prices are supposed to reflect changes in supply

and demand, but we discovered that most of the perceived unreliability was

artificially generated, masking resource under-utilization.

IaaS clouds are implemented using virtualization techniques. In a virtual

system, the provider runs a basic operating system called a hypervisor, vir-

tual machine manager (VMM), or host on a bare metal machine. On top of

this host run guests, which are also called virtual machines (VMs).The host

replaces the hardware functionality for the guests. It does so using various

methods: by changing drivers, by changing the guest’s code on-the-fly, and

even using hardware assistance. It also controls the amount of resources that

are exposed to the guest (on a sub-machine level). The most general form

of virtualization is that of unmodified operating systems, which allows any

operating system to be a guest without any need for further adaptations. It

allows the client the freedom of choice of its own working environment.

Amazon was, for a while, the spearhead of several trends in the public

cloud industry. These trends include refining the resource rental-time gran-

ularity, refining the resource quantity granularity, and offering more flexible

service level agreements. Other providers soon followed suit, pushing these

trends further by reducing the rental-time granularity to minutes and the

resource granularity to hundreds of MBs and CPU fractions. They also freed

the sub-machine resources (cores, memory and bandwidth) from bundling.

Due to the need for non-cooperative users to efficiently share resources,

these trends will likely culminate in the rise of a new economic model that

we term the Resource-as-a-Service (RaaS) cloud. Instead of fixed bundles,

9

cloud providers will increasingly sell resources individually, reprice them, and

adjust their quantity every few seconds in accordance with market-driven

supply-and-demand conditions.

We propose Ginseng, a RaaS prototype that efficiently rents physical

memory to non-cooperative virtual machines at a fine time and resource

granularity, at personally adapted prices, and with flexible service level agree-

ments. Ginseng achieves a ×6.2–×15.8 improvement in aggregate client sat-

isfaction when compared with state-of-the-art approaches for cloud memory

allocation. It achieves 83%–100% of the optimal aggregate client satisfaction.

Thus, in this work we demonstrate how the development of the shared

computing resource models from a bartering economy to a simple exchange

economy is already making the use of shared computing resources more

efficient. On top of this shift, we predict the rise of a new cloud model, that

will enable an even more efficient cloud. We lay out the design of such a

prototype and demonstrate its efficiency.

10

Chapter 2

Related Work

2.1 Pareto-Efficient Task Replication on Grids

and a Cloud

Much research on replication algorithms has relied on the assumption that

computation is free of charge [29, 36, 42, 77, 127, 150] and limited only by

its effect on load and makespan, whereas we explicitly consider execution

costs. Dobber, van der Mei, and Koole [42] created an on-the-fly criterion

for choosing between immediate replication and dynamic load balancing.

Casanova [29] showed the impact of simple replication policies on resource

waste and fairness. Kondo, Chien, and Casanova [77] combined replication

with resource exclusion. Resource exclusion can also be combined with our

work. Cirne et al. [36] and Silva et al. [127] analyzed immediate replica-

tion with no deadline for perfectly reliable heterogeneous machines. Borst

et al. [24] used a slotted machine approach, which produced a geometric dis-

tribution for the turnaround time. Wingstrom and Casanova [150] assumed

a specific distribution (generalized doubly folded normal distribution) prob-

ability of task failures and used it to maximize the probability of a whole

BoT to finish executing, by choosing replication candidates. In contrast, we

optimize cost and time simultaneously.

Bi-objective time-related problems were also analyzed in task scheduling.

Vydyanathan et al. [143] aimed to minimize latency while meeting strict

throughput requirements using replication, subject to a certain amount of

resource waste, in terms of the number of occupied processors. They [144]

11

also aimed to maximize the throughput while meeting latency constraints,

as did Agrawal et al. [4] for linear task graphs. Our work optimizes one

time-related and one monetary objective for BoTs.

The concept of utility functions as the target of the optimization process

has also received attention. Buyya et al. [27] researched economic mecha-

nisms for setting grid computation costs, for several utility functions. One

of their estimation methods is Pareto-efficiency. Cirne et al.’s workqueue

with replication strategy instructs the user to replicate a task [36], to get

the fastest result. Our replication model language allows for improvement

of this strategy with regard to energy saving by sending the replicas after

the first result has failed to return for some time. Ding et al. [41] aimed to

minimize the utility function of the energy-delay product on a multi-CPU

machine, by using a helper thread which collects statistics and determines a

deployment strategy. Lee, Subrata and Zomaya [82] aimed to minimize both

grid resource use and makespan for a workflow application, by giving them

an equal weight. Benoit et al. [22] assumed a linear risk model for machine

unavailability on homogeneous remote machines, and considered overhead

and operational costs. Our work allows for both a general user function and

a general probability distribution of task success. Andrzejak, Kondo, and

Anderson [14] controlled reliable and unreliable pool sizes in a combined

pool to Pareto-optimize cost and availability for Web services.

Pareto frontier approximations were previously used in scheduling for the

makespan and reliability objectives, but not for cost, by Dongarra et al. [45],

who scheduled task graphs, by Saule and Trystram [119], and by Jeannot et

al. [70].

Ramı́rez-Alcaraz et al. [113] evaluated scheduling heuristics and opti-

mized a combined objective for parallel jobs, because they believed that

computing a Pareto frontier in a grid environment is too slow. However, ap-

proximating the Pareto frontier for the cases we demonstrate in this work

using ExPERT takes only minutes—hardly “too slow” for a BoT that runs

for hours.

Oprescu and Kielmann [104] learned the run-time CDF on-line from the

execution of the same BoT, as we do. However, they did not deal with relia-

bility, since they used only clouds, and they utilized a heuristic to minimize

makespan for a given budget. In contrast, our approach provides the client

with full flexibility of choice, without forcing the choice of budget first, and

12

is valid for grids, too, where reliability is an issue.

Pareto frontiers were also used to concurrently optimize the same objec-

tive for different users, to achieve socially efficient scheduling and resource

management [33,38]. Zhao et al. [158] designed a market for BoTs, aiming to

efficiently optimize social welfare under agent budget constraints. Our work

focuses on multiple objectives of the same user.

2.2 Amazon EC2 Spot Instances

Pay-as-you-go IaaS cloud workload traces are quite rare, with the main data

originating from spot prices. These traces were used as characteristic IaaS

traces by many researchers, both to design user strategies and to learn more

from the provider’s point of view. Despite their name, spot instances are

not markets, and in particular not Spot and Future markets. Works on such

markets of computational resources are another trace source. In our work

we claim that Amazon is using a certain random reserve price, which is a

hidden minimal price. In this section we review therefor works that compare

the reserve price with the minimal price method. In section 4.9 we discuss

the trace-analyzing literature further in view of our results.

Cloud Traces IaaS pay-as-you-go cloud workload traces and models are

so hard to come by that researchers like Toosi et al. [132] resorted to a

grid and parallel systems model [90] with adapted runtime parameters to

describe cloud workloads. Google [59] released two backend workload traces,

the longest of which lasts 29 days. Liu [87] measured week-long traces of

CPU utilization of EC2 machines, showing a strong daily pattern of the

guest machines on the measured host. This pattern indicates that clients

prefer to keep instances running idle rather than shut them off for the night.

Such client behavior weakens the daily cycle of demand for EC2 machines

in general (not necessarily spot instances).

Reserve Prices Li and Tan [84] showed that a (hidden) reserve price

improves revenues of first price, sealed bid auctions for risk-averse clients. Li

and Perrigne [85] showed that for first price sealed bid auctions, an optimal

announced minimal price increases the seller’s revenue compared with an

arbitrary reserve price. They used data of timber sales in Canada. Katkar and

13

Reiley [74] found that for low-priced eBay sales of up to $20, (hidden) reserve

prices deter good clients and yield lower revenues than minimal (published)

prices. However, none of these works relate to an auction with a random

reserve price, in which the price is set by the highest bidder that does not

win the good. Ramberg [111] says that “the existence of a hidden reserve

price is to a great extent similar to the situation where the invitor is bidding.”

She recommends that when the auction is run by the invitor (as is the case

with Amazon’s spot instances), “. . . it should not be a second price auction,

or otherwise there should be some assurance that the invitor/operator will

not submit bids.”

Analyzing Spot Price Traces Concurrently with our work, Wee [148]

also analyzed price-availability graphs of early EC2 traces, noted the knees

and the different behavior of m1.small, and that the average price does not

change over time. Wee only analyzed epochs in which the timing of price

changes always included a quiet hour and assumed that Amazon does not

have an incentive to change prices more often than once an hour. However,

as we show in Section 4.7.4, Amazon’s early price change timing was a vul-

nerability, incentivizing it to change prices more frequently than once an

hour, as it later did. Wee [148] and Javadi and Buyya [69] also checked EC2

price traces for cycles. Javadi and Buyya, who computed various price trace

statistics, claimed spot prices have daily and weekly cycles, but Wee found

that cycles are statistically insignificant. Our findings agree with Wee’s.

Using Spot Price Traces for Client Strategy Evaluation Most stud-

ies that use price traces use them to evaluate client strategies. Andrzejak,

Kondo and Yi used spot price histories to advise the client how to minimize

monetary costs while meeting a Service Level Agreement (SLA) [15], and

to schedule checkpoints [154] and migrations [153]. Voorsluys et al. [141]

created a spot instance broker.

Mattess, Vecchiola, and Buyya [95] examined client strategies for using

spot instances to manage peak loads on scientific workloads. They identified

a price band, noted that bidding just above the band is almost as good as

bidding very high, and recommended bidding right under the on-demand

price.

Chohan et al. [34] processed price histories to compute the probability

14

that an instance with a certain bid price would last a certain time. They

also identified a price-band and noted the cost-effectiveness of bidding at its

top.

Wieder et al. [149] described a model for optimizing map-reduce on clouds

using a utility function that depends on execution time, data transfer costs,

and computation costs, which they assumed can be predicted for spot in-

stances. Brebner and Liu [26] assessed cost and performance of various clouds,

including spot instances. Vermeersch [137] analyzed spot price histories with

the goal of optimizing the client’s choice of deals on EC2.

Free Spot and Futures Markets While Amazon is currently the only

provider offering “spot instances,” free computing resource markets have

already been analyzed. Ortuno and Harder [105] modeled a free market for

computing power. Altmann et al. [7] described GridEcon, a foundation for a

free spot and futures market. Vanmechelen, Depoorter, and Broeckhove [134]

modeled a free market for computing power using spot and futures deals.

2.3 Ginseng and Resource-as-a-Service

Resource allocation can be done either in a white-box model, where the host

knows what the guest is doing and has full visibility into it, or in a black-box

model, where the host has no visibility into the guest. The latter is a reason-

able assumption for a public cloud. Guest hinting is a method in which the

guest passes specific information to the host, to make the allocation process

more efficient. Most of the literature on divisible good allocation assumed

that the client valuation of a good is monotonically rising and concave, mean-

ing that the law of diminishing returns applies to it. In our work we show

that for memory allocation this assumption is unrealistic.

White-Box Memory Overcommitment. Heo et al. [60] balanced

memory allocations according to desired performance levels. Like us, they

avoided quick changes, but for reasons of stability of the feedback loop. Un-

der memory pressure they divided the memory according to a fair share

policy. In Q-clouds, Nathuji, Kansal and Ghaffarkhah followed a concept of

both measuring and selling performance [102]: The guest specifies several

performance and payment levels and the host chooses which level to fulfill.

This approach is convenient to the host, which is guaranteed a demand for

15

any excess production power it has. Our approach is guest oriented, leaving

the designation of the current required resource amount in the hands of the

guest. In Ginkgo, Hines et al. [61] and Gordon et al. [54] used optimization

with constraint satisfaction to optimize a general social welfare function of

the guests’ performance. These works assume guest cooperation, while we

analyze the guest as a non-cooperative, selfish agent. Our work is the first

work on memory allocation which assumes non-cooperative guests.

Black-Box Techniques. Magenheimer [92] used the guests’ own per-

formance statistics to guide overcommitment. Jones, Arpaci-Dusseau, and

Arpaci-Dusseau [72] inferred information about the unified buffer cache and

virtual memory by monitoring IO and inferring major page faults. Zhao and

Wang [160] monitored use of physical pages. Waldspurger [145] randomly

sampled pages to find unused pages to reclaim, and introduced the “idle

memory tax,” which resembles our reclaim factor. These methods can be

fooled by a selfish guest, and like white-box methods, ignore the client’s

valuation of performance. Gupta et al. [56] did not require any guest co-

operation for their content based page sharing. Wood et al. [152] allocated

guests to physical hosts according to their memory contents. Gong, Gu and

Wilkes [52] and Shen et al. [122] used learning algorithms to predict guest

resource requirements.

Sekar and Maniatis [121] argued that all resource use must be accurately

attributed to the guests who use it so that it can be billed. In contrast,

Ginseng lays the burden of metering on the client: the client can measure its

current performance and decide how much it is willing to pay for memory.

Concurrently with our work, Vorontsov [142] proposed the mempressure

control group, which includes an interface for requesting that applications

release memory.

Guest Hint Techniques. Schwidefsky et al. [120] used guest hints to

improve host swapping. Mi loś et al. [101] incentivized guests to supply shar-

ing hints by counting a shared page as a fraction of a non-shared page. Like

Ginseng, their method can be applied to non-cooperative guests.

General Resource Allocation For Monotonically Rising, Con-

cave Valuations. Kelly [75] used a proportionally fair allocation: clients

bid prices, pay them, and get bandwidth in proportion to their prices. His

allocation is optimal for price taking clients (who do not anticipate their

impact on the price they pay). Popa et al. [109] traded off proportional

16

fairness with starvation prevention. Johari and Tsitsiklis [71] computed the

price of anarchy of Kelly’s auction, and Sanghavi and Hajek [118] improved

the auction in this respect.

Maillé and Tuffin [93] extended the PSP to multi-bids, thus saving the

auction rounds needed to reach equilibrium. Their guests disclosed a sam-

pling of their resource valuation functions to the host, which computed the

optimal allocation according to these approximated valuation functions. One

such single auction has the complexity of a single PSP auction, times the

number of sampling points. Though a multi-bid auction is more efficient for

static problems, it loses its appeal in dynamic problems which require re-

peated auction rounds anyhow. Other drawbacks of the multi-bid auction

are that the guest needs to know the memory valuation function for the

full range; that frequent guest updates pose a burden to the host; and that

the guest cannot directly explore working points which currently seem less

than optimal. (It can do so indirectly by faking its valuation function.) In

contrast, our memory progressive second price (MPSP) auction leaves the

control over the currently desired resource allocation to the guest, who best

knows its own current and future needs. Maillé and Tuffin also showed that

the PSP’s social welfare converges to theirs [94].

Chase et al. [31] allocated CPU time assuming client valuations of the

resource are fully known, concave, and monotonically increasing.

Google’s generalized second price (GSP) auction uses a limited bidding

language and is not a VCG auction [46].

Urgaonkar, Shenoy, and Roscoe [133] overbooked bandwidth and CPU

cycles given full profiling information but did not address memory.

Unlike bandwidth and CPU auctions, our memory auction is oriented

toward minimizing transfer of ownership. Unlike divisible good auctions, it

supports non-concave valuation functions.

Ghodsi et al. [51], Dolev et al. [44] and Gutman and Nisan [57] considered

allocating multiple resources to strategic guests whose private information

is the relative quantities they require of the resources. In contrast, Ginseng

compares valuations of different strategic clients.

Auctions With Non-concave Valuations. Bae et al. [19] supported a

single bidder with a non-concave valuation function. Dobzinski and Nisan [43]

presented truthful polynomial time approximation algorithms for multi-unit

auctions with k-minded valuations. They only assumed that the valuations

17

are non-decreasing (because they allow free disposal—shedding of unneeded

goods), and did not require them to be concave, but allowed the guests to

make queries before bidding. Our bidding language of forbidden ranges is

more efficient than free disposal, because it allows immediate auctioning of

the undesired memory.

18

Chapter 3

ExPERT: Pareto-Efficient

Task Replication on Grids

and a Cloud

3.1 Abstract

Many scientists perform extensive computations by executing large bags of

similar tasks (BoTs) in mixtures of computational environments, such as

grids and clouds. Although the reliability and cost may vary considerably

across these environments, no tool exists to assist scientists in the selec-

tion of environments that can both fulfill deadlines and fit budgets. To ad-

dress this situation, we introduce the ExPERT BoT scheduling framework.

Our framework systematically selects from a large search space the Pareto-

efficient scheduling strategies, that is, the strategies that deliver the best

results for both makespan and cost. ExPERT chooses from them the best

strategy according to a general, user-specified utility function. Through sim-

ulations and experiments in real production environments, we demonstrate

that ExPERT can substantially reduce both makespan and cost in compari-

son to common scheduling strategies. For bioinformatics BoTs executed in

a real mixed grid+cloud environment, we show how the scheduling strategy

selected by ExPERT reduces both makespan and cost by 30%-70%, in com-

parison to commonly-used scheduling strategies.

19

3.2 Introduction

The emergence of cloud computing creates a new opportunity for many scien-

tists: using thousands of computational resources assembled from both grids

and clouds to run their large-scale applications. This opportunity, however,

also adds complexity, as the shared grid systems and the pay-per-use public

clouds differ with regard to performance, reliability, and cost. How can scien-

tists optimize the trade-offs between these three factors and thus efficiently

use the mixture of resources available to them? To answer this question,

we introduce ExPERT, a general scheduling framework which finds Pareto-

efficient job execution strategies in environments with mixtures of unreliable

and reliable resources.

Today’s grids and clouds reside in two extremes of the reliability and cost

spectrum. Grid resources are often regarded as unreliable. Studies [64,78,79]

and empirical data collected in the Failure Trace Archive [79] give strong

evidence of the low long-term resource availability in traditional and desk-

top grids, with yearly resource availability averages of 70% or less. The

constrained resource availability in grids is often a result of the sharing

policy employed by each resource provider—for example, the grid at UW-

Madison [151] employs preemptive fair-share policies [131], which vacate

running tasks of external users when local users submit tasks. Commercial

clouds, in contrast, have service-level agreements that guarantee resource

availability averages of over 99%. Cost-wise, scientists often perceive grids

as being free of charge, whereas clouds are pay-per-use. Accordingly, many

grid users are now exploring the opportunity to migrate their scientific ap-

plications to commercial clouds for increased reliability [66, 68, 128], which

could prove prohibitively expensive [128].

Scientific grid applications are often executed as Bags of Tasks (BoTs)—

large-scale jobs comprised of hundreds to thousands of asynchronous tasks

that must be completed to produce a single scientific result. Previous stud-

ies [63, 65] have shown that BoTs consistently account for over 90% of the

multi-year workloads of some production grids. Thus, BoTs have been the

de facto standard for executing jobs in unreliable grid environments over the

past decade.

When executing BoTs in a grid environment, scientists replicate tasks.

Replication increases the odds of timely task completion despite resource un-

20

reliability [13, 29, 77, 125, 155], but also wastes CPU cycles and energy, and

incurs other system-wide costs [29] such as scheduler overload and delays to

other users. It is difficult to select a replication strategy that yields the desired

balance between the BoT response time (makespan) and the BoT execution

cost. A wrong strategy can be expensive, increasing both makespan and cost.

Although various heuristics were devised to pick a “good” replication strat-

egy, our study is the first to focus on explicitly identifying Pareto-efficient

strategies, that is, strategies that incur only the necessary cost and take no

longer than necessary to execute a given task.

We envision a world in which BoTs are executed on whatever systems

are best suited to the user’s preferences at that time, be they grids, clouds,

dedicated self-owned machines, or any combination thereof. This vision

presents many optimization opportunities; optimizing the structure of the

reliable+unreliable environment is only one of many examples. These op-

portunities can be exploited only when taking into account the individual

preferences of each scientist. One scientist might want to obtain results by

completing a BoT as quickly as possible, regardless of cost. Another might

choose to minimize the cost and complete the BoT only on grid resources.

Yet another scientist might try to complete work as soon as possible but

under strict budget constraints (e.g., [104]). What all users share is a desire

for efficient scheduling strategies.

Our main research goal is to determine which strategies are Pareto-efficient

and which of them the user should pick. The following four questions will

guide us in helping the user choose the best possible strategy. What mixture

of reliable and unreliable resources should be used? How many times should

tasks be replicated on unreliable resources? What deadline should be set for

those replicas? What is the proper timeout between submitting task instances?

Although Pareto-efficient strategies have been investigated before in different

contexts [1, 40, 96, 100], they are generally considered too computationally-

intensive for online scheduling scenarios. However, we show here that even

low-resolution searches for Pareto-efficient strategies benefit scheduling large

numbers of tasks online.

Our first contribution is a model for task scheduling in mixed environ-

ments with varying reliability and cost (Sections 3.3 and 3.4). Our second

contribution is ExPERT, a framework for dynamic online selection of a Pareto-

efficient scheduling strategy, which offers a wide spectrum of efficient strate-

21

gies for different user makespan-cost trade-offs, leading to substantial savings

in both (Section 3.5). We evaluate ExPERT through both simulations and ex-

periments in real environments (Section 3.6), and show (Section 3.7) that

ExPERT can save substantial makespan and cost in comparison to scheduling

strategies commonly used for workload scheduling in grids.

3.3 The Basic System Model

In this section we introduce the basic system model used throughout this

work. We first build towards the concept of the Pareto frontier, then present

the model for the system and the environment.

3.3.1 Terminology

A task is a small computational unit. A task instance is submitted to a

resource. If the resource successfully performs the task, it returns a result.

For a successful task instance, the result turnaround time is the time between

submitting an instance and receiving a result. For a failed instance, this is ∞.

A BoT is a set of asynchronous, independent tasks, forming a single logical

computation. Users submit BoTs to be executed task-by-task. We divide

BoT execution into the throughput phase and the tail phase, as depicted

in Figure 3.1. The remaining tasks are tasks which have not yet returned a

result. The tail phase start time (Ttail) occurs when there are fewer remaining

tasks than available unreliable resources. A BoT is completed when each of

its tasks has returned a result. The makespan of a BoT is the period elapsed

from its submission to its completion. Similarly, the tail phase makespan is

the period elapsed from Ttail until the completion of the BoT.

Replication is the submission of multiple instances of the same task,

possibly overlapping in time. A task is complete when one of its instances

returns a successful result. The reliability of a resource pool is the probability

that an instance submitted to that pool will return a result.

Cost is a user-defined price tag for performing a task, and may reflect

monetary payments (e.g., for a cloud), environmental damage, or depletion

of grid-user credentials. We ignore the costs of failed instances since it is

difficult to justify charging for unobtained results.

The user’s scheduling system (user scheduler) sends and replicates the

22

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

200

400

600

Time [s]

N
u

m
b

e
r

o
f

re
m

a
in

in
g

 t
a

s
k
s

Remaining tasks

Tail phase start time (T
tail

)

Throughput Phase Tail Phase

Figure 3.1: Remaining tasks over time during the throughput and tail
phases. Input: Experiment 6 (Table 3.5).

Dominated

Non−dominated

Non−dominated

Area
Dominated

Pareto
Frontier

Cost

Makespan

 Strategy S

Strategy S

StrategyS1

2

3

Figure 3.2: A Pareto frontier. Strategies S1 and S2 form the Pareto
frontier. S1 dominates S3.

user’s tasks to the available resource pools. A user strategy is a set of input

parameters indicating when, where, and how the user wants to send and

replicate tasks.

The performance metrics are cost per task (the average cost of all BoT

tasks) and makespan. A user’s utility function is a function of the perfor-

mance metrics of a strategy that quantifies the benefit perceived by the user

when running the BoT. The user would like to optimize this function, for

a given BoT and environment, when selecting a strategy. For example, a

user who wants the cheapest strategy can use a utility function that only

considers costs.

A strategy is dominated by another strategy if its performance is worse

than or identical to the other for both metrics (cost and makespan) and

strictly worse for at least one. A strategy that is not dominated by any

23

other strategy is Pareto-efficient ; the user cannot improve this strategy’s

makespan without paying more than its cost. As illustrated in Figure 3.2,

several Pareto-efficient strategies may co-exist for a given unreliable+reliable

system and workload (BoT). The Pareto frontier (or “Skyline operator” [25])

is the locus of all efficient strategies with respect to the searched strategy

space. Any strategy that optimizes the user’s utility function is Pareto-

efficient. Furthermore, for any Pareto-efficient strategy, there exists a utility

function that the strategy maximizes in the search space.

3.3.2 Model and Assumptions

We outline now the model and the assumptions for this work, first the en-

vironment, then the execution infrastructure. The assumptions are inspired

by real-world user schedulers such as GridBoT [125], which are designed for

CPU-bound BoTs that are not data bound.

Our model of the environment consists of two task queues. One queue is

serviced by the unreliable pool, and the other is serviced by the reliable pool.

We characterize the reliable and unreliable pools in terms of speed, re-

liability, and effective size. Unreliable machines operate at various speeds;

reliable machines are homogeneous. (We assume they are of the same cloud

instance type or belong to a homogeneous self-owned cluster. Thus, they

are far more homogeneous than the unreliable machines.) Failures in the

unreliable pool are abundant and unrelated across different domains [64];

reliable machines never fail (we justify the approximation by the large re-

liability difference between the unreliable and reliable pools). The reliable

and unreliable pools have different effective sizes (number of resources that

the user can concurrently use). We assume that effectively there are many

more unreliable than reliable machines (typical effective sizes are hundreds

of unreliable nodes and tens of reliable nodes), and thus we do not consider

using only the reliable resources. Resources are charged as used, per charging

period (one hour on EC2, one second on grids and self-owned machines).

We make no assumptions on task waiting time or on the unreliable sys-

tem’s scheduling policy, other than that both can be modeled statistically.

Since we allow for loose connectivity between the scheduler and the hosts [13],

it may be impossible to abort tasks, and the exact time of a task failure may

not be known. A task which did not return its result by its deadline is con-

24

sidered failed. We assume the user has an overlay middleware that replaces

malfunctioning hosts with new ones from the same pool. Our experiments

show that such middleware can maintain an approximately constant num-

ber of unreliable resources when requesting up to 200 machines from a larger

infrastructure.

3.4 The Scheduling Strategy Space

In this section we introduce our model for scheduling tasks with replication

in an environment with mixed reliability, cost, and speed. The model gener-

alizes state-of-the-art user strategies, e.g., of GridBoT users [125]. We focus

on optimizing the tail phase makespan and cost by controlling the tail phase

scheduling strategy, for three reasons. First, in naive BOINC executions [13],

the tail phase is an opportunity for improvement [124], as seen in Figure 3.1:

the task return rate in the tail phase is low, while many resources are idle.

Second, replication is inefficient during the throughput phase [50]. Third,

setting the decision point after the throughput phase lets us base the op-

timization on the highly-relevant statistical data (e.g., of task turnaround

times) collected during the throughput phase.

During the throughput phase we use a “no replication” strategy, with

a deadline of several times the average task CPU time on the unreliable re-

source (denoted by Tur and estimated according to several random tasks).

This deadline length is a compromise between the time it takes to iden-

tify dysfunctional machines and the probability of task completion. A long

deadline allows results to be accepted after a long time, but leads to long

turnaround times. For the tail phase, we can consider strategies with dead-

lines set to the measured turnaround times. Deadlines much longer than Tur

are not interesting, because strategies with such deadlines are inefficient.

When the tail phase starts, all unreliable resources are occupied by in-

stances of different tasks, and the queues are empty. From that point on,

additional instances are enqueued by a scheduling process: first to the unre-

liable pool, then to the reliable one, as illustrated in Figure 3.3. This schedul-

ing process, which we name NTDMr, is controlled by four user parameters,

N , T , D and Mr. Different strategies have different NTDMr values:

N is the maximal number of instances sent for each task to the unreliable

system since the start of the tail phase. A last, (N + 1)th instance is sent

25

Unreliable
Success

Pool

Instance N+1 in Tail
Reliable Queue Reliable Pool

Success

DT Timeout
Failure/First N Tail Instances

Unreliable queue

Figure 3.3: NTDMr task instance flow during throughput phase and tail
phase. Reliable machines serve only instance N + 1 during the tail phase

(throughput phase instances are not counted). During the throughput
phase, T = D, so there is no replication

to the reliable system without a deadline, to ensure task completion. A user

without access to a reliable environment is restricted to N = ∞ strategies.

Increasing N improves the chance that the reliable instance will not be

required, but increases the load on the unreliable pool. It also increases the

probability of receiving and paying for more than one result per task.

D is a deadline for an instance, measured from its submission to the sys-

tem. Setting a large value for D improves the instance’s chances to complete

on time, but increases the time that elapses before the user becomes aware

of failures. Short deadlines enable quick resubmission of failed tasks.

T is a timeout: the minimal waiting time before submitting another in-

stance of the same task. Rather than having all instances submitted at the

same time, each is submitted after a period T has passed from the previ-

ous instance submission, provided that no result has yet been returned. T

restricts resource consumption.

Mr is the ratio of the effective sizes of reliable and unreliable pools. It

provides a user-defined upper bound on the number of concurrently used

reliable resources. Small Mr values create long queues for the reliable pool.

A long reliable queue may indirectly reduce costs by allowing unreliable

instances to return a result and cancel the reliable instance before it is sent.

We demonstrate Mr’s contribution to the cost reduction of efficient strategies

in Section 3.7.

The user’s main goal is to choose values for N , T , D, and Mr, such that

the resulting makespan and cost optimize a specific utility function. How-

26

3

4

Reliable PoolUnreliable Pool

ExecutionBoT

User
Scheduler

Characterization
Statistical

Frontier
Generation

1 2 Decision
Making

5

ExPERT
Pareto

Figure 3.4: Flow of the ExPERT stages, with user intervention points.
Numbered arrows indicate process steps.

ever, the user does not know the cost-makespan trade-off, or what parameter

values would lead to a specific makespan or cost. To help the user choose

these values, we introduce in the next section a framework for the selection

of an efficient replication strategy.

3.5 The ExPERT Framework

In this section we explain the design and use of the ExPERT scheduling frame-

work. Our main design goal is to restrict the NTDMr space to Pareto-

efficient strategies, from among which the user can then make an educated

choice. To achieve this goal, ExPERT defines a scheduling process, which in-

cludes building a Pareto frontier of NTDMr strategies, out of which the best

strategy for the user is chosen.

The ExPERT Scheduling Process: The NTDMr task instance flow is

depicted in Figure 3.4. The user provides her parameters and, optionally, a

utility function. ExPERT then statistically characterizes the workload and the

unreliable system on the basis of historical data, analyzes a range of strate-

gies, generates the Pareto frontier, and presents the user with makespan- and

cost-efficient strategies. After either the user or ExPERT decides which strat-

egy in the frontier to use, ExPERT passes the N,T,D,Mr input parameters

of the chosen strategy to the user’s scheduler, which then replicates tasks

and submits them to the two resource queues.

The ExPERT framework is extensible in three ways. First, in Step 2 it

27

Table 3.1: User-defined parameters

Item Definition

Tur Mean CPU time of a successful task
instance on an unreliable machine

Tr Task CPU time on a reliable machine

Cur Cents-per-second cost of unreliable machine

Cr Cents-per-second cost of reliable machine

Mmax
r Maximal ratio of reliable machines

to unreliable machines

allows for alternative methods of gathering and analyzing the system prop-

erties. Second, in Step 3 it allows for alternative algorithms for construction

of the Pareto frontier. Third, in Step 4 it allows the user to employ any

utility function which prefers lower makespans and costs: using the Pareto

frontier allows freedom of choice with regard to the utility function.

Traditionally, BoTs are executed through schedulers such as GridBoT [125],

BOINC or Condor using a pre-set strategy, defined when the BoT is submit-

ted. Though historical performance data has been used by others for resource

exclusion [77] and for resource allocation adaptation [104], ExPERT is the first

to use it to optimize general makespan and cost preferences. In addition, once

the Pareto frontier is computed, it supplies the user with an understanding

of the trade-offs available in the system, to be utilized in the future, possibly

with different utility functions.

User Input: The user supplies ExPERT with data about mean CPU times

(denoted Tr, Tur), runtime costs in cents per second (denoted Cr, Cur), and

the reliable resource pool’s effective size relative to the unreliable one (Ta-

ble 3.1). Mmax
r , the upper bound of Mr, is derived from the unreliable pool’s

effective size, as well as from the number of self-owned machines, or from

a restriction on the number of concurrent on-demand cloud instances (e.g.,

at most 20 concurrent instances for Amazon EC2 first-time users). Runtime

costs might reflect monetary payments, energy waste, environmental dam-

age, or other costs. For example, a user might set unreliable costs as zero,

representing the grid as free of charge, or set it to account for power con-

sumption. ExPERT uses this data to estimate the BoT’s cost and makespan

under different strategies, when it searches the strategy space.

28

Statistical Characterization: ExPERT statistically characterizes the

workload and the unreliable system using F (·), the Cumulative Distribution

Function (CDF) of result turnaround time. It also estimates the effective size

of the unreliable pool, denoted as]ur, by running iterations of the ExPERT

estimator (described below) over the throughput phase until the estimated

result rate matches the real result rate. The estimated]ur and F (·) are used

to predict the makespan and cost of a given strategy and BoT. We describe

here the estimation of F (·). The estimated]ur and F (·) are later used in

step 3 to statistically predict the makespan and cost of applying a scheduling

strategy to the execution of a given BoT.

F (·) effectively models many environmental, workload, and user-dependent

factors. It is used to predict result turnaround time during the tail phase, so

it is best estimated in conditions that resemble those prevailing during this

phase. The throughput phase supplies us with such data, but it can also be

obtained from other sources. If the throughput phase is too short to collect

enough data before the tail phase starts, public grid traces can be combined

with statistical data about the workload to estimate the CDF.

The CDF is computed as follows:

F (t, t′) = Fs(t)γ(t′). (3.1)

Here t denotes instance turnaround time, and t′ denotes instance sending

time. Fs(t) denotes the CDF of successful task instances (i.e., those which

returned results). It can be directly computed from the turnaround times of

results. γ(t′) denotes the unreliable pool’s reliability at time t′: the probabil-

ity that an instance sent at time t′ to the unreliable pool returns a result

at all. γ(t′) is computed for disjoint sets of consecutively sent instances as

the number of results received by the deadline, divided by the number of

instances.

Because F (·) depends on t′ through γ(t′), the CDF might change over

time, necessitating a prediction model. ExPERT can either compute γ(t′) of-

fline or estimate it online. The accuracy of the two models is compared in

Section 3.7. In the offline model, γ(t′) is fully known (it is computed after all

the results have returned). In the online model, γ(t′) is predicted according

to information available at the decision making time Ttail. Depending on

when the instance was sent, at time Ttail we might have full knowledge, par-

29

tial knowledge, or no knowledge whether the instance will have returned a

result by the time its deadline arrives. The time-line of the instance sending

time t′ is divided into three epochs as follows.

1. Full Knowledge Epoch: the instance was sent at time t′ such that

t′ < Ttail −D. Instances sent during this first epoch that have not yet

returned will not return anymore, so all the information about these

tasks is known at time Ttail, in which the online reliability is evaluated.

The online reliability model is identical to offline reliability during this

epoch.

2. Partial Knowledge Epoch: Ttail − D ≤ t′ < Ttail. Instances sent dur-

ing this second epoch that have not yet returned may still return. We

use Equation 3.1 to approximate the probability that an instance sent

at time t′ will eventually finish. That is, we try to compute γ(t′) on

the basis of the observable task success rate (Fs(t)). According to our

model in Equation 3.1, F (t, t′) is separable. Hence, instead of comput-

ing Fs(t) according to data of this second epoch to evaluate Fs2(t),

we use Fs1(t), that is, the CDF of successful instances during the first

epoch.

Let F̂ (t, t′) denote F (t, t′) as was computed for instances sent at time

t′. With the information known at time Ttail, the CDF is fully known

(F (t, t′) = F̂ (t, t′)) for small values of t (t ≤ Ttail − t′). However, for

larger values of t, no information exists. As t′ approaches Ttail, F̂ (Ttail−
t′, t′) becomes less accurate, because it relies on less data.

We substitute the approximations Fs1(t) and F̂ (t, t′) in Equation 3.1

for the time t for which we have the most data (t = Ttail − t′):

γ(t′) =
F (Ttail − t′, t′)

Fs(Ttail − t′)
≈ F̂ (Ttail − t′, t′)

Fs1(Ttail − t′)
. (3.2)

Due to the diminishing accuracy of the computation of F̂ (Ttail− t′, t′),

Equation 3.2 may result in fluctuating, unreasonable values, which need

to be truncated. From below, we limit by the minimal historical value

during the first epoch. From above we only limit it by 1 because re-

source exclusion [77] (that is, the mechanism of avoiding faulty hosts)

might raise the reliability values above their maximal historical values.

30

3. Zero Knowledge Epoch: t′ ≥ Ttail, the instances have not yet been sent

at the decision making time, and no result has yet returned. We use

an average of the mean reliabilities during the Full Knowledge and

the Partial Knowledge Epochs, thus incorporating old accurate data

as well as updated, possibly inaccurate data. Our experiments indicate

that an average of equal weights produces a good prediction for γ(t′)

during this epoch.

Pareto Frontier Generation: ExPERT generates the Pareto frontier

using data from the previous steps in two moves. First it samples the strategy

space and analyzes the sampled strategies. Then it computes the Pareto

frontier of the sampled strategies, from which the best strategy can be chosen.

The sampling resolution is configurable, limited in range by the deadline used

in the throughput phase. We found that focusing the resolution in the lower

end of the range is more beneficial, as it accounts for the knee of the Pareto

frontier, which improves with resolution.

The ExPERT Estimator estimates the mean makespan and cost of each

sampled strategy through simulation. The ExPERT Estimator models]ur

unreliable and dMr]ure reliable resources, each resource pool having a sep-

arate, infinite queue. For simplicity we assume the queues are First Come

First Served (FCFS): from each queue, tasks are submitted according to the

order in which they entered the queue, unless they are canceled before they

are submitted. If one instance of a task succeeds after another is enqueued

but before it is sent, the other instance is canceled. If the other instance was

already sent, it is not aborted. For each instance sent to the unreliable pool,

a random number x ∈ [0, 1] is uniformly drawn. The instance turnaround

time t solves the equation F (t, t′) = x. If t ≥ D, the instance is considered

timed-out.

At each time-step the ExPERT Estimator first checks each running in-

stance for success or timeout. Then, if a task has not yet returned a result,

time T has already passed since its last instance was sent, and no instance of

this task is currently enqueued, the Estimator enqueues one instance for this

task. Finally, instances are allocated to machines. ExPERT uses the average

cost and makespan of several such estimations as expectation values of the

real cost and makespan.

Once all the sampled strategies are analyzed, ExPERT produces the Pareto

frontier by eliminating dominated strategies from the set of sampled strate-

31

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

Single result turnaround time [s]

p
ro

b
a

b
ili

ty

Figure 3.5: CDF of single result turnaround time. Input: Experiment 11
(Table 3.5).

gies, such that only non-dominated points remain, as illustrated in Figure 3.2.

Each point on the Pareto frontier represents a Pareto-efficient strategy. Un-

der the rational assumption of monotonicity of the utility function, all strate-

gies that may be the best within the sampled space for any utility function

are included in the frontier. ExPERT uses a hierarchical approach, which re-

sembles the s-Pareto frontier [96]: the strategies are first divided according

to their N values, since different N values account for distinct separate con-

ceptual solutions. Then ExPERT merges the different frontiers. The user’s

utility function is not explicitly required for frontier generation—the user

may withhold information about his or her utility function, and only choose

a strategy from the Pareto frontier after it is presented. Furthermore, once

created, the same frontier can be used by different users with different utility

functions.

Decision Making: After ExPERT generates the Pareto frontier, ExPERT

chooses the best strategy for the user according to her utility function; oth-

erwise, the user programs any other algorithm to choose the best strategy

for her needs. We present an example of decision making for a scientific BoT,

with a task turnaround time CDF as given in Figure 3.5 and user supplied

parameters as listed in Table 3.2.

We begin by showcasing the difficulty of selecting an appropriate schedul-

ing strategy. Using an inefficient strategy (such as an NTDMr strategy that

is not on the Pareto frontier) might waste a lot of time and money. For our

example, Figure 3.6 displays only some of the sampled strategies and the

resulting Pareto frontier (the depiction of the explored strategy space was

32

0.5 1 1.5 2 2.5 3 3.5

x 10
4

1

2

3

4

5

Tail Makespan[s]

C
o

s
t

[c
e

n
t/

ta
s
k
]

N=0

N=1

N=2

N=3

Figure 3.6: Pareto frontier and sampled strategies. Input: Experiment 11
(Table 3.5).

diluted for clarity.) Here, using the Pareto frontier can save the user from

paying an inefficient cost of 4 cent
task using N = 0 (no replication), instead of

an efficient cost of under 1 cent
task (4 times better) when using N = 3. Further-

more, a user who chooses N = 1 and is willing to pay 2 cent
task may obtain a

poor makespan of over 25,000s (the top right-most hexagram symbol in Fig-

ure 3.6). In contrast, ExPERT recommends a strategy based on using N = 3,

which leads to a makespan around 5,000s (5 times better) and a cost of

under 1 cent
task (the triangle symbol at the “knee” of the continuous curve in

Figure 3.6).

We next illustrate how ExPERT assists the user’s decision process. Fig-

ure 3.7 depicts the Pareto frontier in terms of cost and makespan. ExPERT

marks the frontier for several strategies, which are best for some simple user

preferences such as ‘minimize tail phase makespan’, ‘minimize cost’, ‘mini-

mize tail-phase-makespan × cost’, and ’work within a budget’ or ’finish in

time’. If the user supplies ExPERT with a different utility function, ExPERT

also finds the best strategy for it. A user who does not provide a utility

function can choose one of the Pareto-efficient strategies presented at this

stage. The Pareto frontier is discrete (we draw the connecting line for vi-

33

4500 5000 5500 6000 6500 7000 7500 8000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Tail Makespan[s]

C
o

s
t

[c
e

n
t/

ta
s
k
]

Pareto Frontier

Min Cost*Makespan

Budget of 2.5 cent/task

Fastest within budget

Deadline of 6300 s

Cheapest within deadline

Cheapest

Fastest

Fastest

Both
Fastest within budget

and
Min cost * Makespan

Cheapest within deadline

Cheapest

Figure 3.7: Pareto frontier and examples of best points for various user
utility functions. Input: Experiment 11 (Table 3.5).

sual purposes only), so only the discrete points on it have attached input

parameters. For a higher-density frontier, that is, a frontier that renders the

connecting line in Figure 3.7, a higher-density sampling of the search space

is required. However, even a low sampling resolution closely approaches the

extreme strategies (the cheapest and the fastest).

The strategy is now chosen in terms of cost and makespan. To finalize

the process, ExPERT presents the user with the parameters N , T , D and Mr,

which define the chosen strategy. Those parameters are passed to the user’s

scheduler and are used to run the user’s tasks.

34

Table 3.2: Values for user-defined parameters

Item Value

Tur Mean CPU time of successful instances on
unreliable pool (2,066 seconds for Experiment 11)

Tr For real/simulated experiment comparison:
mean CPU time over reliable instances.

Otherwise: Tur.

Cur
1

3600
cent

second= 10 cent
KWH · 100W

Cr
34

3600
cent

second : EC2’s m1.large on-demand rate

3.6 The Experimental Setup

In this section we present our experimental setup. To evaluate ExPERT in

a variety of scenarios yet within our budget, we ran a series of real-world

experiments and augmented the results with simulated experiments. The

simulator was created by re-using a prototype implementation of the ExPERT

Estimator; our simulations can be seen therefore as emulations of the ExPERT

process. We validated the simulator’s accuracy by comparing simulation re-

sults with results obtained through real-world experiments performed on

different combinations of unreliable and reliable pools, including grids, self-

owned machines, and Amazon EC2. To validate the simulator, we used var-

ious BoTs which perform genetic linkage analysis, a statistical method used

by geneticists to determine the location of disease-related mutations on the

chromosome. The BoTs, which are a characteristic workload (real full appli-

cations) for the superlink-online system [126], are characterized in Table 3.3.

In pure simulation experiments we used the CDF shown in Figure 3.5.

Experimental Environments: The real-world experiments were con-

ducted using GridBoT [125], which provides a unified front-end to multiple

grids and clouds. GridBoT interprets a language for encoding scheduling

and replication strategies on the basis of run-time data, to simultaneously

execute the BoTs in multiple pools. GridBoT relies on BOINC, so it is based

on weak connectivity.

To implement the limit to the CPU time consumed by a task instance,

we used the BOINC parameter rsc fpops bound, which poses a limitation

on the number of flops a host may dedicate to any a task instance. Since

35

Table 3.3: Workloads with T,D strategy parameters and throughput phase
statistics. WL denotes Workload index. WM is an execution environment

from Table 3.4.

WL]Tasks T[s] D[s] CPU time on WM[s]
Average Min. Max.

WL1 820 2,500 4,000 1,597 1,019 3,558
WL2 820 1,700 4,000 1,597 1,019 3,558

WL3 3276 5,000 8,000 1,911 1,484 6,435
WL4 3276 3,000 5,000 2,232 1,643 4,517

WL5 615 4,000 6,000 878 1,571 4,947
WL6 615 4,000 4,000 729 1,512 3,534
WL7 615 2,500 4,000 987 1,542 3,250

this parameter only approximates the limit, we manually verified that task

instances never continued beyond D.

The simulation-based experiments used the same discrete event-based

ExPERT Estimator we developed for building the Pareto frontier. Although we

considered using a grid simulator [28,30,67], ultimately we decided to build

our own simulation environment. Our simulations are specifically tailored

for running ExPERT and have a simple, trace-based setup. More importantly,

as far as we know, no other simulator has been validated for the scheduling

strategies and environments investigated in this work. For comparison, we

augmented the NTDMr strategies already implemented in the Estimator

with several static strategies described below.

The user-specified parameters used in our experiments are summarized

in Table 3.2. To estimate Cur we used the characteristic power difference

between an active and idle state according to AMD’s ACP metric [11]. We

multiplied those power differences for Opteron processors [11] by two, to

allow for cooling system power, reaching a range of 52W-157W; hence we

use 100W here.

The resource pools are detailed in Table 3.4. Each experiment used one

unreliable resource combination (one row) and at most one reliable resource.

Experiments 1-6 used old resource exclusion data, thus choosing more reli-

able machines from the unreliable pools. In experiments 7-13 this data was

deleted at the beginning of each experiment, thus allowing any machine in

36

Table 3.4: Real resource pools used in our experiments

Reliable Properties

Tech 20 self-owned CPUs in the Technion

EC2 20 m1.large Amazon EC2 cloud instances

Unreliable Properties

WM UW-Madison Condor pool. Utilizes preemption.
http://www.cs.wisc.edu/condor/uwcs

OSG Open Science Grid. Does not preempt.
http://www.opensciencegrid.org

OSG+WM Combined pool, half]ur from each

WM+EC2 Combined pool, 20 EC2 + 200 WM

WM+Tech Combined pool, 20 Tech + 200 WM

the unreliable pool to serve the BoT.

Static Scheduling Strategies: Without a tool such as ExPERT, users

(e.g., GridBoT users) have resorted to static strategies. A static strategy is

pre-set before the BoT starts, and does not require further computations

during the BoT’s run-time. Unless otherwise stated, during the throughput

phase these strategies are “no replication” (N = ∞, T = D = 4Tur) and

the reliable pool is idle. Although some of these strategies are NTDMr

strategies, they are not necessarily Pareto-efficient. We compare them to

Pareto efficient strategies found by ExPERT in the next section. The static

strategies are:

AR: All to Reliable: use only reliable machines for the duration of the

BoT. This is a fast strategy when there are many fast reliable machines and

the reliability of the unreliable machines is low.

TRR: all Tail Replicated to Reliable: at Ttail, replicate all remaining tasks

to the reliable pool. This is an NTDMr strategy (N = 0,T = 0,Mr =

Mmax
r).

TR: all Tail to Reliable: at Ttail, enqueue every timed out tail task to the

reliable pool. This is an NTDMr strategy (N = 0, T = D,Mr = Mmax
r).

AUR: All to UnReliable, no replication: use the default throughput phase

strategy during the tail phase. This is the cheapest option for a cheap unre-

liable system. This is an NTDMr strategy (N = ∞, T = D).

B=7.5: Budget of $7.5 for a BoT of 150 tasks (23
cent
task): replicate all re-

37

maining tasks on the reliable pool once the estimated cost of the replication

is within the remaining budget. Until then, use the default throughput phase

strategy.

CN∞: Combine resources, no replication: deploy tasks from the unreli-

able queue on the reliable pool if the unreliable pool is fully utilized. This is

a common way of using the cloud, supplementing self-owned machines with

cloud machines when the regular machines are busy.

CN1T0: Combine resources, replicate at tail with N = 1, T = 0: utilize

all resources only during the throughput phase. At Ttail, replicate: for each

remaining task, enqueue a reliable instance.

3.7 The Experimental Results

We begin by evaluating NTDMr Pareto frontiers by comparing them to the

static strategies introduced in Section 3.6. We proceed to demonstrate the

importance of Mr as a strategy parameter in Section 3.7. We then validate

the ExPERT Estimator logic in Section 3.7 and discuss the time it takes to

run ExPERT in Section 3.7.

ExPERT vs. Static Scheduling Strategies: To evaluate the benefits of

using NTDMr Pareto-efficient strategies, we compare them with the seven

static scheduling strategies. The comparison is performed for a BoT of 150

tasks, with 50 machines in the unreliable resource pool. The Pareto frontier

is obtained by sampling the strategy space in the range N = 0 . . . 3, Mr =

0.02 . . .Mmax
r , and 0 ≤ T ≤ D ≤ 4Tur. T,D were evenly sampled within

their range at 5 different values each. Mr was sampled by at most 7 values,

listed in Figure 3.9.

We first compare the makespan and cost of the static strategies to the

Pareto frontier on a system where Mmax
r = 0.1, and depict the results in

Figure 3.8(a). The Pareto frontier found by ExPERT dominates all the

tested static strategies except AUR; that is, for any utility function,

for each tested static strategy except AUR, ExPERT recommends at least one

NTDMr strategy that improves both metrics. For example, ExPERT finds

several strategies that dominate the commonly-used CN∞ strategy. One

such strategy is:

ExPERT recommended (N = 3, T = Tur, D = 2Tur,Mr = 0.02): send

N = 3 instances to the unreliable pool during the tail phase, with timeout set

38

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

1

2

3

4

makespan [s]

c
o

s
t

[c
e

n
t/

ta
s
k
]

Pareto frontier

AR

TRR

TR

AUR

B=5 cent/task

CN∞

CT0N1

ExPERT
Reccomended

(a) Performance of strategies on the Pareto frontier vs. that of static strategies,
for Mmax

r = 0.1. Strategy AR at (makespan around 70,000s, cost=22 cent
task

) is not
shown.

0.1 0.3 0.5
0

0.5

1

1.5

2

x 10
5

#reliable/#unreliable (M
r

max
)

B
o

T
m

a
k
e

s
p

a
n

 *
 c

o
s
t/

B
o

T
ta

s
k
 [

c
e

n
t*

s
/t

a
s
k
]

AR

TRR

TR

AUR

B=5 cent/task

CN∞

CT0N1

ExPERT Rec.

2*10
6

5*10
5 4*10

5

(b) Makespan-cost product for static and ExPERT recommended strategies, for
Mmax

r = 0.1, 0.3, 0.5. Bars for strategy AR are truncated; their height appears
beside them. Smaller values are better.

Figure 3.8: Static strategies compared to Pareto-efficient NTDMr

strategies. Input: Experiment 11.

39

to occur after twice the average task time (D = 2Tur). Send each subsequent

instance after the average task time (T = Tur) from the sending of the prior

instance had passed. Use only one (]ur = 50, 50×Mr = 1) reliable machine

at a time.

This strategy, which is located in Figure 3.8(a) at the “knee” of the

Pareto frontier, yields a makespan of 15,640s for the cost of 0.78 cent
task , cut-

ting 72% of CN∞’s cost and 33% of its makespan. This strategy does

not dominate AUR, by definition the cheapest strategy. Nonetheless, sev-

eral strategies found by ExPERT on the Pareto frontier lead to much better

makespan than AUR, with only a small increase in cost.

The dominance of the NTDMr Pareto frontier demonstrates the power

of Pareto-efficient scheduling over static strategies. The frontier’s dominance

is not a direct consequence of the way it is built, which only guarantees that

it will dominate the NTDMr strategies in the sampled space. The fact that

the NTDMr Pareto frontier dominates the static strategies implies

that NTDMr is a good scheduling model: the efficient strategies the

user looks for can be expressed as points in the sampled NTDMr

space.

Next, we focus on the performance of the strategies in terms of a specific

utility function: minimize tail-phase-makespan × cost per task. We compare

the utility obtained by the user when the scheduling strategy is ExPERT

recommended or one of the seven static scheduling strategies. Figure 3.8(b)

depicts the results of this comparison. ExPERT recommended is 25% better

than the second-best performer, AUR, 72%-78% better than the third-best

performer, and several orders of magnitude better than the worst performer,

AR. We conclude that ExPERT recommended delivers significantly better

utility than all the tested static strategies and outperforms (dominates) all

these strategies except AUR.

Each static strategy might be tailored for a special scenario and a utility

function. However, as Figure 3.8(b) demonstrates, using ExPERT to search

the strategy space for that special scenario will provide the user with the

best strategy in the search space, for a small computational cost (see below).

Impact of Mr ExPERT’s Performance: Mr provides a bound on the

number of concurrently used reliable resources (see Section 3.4). We now

demonstrate the benefit of elasticity, justifying the model decision which

allows Mr to be a scheduling strategy parameter rather than a system con-

40

Table 3.5: Experimental parameters. WL denotes workload according to
Table 3.3. N is the NTDMr parameter.]ur is an estimate for the effective

size of the unreliable pool. ur and r denote choice of pools according to
Table 3.4. The strategy in Experiment 5 is CN∞: Combine resources, no

replication (which is not an NTDMr strategy).

Experiment Parameters
No. WL N]ur ur r

1 WL1 0 202 WM Tech

2 WL1 2 199 WM Tech

3 WL6 ∞ 200+20 WM+Tech -

4 WL3 0 206 WM Tech

5 WL6 ∞ 200+20 WM+EC2 -

6 WL5 ∞ 201 WM -

7 WL1 0 208 WM Tech

8 WL2 1 208 WM Tech

9 WL1 0 251 OSG+WM Tech

10 WL7 0 208 WM EC2

11 WL1 0 200 OSG Tech

12 WL1 0 200 WM Tech

13 WL4 0 204 WM Tech

stant. We consider Mr = 0.02 . . . 0.50, which means that reliable resources

are less than 50% of the resources available to the user.

First we demonstrate why users need to be able to set Mr as a parameter

of their scheduling strategy. To this end, we compare the Pareto frontiers

created by fixing Mr; we depict in Figure 3.9 seven such frontiers. As shown

by the figure, high Mr values allow a wide range of makespan values overall,

but low Mr values can only lead to relatively longer makespans. For example,

the Pareto frontier for Mr = 0.02 starts at a tail makespan of over 5,500s,

which is 25% larger than the makespans achievable when Mr ≥ 0.30. We

also observe that, for the same achieved makespan, lower Mr values lead in

general to lower cost. We conclude that to find Pareto-efficient NTDMr

strategies, Mr should not be fixed in advance, but set in accordance

with the desired makespan.

We investigate next the impact of Mr in the execution of the BoT on the

resources provided by the reliable pool. For each Pareto-efficient strategy

41

Table 3.6: Experimental results. γ denotes the average reliability of the
unreliable pool. RI denotes the number of task instances sent to the

reliable pool. TMS and C denote tail phase makespan and cost per task.
∆TMS and ∆C denote deviation of simulated values from real ones.

Averages are computed over the absolute values of the results.

Measured in Real Experiment Simulated Experiment Deviation
Offline [%] Online [%]

No. γ RI TMS[s] C
[
cent
task

]
∆TMS
TMS

∆C
C

∆TMS
TMS

∆C
C

1 0.995 50 6,908 1.60 8 3 35 33

2 0.983 0 3,704 39 21 -4 8 -4

3 0.981 0 6,005 41 1 -4 4 -4

4 0.974 49 10,487 1.10 2 2 -56 -32

5 0.970 41 6,113 1.48 37 -2 29 -2

6 0.942 0 6,394 0.42 3 -4 -40 -4

7 0.864 77 10,130 2.38 3 2 32 26

8 0.857 16 4,162 0.88 19 15 -37 -10

9 0.853 108 14,029 3.28 7 0 -1 -4

10 0.844 118 11,761 3.67 -14 -35 -7 -28

11 0.827 89 11,656 2.86 8 1 -7 -7

12 0.788 107 12,869 3.09 -9 -13 -2 -5

13 0.746 100 20,239 1.54 -3 -7 -7 -10

Avg. 0.894 58 9,574 1.78 10 7 20 13

operating in this environment, we compare three operational metrics: the

strategy parameterMr, the maximal number of reliable resources used during

the BoT’s run (denoted used Mr), and the maximal size of the reliable queue

built during the run. Figure 3.10 depicts the results of this comparison. We

find that for most Pareto-efficient strategies, the number of used resources

from the reliable pool, used Mr, is equal to the number of resources set

through the strategy parameter, Mr. This is because, during the BoT’s tail

phase, tasks sometimes wait in the queue to the reliable pool, as seen in

Figure 3.10: the maximal length of the reliable queue is almost never zero;

that is, the queue is almost always used. The right-most point on the Mr

and used Mr curves, for which the values of Mr and used Mr are different,

is the exception. We explain this by an intrinsic load-balancing property of

the NDTMr systems: when the reliable pool queue is long, slow unreliable

42

5000 5500 6000 6500 7000 7500

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
c
o
s
t/

ta
ilt

a
s
k
 [

c
e
n
t/

ta
s
k
]

Tail Makespan [s]

All M

r
 values combined

M
r
=0.02

M
r
=0.06

M
r
=0.10

M
r
=0.20

M
r
=0.30

M
r
=0.40

M
r
=0.50

Figure 3.9: Pareto frontiers obtained for various Mr values. The topmost
efficient point of each Pareto frontier is highlighted. Pareto frontiers of high
Mr values have a wider makespan range. Low Mr values yield lower costs.

instances return results before the reliable instance is sent, which leads to

the reliable instance being canceled and its cost being spared.

Simulator Validation: We conducted 13 large-scale experiments to

validate the simulator and the ExPERT Estimator. In each experiment, we

applied a single strategy to specific workload and resource pools. Since the

simulations include a random component, we ensured statistical confidence

by comparing the performance metrics (tail phase makespan, cost per task)

of each real experiment with mean values of 10 simulated experiments. We

compared real and simulated performance metrics for both the offline and

the online models (defined in Section 3.5). The experiments are listed by

decreasing order of average reliability in Tables 3.5 and 3.6.

On average, performance metrics of the offline simulations, which use full

knowledge of the unreliable pool’s reliability γ(t′), deviate from real experi-

mental values by 7% and 10% for cost and tail phase makespan, respectively.

The on-line simulations, which extrapolate γ(t′) during the tail phase, devi-

43

4500 5000 5500 6000 6500 7000 7500 8000 8500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tail Makespan [s]

M
r ;

 Q
u

e
u

e
 L

e
n

g
th

 a
s
 F

ra
c
ti
o

n
 o

f
T

a
il

T
a

s
k
s

used M

r

max reliable queue
M

r

Used M
r
 < M

r

Figure 3.10: Reliable pool use by efficient strategies.

ated from real experimental values by twice as much.

We identify four main causes for these deviations. First, the simulator

provides expectation values of performance metrics. In contrast, a real ex-

periment is a single, unreproducible sample. When a large number of tasks

are replicated during the tail phase, the performance metrics tend to be close

to the mean values of the simulated experiments. When the opposite occurs,

for example in Experiment 2, where only four very long instances were sent

after Ttail, the makespan observed in the real environment is further from the

offline simulation. Second, the simulator assumes Fs(t) does not depend on t′

and attributes all CDF changes to γ(t′). However, in real experiments Fs(t)

does depend on t′, due to resource exclusion [77] policies and a varying task

length distribution. Third, ExPERT assumes it is never informed of failures

before the deadline D. In real experiments, some machines do inform about

failures and are replaced. Fourth, in real experiments, the effective size of

the unreliable pool is variable and hard to measure. Hence, Ttail is detected

when there are more free hosts than remaining tasks. The tasks remaining

at this time are denoted tail tasks. This may be a transient state, before the

44

actual start of the tail phase. In simulated experiments, the number of ma-

chines is fixed. Ttail is detected when the number of remaining tasks equals

the number of tail tasks in the real experiment.

ExPERT Runtime The computational cost of running our ExPERT pro-

totype, in the resolution used throughout this paper, is several minutes to

sample the strategy space and analyze it, on an Intel(R) Core(TM)2 Duo

CPU P8400 @ 2.26GHz. The space sampling is composed of dozens of single

strategy simulations, each lasting several seconds. We consider a runtime in

the order of minutes, appropriate for BoTs of hundreds of tasks that are

the focus of this work. ExPERT’s runtime may be further shortened at the

expense of accuracy, by reducing the number of random repetitions from

over 10 to just 1. Similarly, flexibility may be traded with time by changing

the resolution in which the search space is sampled. Gradually building the

Pareto frontier using evolutionary multi-objective optimization algorithms

can also reduce ExPERT’s runtime.

3.8 Conclusion

We addressed one of the main problems facing scientists who rely on Bags-of-

Tasks (BoTs) in mixtures of computational environments such as grids and

clouds: the lack of tools for selecting Pareto-efficient scheduling strategies for

general user-defined utility functions. For any user-provided utility function,

ExPERT finds the best strategy in a large, sampled strategy space. ExPERT

can achieve a 72% cost reduction and a 33% shorter makespan compared

with commonly-used static scheduling strategies. For a utility function of

makespan × cost, ExPERT provided a strategy which was 25% better than

the second-best, and 72-78% better than the third best strategy. These im-

provements stem from ExPERT’s ability to explore a large strategy space

under minimal user guidance, and to automatically adapt to the varying

reliability, cost, and speed of resources. They also show that the NTDMr

strategy space is large enough to provide considerable flexibility in both

makespan and cost. ExPERT’s predictive accuracy has been verified through

experiments on real grids and a real cloud. The Pareto frontier created by

ExPERT provides users with an understanding of the cost-makespan trade-offs

of executing their BoTs.

45

Chapter 4

Deconstructing Amazon EC2

Spot Instance Pricing

4.1 abstract

Cloud providers possessing large quantities of spare capacity must either

incentivize clients to purchase it or suffer losses. Amazon is the first cloud

provider to address this challenge, by allowing clients to bid on spare capacity

and by granting resources to bidders while their bids exceed a periodically

changing spot price. Amazon publicizes the spot price but does not disclose

how it is determined.

By analyzing the spot price histories of Amazon’s EC2 cloud, we reverse

engineer how prices are set and construct a model that generates prices

consistent with existing price traces. Our findings suggest that usually prices

are not market-driven, as sometimes previously assumed. Rather, they are

likely to be generated most of the time at random from within a tight price

range via a dynamic hidden reserve price mechanism. Our model could help

clients make informed bids, cloud providers design profitable systems, and

researchers design pricing algorithms.

4.2 Introduction

Unsold cloud capacity is wasted capacity, so cloud providers would naturally

like to sell it. They would especially like to sell the capacity of machines which

46

cannot be turned off and have higher overhead expenses. Clients might be

enticed to purchase this capacity if they are provided with enough incentive,

notably, a cheaper price. In late 2009, Amazon was the first cloud provider

to attempt to provide such an incentive by announcing its spot instances

pricing system. “Spot Instances [...] allow customers to bid on unused Ama-

zon EC2 capacity and run those instances for as long as their bid exceeds

the current Spot Price. The Spot Price changes periodically based on supply

and demand, and customers whose bids exceeds it gain access to the avail-

able Spot Instances” [9]. With this system, Amazon motivates purchasing

cheaper capacity while ensuring it can continuously act in its best interest

by maintaining control over the spot price. Section 4.3 summarizes the

publicly available information regarding Amazon’s pricing system.

Amazon does not disclose its underlying pricing policies. Despite much

interest from outside Amazon [34, 69, 95, 117, 148], its spot pricing scheme

has not, until now, been deciphered. The only information Amazon does

reveal is its temporal spot prices, which must be publicized to make the pric-

ing system work. While Amazon provides only its most recent price history,

interested parties record and accumulate all the data ever published by Ama-

zon, making it available on the Web [88,136]. We leverage the resulting trace

files for this study. The trace files, along with the methodology we employ

to use them, are described in Section 4.4.

Knowing how a leading cloud provider like Amazon prices its unused

capacity is of potential interest to both cloud providers and cloud clients.

Understanding the considerations, policies, and mechanisms involved may

allow other providers to better compete and to utilize their own unused

capacity more effectively. Clients can likewise exploit this knowledge to op-

timize their bids, to predict how long their spot instances would be able to

run, and to reason about when to purchase cheaper or costlier capacity.

Motivated by these benefits, we attempt in Sections 4.5–4.6 to uncover

how Amazon prices its unused EC2 capacity. We construct a spare capac-

ity pricing model and present evidence suggesting that prices are typically

not determined according to Amazon’s public definition of the spot pricing

system as quoted above. Rather, the evidence suggests that spot prices are

usually drawn from a tight, fixed range of prices, reflecting a random reserve

price that is not driven by supply and demand. (A reserve price is a hidden

price below which bids are ignored.) Consequently, published spot prices re-

47

veal little about actual, real-life client bids; studies that assume otherwise

(in particular [32,157]) are, in our view, misguided.We speculate that Ama-

zon utilizes such a price range because its spare capacity usually exceeds the

demand.

In Section 4.7 we put our model to the test by conducting pricing

simulations (based on cloud and grid workloads) and by showing their results

to be consistent with EC2 price traces. We then discuss the possible benefits

of using dynamic reserve price systems (such as the one we believe is used

by Amazon) in Section 4.8. Finally, we offer some concluding remarks in

Section 4.10.

4.3 Pricing Cloud Instances

Amazon’s EC2 clients rent virtual machines called instances, such that each

instance has a type describing its computational resources as follows: m1.small,

m1.large and m1.xlarge denote, respectively, small, large, and extra-large “-

standard” instances; m2.xlarge, m2.2xlarge, and m2.4xlarge denote, respec-

tively, extra-large, double extra-large, and quadruple extra-large “high mem-

ory” instances; and c1.medium and c1.xlarge denote, respectively, medium

and extra-large “high CPU” instances.

An instance is rented within a geographical region. We use data from four

EC2 regions: us-east, us-west, eu-west and ap-southeast, which correspond to

Amazon’s data centers in Virginia, California, Ireland, and Singapore.

Amazon offers three purchasing models, all requiring a fee from a few

cents to a few dollars, per hour, per running instance. The models provide

different assurances regarding when instances can be launched and termi-

nated. Paying a yearly fee (of hundreds to thousands of dollars) buys clients

the ability to launch one reserved instance whenever they wish. Clients may

instead choose to forgo the yearly fee and attempt to purchase an on-demand

instance when they need it, at a higher hourly fee and with no guarantee that

launching will be possible at any given time. Both reserved and on-demand

instances remain active until terminated by the client.

The third, cheapest purchasing model provides no guarantee regarding

either launch or termination time. When placing a request for a spot instance,

clients bid the maximum hourly price they are willing to pay for running

it (called declared price or bid). The request is granted if the bid is higher

48

than the spot price; otherwise it waits. Periodically, Amazon publishes a new

spot price and launches all waiting instance requests with a maximum price

exceeding this value; the instances will run until clients terminate them or the

spot price increases above their maximum price. All running spot instances

incur a uniform hourly charge, which is the current spot price. The charge is

in full hours, unless the instance was terminated due to a spot price change,

in which case the last fraction of an hour is free of charge.

In this work, we assume that instances with bids equal to the spot price

are treated similarly to instances with bids higher than the spot price.

4.4 Methodology

Trace Files We analyze 64 (= 8 × 4 × 2) spot price trace files associated

with the 8 aforementioned instance types, the 4 aforementioned regions, and

2 operating systems (Linux and Windows). The traces were collected by

Lossen [88] and Vermeersch [136]. They start as early as 30 November 2009

(traces for region ap-southeast are only available from the end of April 2010).

In this paper, unless otherwise stated, we use data accumulated until 13 July

2010.

Availability We define the availability of a declared price as the fraction

of the time in which the spot price was equal to or lower than that declared

price. Formally, a persistent request is a series of requests for an instance

that is immediately re-requested every time it is terminated due to the spot

price rising above its bid. Given a declared price D, we define D’s availability

to be the time fraction in which a persistently requested instance would run

if D is its declared price. Formally, let H be a spot price trace file, and let Tb

and Te be the beginning and end of a time interval within H. The availability

of D within H during [Tb, Te] is:

availabilityH(D) |[Tb,Te] =
TH
b→e(D)

Te − Tb

, where TH
b→e(D) denotes the time between Tb and Te during which the spot

price was lower than or equal to D. The availability of price D reflects the

probability that spot instances with this bid would be immediately launched

when requested at some uniformly random time within [Tb, Te].

49

4.5 Evidence for Artificial Pricing Intervention

4.5.1 Market-Driven Auctions

Amazon’s description of “How Spot Instances Work” [9] gives the impression

that spot prices are set through a uniform price, sealed-bid, market-driven

auction. “Uniform price” means all bidders pay the same price. “Sealed-bid”

means bids are unknown to other bidders. “Market-driven” means the spot

price is set according to the clients’ bids. Many auctions fit this description.

One example of such an auction is an (N + 1)th price auction of multiple

goods, with retroactive supply limitation (after clients bid). Of course, Ama-

zon could be using some other market-driven mechanism consistent with

their description.

In an (N + 1)th price auction of multiple goods, each client bids for a

single good (i.e., a spot instance). The provider sorts the bids and chooses

the top N bidders. The provider is free to set the number of sold goods N ,

as long as N does not exceed the available capacity. The provider may set

N up-front as the available capacity, but it may also retroactively further

restrict N after receiving the bids, to maximize revenue. The provider sets

the uniform price to the price declared by the highest bidder who did not

win the auction (bidder number N +1) and publishes it. The top N winning

bidders pay the published price and their instances start running. In this

case, the published price is a price bid by an actual client.

The provider may also decide to ignore bids below a hidden reserve price

or below a publicly known minimal price, to prevent the goods from being

sold cheaply, or to give the impression of increased demand.

We conjecture that usually, contrary to impressions conveyed by Ama-

zon [9] and assumptions made by researchers [32, 157], the spot price is set

according to a constantly changing reserve price, disregarding client bids. In

other words, most of the time the spot price is not market-driven but is set

by Amazon according to an undisclosed algorithm.

4.5.2 Evidence: Availability as a Function of Price

In support of this conjecture, we analyze the relationship between an in-

stance’s declared price (how much a client would be willing to pay for it)

and the resulting availability between 20 January 2010 and 13 July 2010.

50

0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

av
ai

la
bi

lit
y

declared price [$/hour]

us−east m1 instances

us−east m2.xlarge instance

us−east m2 2xlarge and 4xlarge

us−east c1 instances

other regions m1 instances

other regions m2.xlarge instances

other regions m2 2xlarge and 4xlarge instances

other regions c1 instances

Floor
Price (F)

Knee at
Ceiling

Price (C)

Figure 4.1: Availability of Windows-running spot instance types as a
function of their declared price. The legend is multiplexed: us-west, eu-west,
ap-southeast all appear in the legend as “other regions”. m1.small, m1.large

and m1.xlarge all appear as m1. c1.medium and c1.xlarge appear as c1.

Fig. 4.1 shows the availability of different spot instance types as a func-

tion of declared price (price-availability graphs), for all examined Windows

spot instance types in all regions. Results for instances running Linux (not

shown) are qualitatively similar. The prices of different resources are usually

in different ranges (e.g., us-east.c1.medium’s usual price range is a third of

us-east.c1.xlarge’s), but they all share the same functional shape: a sharp lin-

ear increase in availability, during which the price resolution is 0.1 cent. The

increase may last until an availability of 1.0 is reached, or end with a knee

at a high availability (usually above 0.95). A knee is a sharp change in the

graph’s slope; it is usually accompanied by a sharp decrease in the graph’s

resolution. Above the knee, the availability grows with declared price, but

at a slower, varying rate.

Fig. 4.2 shows normalized price-availability graphs for Linux: each spot

price is divided by the price of a similar on-demand instance. We see that

Linux types can be classified by region. Each of the two region classes has

a distinct normalized price range in which the availability’s dependency on

the price is linear. One class contains us-east, and the other class contains

the other regions.

Fig. 4.3 shows the data presented in Fig. 4.1 as normalized price-availability

graphs. As in Fig. 4.2, different types can be classified by region: us-east or

51

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

0.2

0.4

0.6

0.8

1

a
va

ila
b

ili
ty

declared price as fraction of on−demand price

us−east m1 instances

us−east m2.xlarge instance

us−east m2 2xlarge and 4xlarge .

us−east c1 instances

other regions m1 instances

other regions m2.xlarge instances

other regions m2 2xlarge and 4xlarge instances

other regions c1 instances

Figure 4.2: Availability of Linux-running spot instance types as a function
of their normalized declared price. The declared price is divided by the
price of a similar on-demand instance. The legend is multiplexed as in

Fig. 4.1. All 32 curves are shown in full, but most of them overlap.

all other regions. Not as in Fig. 4.2, different types have different normalized

prices within a class, and the relative price difference between any type pair

is the same in each class. The m1.small type, indicated in Fig. 4.3 by an

arrow, has a particularly low knee, with an availability of 0.45. The nor-

malized ranges of the us-east.windows.c1 instances, whose absolute prices so

differed in Fig. 4.1, are now identical. Figs. 4.1–4.3 show that availability

strongly depends on declared price for all regions and all instance types, and

that this dependency has a typical recurring shape, which can be explained

by assuming that Amazon uses the same mechanism to set the price in dif-

ferent regions. The particular shape of the dependency could be explained

in one of two ways: either Amazon’s spot prices reflect real client bids and

the shaped dependency occurs naturally, or the spot prices are the result of

a dynamic hidden reserve price algorithm, of which the shaped dependency

is an artifact.

Let us first consider the assumption that the shaped dependency occurs

naturally due to real client bids. The differences between absolute price

ranges of the same type in different regions (Fig. 4.1) show that different

regions experience different supply and demand conditions. This means that

uncoordinated client bids for different types and regions would have to natu-

rally and independently create all of the following macro-economic phenom-

52

0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

av
ai

la
bi

lit
y

declared price as fraction of on−demand price

us−east m1 instances

us−east m2.xlarge instance

us−east m2 2xlarge and 4xlarge .

us−east c1 instances

other regions m1 instances

other regions m2.xlarge instances

other regions m2 2xlarge and 4xlarge instances

other regions c1 instances

us−east m1.small

Figure 4.3: Availability of Windows-running spot instance types as a
function of their normalized declared price. The declared price is divided

by the price of a similar on-demand instance. The legend is multiplexed as
in Fig. 4.1. All the data is shown in full, but many of the curves overlap.

us-east.windows.m1.small is indicated by an arrow.

ena: (1) normalized prices turning out identical for various Linux types but

different for Windows types; (2) a rigid linear connection between availabil-

ity and price that turns out to be identical for different types and regions;

(3) a distinct region having a normalized price range different than all the

rest (which turn out to have identical ranges); and (4) normalized prices for

Windows instances which differ from one another by identical amounts in

each of the two region classes, creating the same pattern for both.

If real client bids shape these dependencies, then real clients bid below

the knee. If that is indeed the case, then many spot instance clients present

irrational micro-economic behavior. As many researchers working from client

perspectives have found [34,95,117,148], bidding below the knee is not cost-

effective because it will subject the instance to frequent unavailability events.

Slightly raising the bid, however, will result in the instance being almost

completely protected. Bidding below the knee is not only irrational in light

of low availability and a long waiting time for the price to drop below the bid,

but also in light of the short continuous intervals in which the low prices are

valid, as noted especially by Chohan et al. [34]. Such short intervals might

prohibit the successful completion of a task, forcing the client to repeat it

(and possibly pay for some of the useless compute time).

53

For the sake of argument, let us also consider the possibility that caus-

ing the macro-economic phenomena described above is the declared goal of

a conspiring group of clients. They have already reverse-engineered Ama-

zon’s algorithm and submit coordinated bids that cause the aforementioned

phenomena. Since the phenomena we describe can be seen in all 64 ana-

lyzed traces, these clients would have to consume a sizable share of the spot

instance supply in all 64 resources, bidding low bids (which would then even-

tually become the spot price). This would systematically limit the supply

available to the many different legitimate clients known to use EC2 spot in-

stances. If the legitimate clients then bid higher than the spot price (which

is usually below the knee), the spot price would rise, terminating the conspir-

ing clients’ instances. From this point on, the conspiring clients’ effect on the

spot price would be limited. Furthermore, customers must have Amazon’s

approval for the purchase of spot instances beyond the first one hundred.

Hence, we consider this explanation highly unlikely.

Our hypothesis: We consider it unlikely that all four phenomena could

have resulted from Amazon setting the price solely on the basis of client

bids. We therefore lean towards the hypothesis that Amazon uses a dynamic

algorithm, independent of client bids, to set a reserve price for the auction,

that the auction’s result is usually identical to the reserve price, and that the

prices Amazon announces are therefore usually not market-driven. Both the

simulation results presented in Section 4.7 and Occam’s razor—preferring

the simplest explanation—support this hypothesis.

If our hypothesis is correct, then all four phenomena listed above are

easily explained by a dynamic reserve price algorithm which gets as input

prices normalized by respective on-demand prices. This input is different

for the us-east region, for different sets of types, and for different operating

systems.

4.5.3 Dynamic Random Reserve Price

First we will characterize the requirements for a dynamic reserve price al-

gorithm that will be consistent with the published EC2 price traces. Then

we will construct such an algorithm, and propose it as a candidate for the

algorithm behind the EC2 pricing.

We contend that the dynamic reserve price algorithm gets as input a floor

54

price F and a ceiling price C for each spot instance type, with the floor and

ceiling prices expressed as fractions of the on-demand price. The floor price

is the minimal price, exemplified in Fig. 4.1 for the us-east.m2.2xlarge and

us-east.m2.4xlarge types. The ceiling price is the price corresponding to the

knee in the graph (shown in the same figure), or the maximal price if no knee

exists. We refer to this price range, in which availability is a linear function

of the price, as the pricing band. The algorithm dynamically changes the

reserve price such that there is a linear relation between availability and

prices in the floor–ceiling range. It guarantees that the reserve price never

drops below the floor, which reflects Amazon’s minimal-reserve price for spot

instances, nor rises above the ceiling.

We deconstruct the reserve price algorithm using traces from April–July

2010, when the spot price in eight ap-southeast.windows instance types almost

always stayed within the artificial band. We matched the price changes in

those traces (denoted by ∆) with an AR(1) (auto-regressive) process. We

found a good match (i.e., negligible coefficients of higher orders ai for i > 1)

to the following process:

∆i = −a1∆i−1 + ε(σ), (4.1)

where a1 = 0.7 and ε(σ) is white noise with a standard deviation σ. Let F,C

denote the floor and ceiling of the artificial band, respectively. We matched

σ with a value of 0.39(C − F). These parameters fit all the analyzed types

well, except for m1.small, which matched different values (a1 = 0.5, σ =

0.5(C−F)). The standard deviations are given in Fig. 4.4. This close fit—the

same parameters characterizing the randomness of several different traces—

is consistent with our hypothesis that the prices are usually set by an artificial

algorithm. The reason for m1.small’s deviation is yet to be found.

On the basis of this analysis, we construct the AR(1) reserve price algo-

rithm: The process is initialized with a reserve price of P0 = F and a price

change of ∆0 = 0.1(F−C). The following prices are defined as Pi = Pi−1+∆i,

where ∆i = −0.7 · ∆i−1 + ε(0.39 · (C − F)). The process is truncated to the

[F,C] range by regenerating the white noise component while Pi is outside

the [F,C] range or identical to Pi−1. All prices are rounded to one-tenth of

a cent, as done by Amazon during 2010.

To evaluate whether the trace produced by the truncated AR(1) process

55

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
−0.02

0

0.02

0.04

0.06

0.08

band width [$]

m
at

ch
ed

 w
hi

te
 n

oi
se

 σ
 o

f A
R

1
pr

oc
es

s

y = 0.39*x − 0.00026

ap−southeast−1

 linear

ap−southeast−1.windows.m1.small

Figure 4.4: Standard deviation of the white noise of the matched AR(1)
process as a function of artificial price-band width

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−100

−90

−80

−70

−60

−50

−40

Normalized frequency (× π rad/sample)

O
ne

−
si

de
d

P
S

D

(d
B

/r
ad

/s
am

pl
e)

PSD estimatate of EC2 ap−southeast trace

PSD estimatate of AR(1) process

Figure 4.5: Power spectral density (periodogram) estimate of an EC2 price
trace, and our derived AR(1) price trace

matches the original EC2 trace, we compare their periodograms (normalized

Fourier transforms) in Fig. 4.5. The periodogram comparison verifies that we

captured the original signal’s frequencies correctly, and not just the average

56

time in each price. The match shows that our reverse-engineered reserve

price algorithm is consistent with Amazon’s.

The consistency of an AR(1) process with the EC2 traces does not indi-

cate the dynamics which create it. If this consistency can be explained mostly

by natural fluctuations, then we would expect to see at least a weekly cy-

cle. A daily cycle is unlikely, since clients all over the world use the same

machines.

To search for a weekly cycle, we analyzed the utilization of memory in

three IaaS pay-as-you-go cloud traces (described in detail in Section 4.7.2)

and the price in the ap-southeast.linux traces. We computed each day’s mean

value (price or utilization for spot trace or cloud, respectively), taking into

consideration the duration for which the value was valid. Each day’s mean

value was normalized by the mean value over the week to which it belongs.

This local normalization is especially important when computing mean uti-

lization, since over the years of the trace, both the capacity and the utilization

increased. The autocorrelation of cloud utilization for three cloud workloads

is depicted in Fig. 4.6(a). All three clouds have a significant weekly cycle,

sometimes with a pattern lasting for several weeks. The weekly cycle is ex-

pressed by strong, positive autocorrelation coefficients for lags of 7, 14, 21

and even 28 days. In addition, there is strong positive autocorrelation with

the previous day, meaning today’s utilization is a good prediction for to-

morrow. The confidence bounds are low (0.081, 0.084, 0.068) and slightly

different from one.

Knowing autocorrelation can be expected in a cloud, let us turn to ana-

lyze the spot price autocorrelation that is depicted in Fig. 4.6(b). The confi-

dence bounds are larger than in the cloud load graphs, and are identical to

the fifth digit (0.2097). None of the eight price traces has any weekly cycle

or any significant long range correlation. This finding agrees with Wee [148],

who shows that none of the 64 EC2 traces we used exhibit notable weekly or

daily patterns. Moreover, the one-day autocorrelation coefficients are nega-

tive for all the traces, meaning today’s price is a bad prediction for tomorrow.

Thus, the process generating the traces cannot be explained mostly by nat-

ural fluctuations.

Let us consider the hypothesis that natural dynamics account for a small

part of the trace: usually the spot price is the dynamic reserve price, but

sometimes the spot price rises above the reserve price due to market consid-

57

erations. This would mean that usually the price traces reflect the reserve

price only, but sometimes the prices are bids declared by real clients. This

scenario is unlikely because, as discussed earlier, bidding inside the band is

not cost-effective. Nonetheless, we check this hypothesis by analyzing mean

trace prices, with the alternate hypothesis that natural dynamics account

for no part of the trace. If the alternate hypothesis is true, the mean trace

price should be the mean of the truncated AR(1) process, which is a sym-

metric process: the middle of the band. If natural dynamics sometimes raise

the price above the reserve price, the mean price should be higher than the

middle of the band. However, for the 8 ap-southeast.windows traces we tested

here, the mean price was lower than the middle of the band by up to 2%.

We conclude that the impact of natural dynamics on the price traces in

the band range is statistically insignificant. The spot price within the band

is almost always determined solely by the AR(1) process, i.e., is equal to

the reserve price. Since we assume prices above the band usually result from

natural dynamics, we need to estimate how frequently the prices are above

the band. On average, over the 64 traces we analyzed, prices were above the

band 2% of the time. We conclude that during the other 98% of the time,

prices are mainly determined by an artificial AR(1) reserve price algorithm

and hardly ever represent real client bids.

4.6 Pricing Epochs

To statistically analyze spot price histories, it would be erroneous to assume

that the same pricing model applies to all the data in the history trace.

Rather, each trace is divided to contiguous epochs associated with different

pricing policies. We show here that our main traces are divided into three

epochs as depicted in Fig. 4.7. Since the pricing mechanism changes notably

and qualitatively between epochs, data regarding these epochs should be

separated if an associated statistical analysis is to be sound. Accordingly,

for the purpose of evaluating the effectiveness of client algorithms, strategies,

and predictions, the data from a (single) epoch of interest should be used.

The first epoch starts, according to our analysis, as early as 30 November

2009 and ends on 14 December 2009, the date on which Amazon announced

the availability of spot instances. During this time, instances were unknown

to the general public. Hence, the population which undertook any bidding

58

during the first epoch was smaller than the general public, of nearly constant

size, and possibly had additional information regarding the internals of the

pricing mechanism at that time.

The second epoch begins with the public announcement on 14 Decem-

ber 2009. It ends with a pricing mechanism change around 8 January 2010,

when minimal spot prices abruptly change in most instances (usually de-

crease, though Fig. 4.7 demonstrates an increase). It is characterized by

long intervals of constant low prices.

The third epoch begins on 20 January 2010. Instance types and regions

began to change minimal price around January 8th, but we define the begin-

ning of the epoch as the date in which the last one (eu-west.linux.m2.2xlarge)

reached a new minimal price. Due to (1) the gradual move to the new min-

imal values and to (2) a bug in the pricing mechanism that was fixed in

mid-January 2010 [10], we choose to disregard data from the transition pe-

riod between the second and third epochs.

Additional epoch-defining dates are dates when the price-change timing

algorithm was changed, e.g., 20 July 2010 and 9 February 2011 for the us-east

region (see Section 4.7).

These abrupt time-correlated changes in many regions and instance types

further support our hypothesis, since prices are likely to undergo abrupt

changes at exactly the same time either when the market is efficient (which

is not the case here, since absolute prices in Fig. 4.1 are not leveled) or when

the prices are artificial.

4.7 Spot Price Simulation

To get a better feel for the validity of our hypothesis, we simulated two spot

pricing systems, representing the dynamic hidden reserve price hypothesis

and the alternate hypothesis of a constant reserve price. Both systems are

based on a sealed-bid (N + 1)th price auction with a reserve price with

retroactive supply limitation, as described in Section 4.5.1. The simulator

structure is described in Section 4.7.1.

In both systems we set the on-demand price to 1. In the constant reserve

price system we set the reserve price to 0.4. In the AR(1) reserve price

system we set the reserve prices according to the reserve price algorithm

defined in Section 4.5.3, with a band of [0.4, 0.45]. To run the simulation, we

59

need to know not only what the new reserve price should be, but also when

it should be changed. To this end, we deconstructed the price change timing,

as explained in Section 4.7.4.

To fully model a spot pricing system, three input data sets or models are

required: for available machine supply, for instance demand, and for client

bids. We modeled the machine supply as a fixed-size, because spot instances

are a good practice for a quick-launch buffer: those machines which need

to be kept running, in case an on-demand or reserved instance is requested.

We do not expect spot-instance machine supply to represent the full vari-

ation of on-demand and reserved instance demand. We used real grid and

cloud traces for instance demand (Section 4.7.2), and three client bid models

(Section 4.7.3). The simulation results are presented in Section 4.7.5.

4.7.1 Simulator Event-Driven Loop

We created a trace-based event-driven simulator, where events are: (1) in-

stance submission and termination and (2) price changes (due to a scheduled

change or to a waiting instance with a bid higher than the spot price). We

ran the grid trace-driven simulation on 70 CPUs, according to the number of

CPUS in the trace. Since CPU was over-committed on the cloud traces but

physical memory was not, we defined each cloud’s capacity as the maximal

amount of memory concurrently used in its trace. We ended the simulation

when the last input-trace job had been submitted.

4.7.2 Workload Modeling

We fed the simulation with tasks with run-times in the range of 10 minutes to

24 hours, taken from several large system traces. According to Iosup et al. [5],

a typical EC2 instance overhead is two minutes. We deem clients unlikely to

wait two minutes and pay for a full hour for an activity which lasts only a

few minutes, so we only used tasks longer than 10 minutes. We assume spot

instances are usually used for relatively short-running instances, with longer

running instances more likely to be deployed on more stable offerings such

as on-demand and reserved instances. Thus we omitted tasks longer than 24

hours. We discuss the task length cut-off point in Section 4.7.5.

We used traces from one grid and three clouds. In the simulation, each

task was interpreted as a single instance, submitted at the same time and

60

requiring the same run-time as in the original trace to complete. The grid

trace is 20K tasks from the LPC-EGEE workload1. LPC-EGEE is charac-

terized by tasks which are small in comparison to the capacity of the cluster,

allowing for elasticity.

We also used traces of three pay-as-you-go IaaS clouds2. These clouds

were partitions of IBM’s RC2 cloud [116]. The partitions used different un-

derlying physical resources and hypervisors, and it was up to the user to

choose the partition. The traces were taken from 2 April 2009 to 22 August

2011 (2.5 years). During this time, the capacity of the partitions changed

with demand, reaching concurrent use of thousands of CPUs (6522, 1420,

and 845 for clouds 1, 2, and 3, respectively) and thousands of gigabytes of

memory (10175, 1996, and 2386 for the respective clouds). Clients of these

clouds were charged 2-3 cents per hour per GB for running instances. In

addition, creating an instance for the first time cost 20 cents.

The workloads of these clouds are characterized by significantly longer

runtimes than grid jobs: only half the cloud instances take less than 24

hours, while 98% of the tasks last less than a day on grids (LPC-EGEE,

GRID50003) and parallel systems (LANL CM-54, SDSC-Paragon5) that we

evaluated, as seen in Fig. 4.8. Many cloud instances last months and even

years. Furthermore, the clouds exhibit longer and stronger inter-arrival time

correlation than typical grids, as seen in Fig. 4.9. The autocorrelations of

their inter-arrival times is even larger than those of parallel systems, even

though both system types are only accessible to a limited set of clients.

4.7.3 Customer Bid Modeling

Due to the lack of information on the distribution of real client bids (since

we argue that Amazon’s price traces supply little information of this type),

we compare several bidding models, and verify that the qualitative results

1Graciously provided by Emanuel Medernach [99], via the Parallel workload archive [48],
file LPC-EGEE-2004-1.2-cln.swf.

2Graciously provided by Mariusz Sabath.
3Graciously provided by Franck Cappello, via the Grid Workloads Archive [65], file

grid5000 clean trace.swf.
4Graciously provided by Curt Canada, via the Parallel workload archive, file LANL-

CM5-1994-3.1-cln.swf.
5Graciously provided by Reagan Moore and Allen Downey, via the Parallel workload

archive, file SDSC-Par-1995-2.1-cln.swf.

61

are insensitive to the bid modeling. All the distributions were adjusted to

uniform minimal and on-demand prices.

The first model is a Pareto distribution (a widely applicable economic

distribution [83, 130]) with a minimal value of 0.4, and a Pareto index of

2, a reasonable value for income distribution [130]. The second model is

the normal distribution N (0.7, 0.32), truncated at 0.4. The third is a linear

mapping from runtimes to (0.4, 1], which reflects client aversion to having

long-running instances terminated.

4.7.4 Price Change Timing

Price changes in the simulation are triggered according to the cumulative

distribution function (CDF) of intervals between them, collected during

January–July 2010, and given in Fig. 4.10 (solid line). This period was char-

acterized by quiet times—prices never changed before 60 minutes or between

90 and 120 minutes since the previous price change. It is interesting to note

that such quiet times can be monetized by clients to gain free computation

power with a probability of about 25%, by submitting an instance with a

bid of the current spot price 31 minutes after a price change. The instance

would then have a 50% possibility of undergoing another price change within

30-60 minutes. If that change is a price increase, the instance would be termi-

nated, and the client would gain, on average, 45 minutes of free computation.

Clients do not exploit this loophole in our simulation.

Fig. 4.10 also presents the evolution of the timing of price changes for

the us-east region. The next algorithm (in place from July 2010 until 8

Feb 2011) allowed for a quiet hour after a price change. The following one

(starting 9 Feb 2011) matches an exponential distribution with a 1.5 hour

rate parameter, with five quiet minutes. This almost memory-less algorithm

prevents abuse of the timing algorithm. A similar evolution of the algorithm

took place in other regions on different dates. On Linux instances in regions

other than us-east, an interim algorithm was used between the second and

third algorithms, such that the quiet hour was abolished before the transfer

to the algorithm of 2011.

62

4.7.5 Simulation Results

Simulation results in terms of price-availability graphs are presented in

Fig. 4.7.5-4.7.5, for different input traces, bid models and price setting mech-

anisms. The functions of simulations with the AR(1) reserve price feature a

linear segment and a knee in high availability, as do the availability functions

of EC2 during the third epoch, which are shown in Figs. 4.1, 4.2, and 4.3.

The constant reserve price functions do not exhibit this behavior. Rather,

they are jittery, like the high price regime of the us-east.windows.m1.small

graph in Fig. 4.3, and the second epoch graph in Fig. 4.15. These results are

not sensitive to our of choices of bidding model and workload.

Furthermore, the availability of the reserve price in the constant reserve

price simulations is high (0.2-0.9), as it is in the second epoch (0.63 in

Fig. 4.15). In contrast, the availability of the minimal price in the AR(1)

reserve price simulations and in the third epoch tends to zero as the number

of discrete prices within the band grows.

These macro-economic qualitative differences can be better understood

by focusing on three classes of availability graphs that resemble one another

and do not present straight lines: (1) the constant minimal reserve price

simulations, (2) the second epoch, and (3) the high regime of the third epoch

(in particular us-east.windows.m1.small). Since the graphs of the first class

reflect client bids, the qualitative resemblance suggests that the last two

also reflect client bids: during the second epoch, a constant reserve price

algorithm is used, and the demand for us-east.windows.m1.small exceeds the

supply so much that excess demand is no longer masked by the dynamic

reserve price.

To investigate the effect of truncating long running instances from the

traces (mainly from the cloud traces), we ran the AR(1) simulations with

different maximal run-time truncations (1 day, 2 days and 100 days). As

can be seen from the price-availability graphs (Fig. 4.16), raising the upper

truncation point of the trace lowers the availability at the knee. The trunca-

tion does not affect the important features discussed earlier (the straight line

and the existence of the knee). From the EC2 traces we learn that the knee

is usually high (above 0.9, with the exception of some m1.small instances).

Thus we conclude that the workload of Amazon’s EC2 spot instances is con-

sistent with relatively short instances, and that our choice of truncating the

63

traces at 24 hours is reasonable.

We consider these simulation results a constructive indication that most

prices in the EC2 traces during the third epoch are set using an AR(1)

reserve price, which is not market driven. The simulation results also suggest

that Amazon set prices via a market-driven auction with a constant reserve

price during the second epoch (December, 2009 until January, 2010), and

that prices above the band are market-driven. (In the traces we studied,

prices are above the band only 2% of the time on average.)

4.8 Dynamic Reserve Price Benefits

The dynamic AR(1) reserve price mechanism has several long-term, wide-

range benefits that may justify its use. Like a constant minimal or reserve

price, it guarantees that on-demand instances are not completely cannibal-

ized by spot instances. Yet it also allows the provider to sell instances on

machines which would otherwise run idle, to provide elasticity for the fixed

price instances. Spot instances, which can be quickly evacuated, still reduce

the costs associated with idle servers, with no real harm to the main offering

of on-demand instances.

Using a hidden reserve price allows the provider to change the reserve

price with no obligation to inform the clients, an obligation which cannot be

avoided when using a minimal price. A dynamic reserve price is better than

a constant minimal price, because it maintains an impression of constant

change, thus preventing clients from becoming complacent. It forces them

to either bid higher than the band or tolerate sudden unavailability. It also

serves to occasionally clear queues of low bids within the band, a purpose

that is not served by a constant reserve price that is equal to the ceiling

price. Furthermore, Vincent [139] argues that in common value English and

second price auctions, a random reserve price encourages participation, and

thus the exchange of more information about the value of the goods.

A random reserve price might also serve other goals, if the public is

unaware of its use. By creating an impression of false activity (demand and

supply changes), the random reserve price can mask times of low demand

and price inactivity, thus possibly driving up the provider’s stock. A large

enough band covering the spectrum of probable prices could also mask high

demand and low supply, and thus help to maintain the illusion of an infinitely

64

elastic cloud. However, if the artificial band is relatively small, as in the case

of Amazon EC2 spot prices, the provider’s use of an AR(1) process for setting

the price within the band is a strong indication of low demand.

4.9 Reexamination of Prior Work

We will now review the literature on pay-as-you-go IaaS cloud workload

traces (and spot prices in particular), reexamining past conclusions in light

of our results. We will also review literature on computation markets and

on reserve prices, examining the implications of these works on our results.

Using Spot Price Traces for Client Strategy Evaluation Most stud-

ies that use price traces use them to evaluate client strategies. The relevance

of such work to future deployment of instances needs to be re-evaluated when

the nature of the traces changes (i.e., when a new epoch starts). Andrzejak,

Kondo and Yi [15, 154] used data from the transition period between the

second and third epoch for their evaluation. They focused on eu-west, which

suffered most from this transition. In their work on migration [153], the same

authors interchangeably used data from before and after the change in the

price change algorithm on July 25, 2010, as did Voorsluys et al. [141], who

analyzed the performance of their spot instance broker using traces from

March 2010 to February 2011.

In their simulations, Mattess, Vecchiola, and Buyya [95] evaluated client

strategies using an EC2 spot instance trace of the third epoch only, attribut-

ing the different trace behavior prior to January 18th, 2010 to Christmas

and to the recent introduction of spot instances. Chohan et al. [34] analyzed

price histories from the third epoch only, because of the pricing bug that was

fixed in mid-January 2010 [10]. The bug allowed instances with prices higher

than the regional spot price to be terminated due to congestion in their avail-

ability zone (which is a part of the region), while keeping the regional price

low. The authors attributed the qualitative change of prices between the

second and third epoch to the bug fix. However, this bug fix is unlikely to

have caused the qualitative price changes we observe during January 2010,

namely, the appearance of the pricing band.

Brebner and Liu [26] represented the cost of spot instances as a constant,

which equals the average of several months of the price trace, but did not

65

state the duration or length of the history they used. It is thus impossible

to determine which epochs they used, and what the given average values

represent.

Zhao et al. [159] and Mazzucco and Dumas [97] assumed spot instance

prices are market-driven, and modeled some of them to be used as a client

decision aid. These models are no longer relevant once a drastic policy change

is made.

Using Spot Price Traces to Learn about the Market Zhang et

al. [157] assumed Amazon uses a market-driven auction, which led them

to conclude that spot price histories reflect actual client bids. On this ba-

sis they sought resource allocations to instance types which optimized the

provider’s revenue. Chen et al. [32], who tested provider scheduling algo-

rithms, likewise assumed EC2 price traces represent market clearing prices.

We consider these assumptions doubtful, in light of our findings that 98% of

the time, on average, EC2 price traces are the reserve prices, and as such do

not provide a lot of information about real client bids, nor are necessarily

clearing prices.

Free Spot and Futures Markets Amazon’s spot instances are not a free

market. Price traces of free spot and future markets [105, 134] differ from

EC2 spot price traces: they do not have a hard minimal price and are not

anchored in the bottom of the price range. Rahman, Lu and Gupta [110]

evaluated free spot market options using EC2 traces, and noted that the

“data does not show enough fluctuations as expected in a free market.”

4.10 Conclusions

Amazon EC2 spot price traces provide more information about Amazon than

about its clients. We have shown that during the examined period Amazon

probably set spot prices using a random AR(1) (hidden) reserve price. This

price might have been the basis of a market-driven mechanism, in which

high prices might have reflected market changes, but most low prices, within

a band of prices, were usually indicative only of the dynamic reserve price.

Understanding how Amazon prices its spare capacity is useful for clients,

who can decide how much to bid for instances; for providers, who can learn

66

how to build more profitable systems; and for researchers, who can differ-

entiate between prices set by an artificial process and prices likely to have

been set by real client bids. We have shown that many price trace charac-

teristics (e.g., minimal value, band width, change timing) are artificial and

might change according to Amazon’s decisions. Thus, researchers should be

aware of the epochs present in their traces when using those traces to model

future price behavior or to evaluate client algorithm performance. We have

shown that indiscriminately using Amazon’s current traces to model client

behavior is unfounded on average 98% of the time for the examined period.

4.11 Epilogue

Amazon’s EC2 spot instance pricing mechanism underwent a radical change

between the first submission of this paper and its first acceptance. Several

days after its acceptance, the spot instance prices underwent another extreme

change, and the pricing band disappeared from the traces altogether. For ex-

ample, in the trace shown in Fig. 4.17, the spot price is constant throughout

October 2011, except for a single change in the minimal price. While these

radical qualitative changes are further evidence of the former prices being

artificially set, the October prices are consistent with a constant minimal

price auction, and are no longer consistent with an AR(1) hidden reserve

price.

67

0 5 10 15 20 25 30
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Lag (days)

S
a

m
p

le
 a

u
to

c
o

rr
e

la
ti
o

n
 f

u
n

c
ti
o

n
o

f
n

o
rm

a
liz

e
d

 d
a

ily
 m

e
a

n
 l
o

a
d

cloud 1

cloud 2

cloud 3

(a) Memory utilization of three clouds

0 5 10 15 20 25 30
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Lag (days)

S
a

m
p

le
 a

u
to

c
o

rr
e

la
ti
o

n
 f

u
n

c
ti
o

n
o

f
n

o
rm

a
liz

e
d

 d
a

ily
 m

e
a

n
 p

ri
c
e

m1.small

m1.large

m1.xlarge

m2.xlarge

m2.2xlarge

m2.4xlarge

c1.medium

c1.xlarge

(b) Price of eight ap-southeast.linux types

Figure 4.6: Autocorrelation of mean daily values (memory utilization or
prices), with respective approximate confidence bounds are displayed as

horizontal lines in the same colors as the autocorrelation curves. The daily
values are normalized by their week’s mean value.

68

Dec Jan Feb Mar Apr May Jun Jul

0.4

0.5

0.6

0.7

0.8

0.9

1

date (Dec 2009 − Jul 2010)

no
rm

al
iz

ed
 s

po
t p

ric
e

2nd
epoch

1st
epoch

3rd
epoch

low prices

tran−
si−
tion

low and high prices
high
prices

new
min.
price

Figure 4.7: Price history for us-east.windows.m1.small. Three time epochs
are shown, with a transition period between the second and third epochs.
The spot price is presented as a fraction of the on-demand price for the

same instance.

69

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

runtime [days]

pr
ob

ab
ili

ty

cloud 1

cloud 2

cloud 3

LPC−EGEE−2004

GRID5000

SDSC−Paragon

LANL−CM5

Figure 4.8: CDF of instance or task runtimes on clouds, parallel systems
and grids

70

0 5 10 15 20 25 30 35 40 45 50
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

lag

co
rr

el
at

io
n

 cloud 3

cloud 2

cloud 1

LPC−EGEE

GRID5000

SDSC−Paragon

LANL−CM5

Figure 4.9: Task/instance inter-arrival time autocorrelation on clouds,
parallel systems (LANL CM-5, SDSC), and grids (LPC-EGEE, GRID5000).

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

step length: time between price changes [h]

pr
ob

ab
ili

ty

Jan 2010 − Jul 2010

Jul 2010 − Feb 2011

Feb 2011 − April 2011 (present day)

Figure 4.10: CDF of time interval between price changes for different
versions of the price change scheduling algorithm. Input:

us-east.linux.m1.small.

71

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

declared price as fraction of on−demand price

a
v
a
ila

b
ili

ty
 f

ra
c
ti
o
n

Const. reserve price, Pareto dist.

AR(1) band of reserve price, Pareto dist.

Const. reserve price, Linear by task length dist.

AR(1) reserve price, Linear by task length dist.

Const. reserve price, Normal dist.

AR(1) band of reserve price, Normal dist.

Figure 4.11: Simulation results for various bidding models, with constant
and AR(1) reserve price, on the basis of a grid trace (LPC-EGEE)

72

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

declared price as fraction of on−demand price

a
v
a

ila
b

ili
ty

 f
ra

c
ti
o

n

Const. reserve price, Pareto dist.

AR(1) band of reserve price, Pareto dist.

Const. reserve price, Linear by task length dist.

AR(1) band of reserve price, Linear by task length dist.

Const. reserve price, Normal dist.

AR(1) band of reserve price, Normal dist.

Figure 4.12: Simulation results for various bidding models, with constant
and AR(1) reserve price, on the basis of a trace of cloud 1

73

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

declared price as fraction of on−demand price

a
v
a

ila
b

ili
ty

 f
ra

c
ti
o

n

Const. reserve price, Pareto dist.

AR(1) band of reserve price, Pareto dist.

Const. reserve price, Linear by task length dist.

AR(1) band of reserve price, Linear by task length dist.

Const. reserve price, Normal dist.

AR(1) band of reserve price, Normal dist.

Figure 4.13: Simulation results for various bidding models, with constant
and AR(1) reserve price, on the basis of a trace of cloud 2

74

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

declared price as fraction of on−demand price

a
v
a
ila

b
ili

ty
 f

ra
c
ti
o
n

Const. reserve price, Pareto dist.

AR(1) reserve price, Pareto dist.

Const. reserve price, Linear by task length dist.

AR(1) reserve price, Linear by task length dist.

Const. reserve price, Normal dist.

AR(1) reserve price, Normal dist.

Figure 4.14: Simulation results for various bidding models, with constant
and AR(1) reserve price, on the basis of a trace of cloud 3

75

0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5 0.51

0.65

0.7

0.75

0.8

0.85

0.9

0.95

declared price as fraction of on−demand price

av
ai

la
bi

lit
y

fr
ac

tio
n

Figure 4.15: Availability as a function of the declared price during the
second epoch for us-west.linux.m1.xlarge.

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

declared price [fraction of on demand price]

av
ai

la
bi

lit
y

fr
ac

tio
n

Pareto dist., up to 100 days

Normal dist., up to 100 days

Pareto dist., up to 2 days

Normal dist., up to 2 days

Pareto dist., up to 1 day

Normal dist., up to 1 day

Figure 4.16: Impact of running time truncation of the cloud 2 trace on
price-availability graphs for simulations with Pareto and normally

distributed bids and AR(1) reserve price

76

0 1 2 3 4 5 6 7 8 9
0.5

0.6

0.7

0.8

0.9

1

1.1

Time (Months of 2011)

S
p
o
t
in

s
ta

n
c
e
 p

ri
c
e
 (

n
o
rm

a
liz

e
d
)

us−east−1.suse.m1.large

Paper accepted

First paper
submitted

End of data
used for the paper

Paper rejected,
Tech report published,

Tweeted and re−Tweeted
to thaousands of people

Figure 4.17: The history of this paper and the price trace of suse.m1.large
on us-east during 2011

77

Chapter 5

The Resource-as-a-Service

(RaaS) Cloud

5.1 abstract

Infrastructure-as-a-Service (IaaS) cloud providers typically sell virtual ma-

chines that bundle a fixed amount of resources, such as the core count, the

memory size, and the I/O bandwidth. The resource bundles are usually un-

changing throughout the lifetime of the virtual machines. We foresee that

this type of rigid resource allocation will change in the near future. Instead

of fixed bundles, cloud providers will increasingly sell resources individually,

reprice them, and adjust their quantity every few seconds in accordance with

market-driven supply-and-demand conditions; virtual machines will accord-

ingly purchase and utilize the changing resources dynamically, while they

are running. We term this nascent economic model of cloud computing the

Resource-as-a-Service (RaaS) cloud, and we contend that its rise is the likely

culmination of recent trends in the construction of IaaS clouds and of the

economic forces operating on cloud providers and clients.

“When the quantity of any commodity which is brought to mar-

ket falls short of the effectual demand, [. . .] some [. . .] will be

willing to give more.” (Adam Smith,

An Inquiry into the Nature and Causes of the Wealth of Nations)

78

5.2 Introduction

Cloud computing is taking the computer world by storm. Today, Infrastructure-

as-a-Service (IaaS) clouds, such as Amazon EC2, allow anyone with a credit

card to tap into a seemingly unlimited fountain of computing resources by

renting virtual machines for several cents or dollars per hour. According to

a Forrester Research report [114], the yearly cloud computing market is ex-

pected to top $241 billion in 2020, compared to $40.7 billion in 2010, a sixfold

increase. What will these 2020 clouds look like? Given the current pace of

innovation in cloud computing and in other utilities such as smart grids and

wireless spectra, substantial shifts are bound to occur in how providers de-

sign, operate, and sell cloud computing resources, and in how clients purchase

and use those resources.

IaaS cloud providers sell fixed bundles of CPU, memory, and I/O re-

sources packaged as server-equivalent virtual machines. We foresee that, in-

stead, providers will continuously reprice and adjust the quantity of the in-

dividual resources with a time granularity as fine as seconds; the software

stack within the virtual machines will accordingly evolve to productively op-

erate in this dynamic, ever-changing environment. We call this new model of

cloud computing the Resource-as-a-Service (RaaS) cloud. In a RaaS cloud,

provider-governed economic mechanisms will control clients’ access to re-

sources. Hence, clients will deploy economic agents that will continuously

buy and sell computing resources in accordance with the provider’s current

supplies and other clients’ current demands.

We identify four existing trends in the operation of IaaS cloud comput-

ing platforms, that underlie the transition we foresee: the shrinking duration

of rental, billing, and pricing periods (Section 5.3.1), the increasingly fine-

grained resources offered for sale (Section 5.3.2), the increasingly market-

driven pricing of resources (Section 5.3.3), and the provisioning of useful

service level agreements (SLAs) (Section 5.3.4). We believe the economic

forces operating on both providers and clients (Section 5.4) will continue

pushing these trends forward. Eventually, as the trends near their culmi-

nation, these forces will unify today’s IaaS cloud computing models into a

single economic model of cloud computing. We call this unified model the

RaaS model of cloud computing (Section 5.5). We conclude by outlining the

challenges and opportunities the RaaS cloud presents (Section 5.6).

79

5.3 Recent IaaS Trends

5.3.1 Duration of Rent and Pricing

Before cloud computing, the average useful lifetime of a purchased server was

approximately three years. With the advent of Web hosting, clients could

rent a server on a monthly basis. With the introduction of on-demand EC2

instances in 2006, Amazon radically changed the time granularity of server

rental, making it possible to rent a server equivalent for as little as one hour.

This move was good for the provider, because, by incentivizing the clients

to shut down unneeded instances, it allowed for better time-sharing of the

hardware. It also benefited the clients, who no longer needed to pay for wall

clock time they did not use, but only for instance time that they did use.

This trend—of renting server-equivalents for increasingly shorter time

durations—is driven by economic forces that keep pushing clients to im-

prove efficiency and minimize waste: if a partial instance-hour is billed as

a full hour, you might waste up to an hour over the lifetime of every vir-

tual machine (a per-machine penalty). If a partial instance-second is billed

as a full second, then you will only waste up to a second over the lifetime

of every virtual machine. Thus, shorter durations of rent and shorter billing

units reduce client overhead and open the cloud for business for shorter work-

loads. Notably, low overheads encourage horizontal elasticity— changing the

number of concurrent virtual machines—and draw clients who require this

functionality to the cloud.

The trend towards shorter times is also gaining ground with regard to

pricing periods. Amazon spot-instances, announced in 2009, may be repriced

as often as every five minutes [2], although they bill by the price at the

beginning of the hour. CloudSigma, announced in 2010, reprices its resources

exactly every five minutes.1

New providers charge by even finer time granularity: Gridspot2 and

ProfitBricks,3 both launched in July 2012, charge by three-minute and one-

minute chunks, respectively. Google App Engine’s new policy is to bill in-

stances by the minute, with a minimum charge of 15 minutes,4 and as of

May 2013 Google Compute Engine charges by the minute with a minimum

of ten minutes instead of by hours.5

We draw an analogy between cloud providers and phone companies,

which have progressed over the years from billing landlines per several min-

80

utes to billing cell phones by the minute, and then, due to customer pressure

or court orders, to billing per several seconds and even per second. Similarly,

car rental (by the day) is also giving way to car sharing (by the hour), and it is

recommended that wireless spectrum sharing have a shorter period base [47].

We expect this trend of shortening times to continue such that eventu-

ally, cloud providers will reprice computing resources every few seconds and

charge for them by the second. Providers might compensate themselves for

overheads by charging a minimal amount or using progressive prices (higher

unit-prices for shorter rental times). Such durations are consistent with peak

demands that can change over seconds when a site is “slashdotted” (linked

from a high-profile Web site).6

5.3.2 Resource Granularity

In most IaaS clouds, clients rent a fixed bundle of compute, memory, and

I/O resources. Amazon and Rackspace7 call these bundles “instance types,”

GoGrid8 calls them “server sizes,” and Google Compute Engine9 calls them

“machine types.” Selling resources this way provides clients with a familiar

abstraction of a server-equivalent. This abstraction is starting to unravel,

and in its place we see the beginnings of a new trend towards finer and finer

resource granularity. In August 2012,10 Amazon began allowing clients to dy-

namically change the available I/O resources for already-running instances.11

Google App Engine charges I/O operations by the million and offers pro-

gressive network prices, which are rounded down to small base units before

charging (1 byte, 1 email, 1 instance-hour).12 CloudSigma (2010), Gridspot

(2012), and ProfitBricks (2012) offer clients the ability to compose a flexible

bundle from varying amounts of resources, similar to building a custom-made

server out of different mixtures of resources such as CPUs, memory, and I/O

devices.

Renting a fixed combination of cloud resources cannot and does not re-

flect the interests of clients. First, as server size is likely to continue to

increase—hundreds of cores and hundreds of gigabytes of memory per server

in a few years—an entire server-equivalent may be too large for some cus-

tomer needs. Second, selling a fixed combination of resources is only efficient

when the load customers need to handle is both known in advance and

constant. As neither condition is likely, the ability to dynamically mix-and-

81

match different amounts of compute, memory, and I/O resources benefits

the clients.

We expect this trend towards finer resource granularity to continue, such

that all of the major resources (compute, memory, and I/O) will be rented

and charged for in dynamically changing amounts and not in fixed bundles:

clients will buy seed virtual machines with some initial amount of resources,

and then supplement these initial allocations with additional resources as

needed.

Studying these trends, we extrapolate that, in the near future, resources

will be rented separately with fine resource granularity for short durations.

As rental durations grow shorter, we expect efficient clients to automate the

process by deploying an economic agent (described in Section 5.5), which

will make decisions in accordance with the current prices of those resources,

the changing load the machine should handle, and the client’s subjective

valuation of those different resources at different points in time. Such agents

are also considered a necessary development in smart grids [112] and wire-

less spectrum [161] resource allocation. Two elements are likely to ease the

adoption of economic agents: client size (larger clients are more likely to

invest in systematic savings, which accumulate for them to large numbers),

and the availability of agents that are off-the-shelf and customizable (e.g.,

open source).

5.3.3 Market-Driven Resource Pricing

Virtualization and machine consolidation are beneficial when at least some

resources are shared (e.g., heat sink, bus, last-level cache), and others are

time shared (e.g., when a fraction of a CPU is rented, or physical memory

is overcommited). However, the performance of a given virtual machine can

vary wildly at different times due to interference and bottlenecks caused by

other virtual machines that share resources whose use is not measured and al-

located [56,102,135]. For example, Google App Engine’s preliminary model,

charging for CPU time only and not for memory, made the scaling of appli-

cations that use a lot of memory and little CPU time “cost-prohibitive to

Google,”13 because consolidation of such applications was hindered by mem-

ory bottlenecks. Hence, in 2011, Google App Engine was driven to charge

for memory (by introducing memory-varied bundles), which became, as a

82

result, a measured and allocated resource.

Moreover, interference and bottlenecks depend on the activity of all the

virtual machines involved, and are not easily quantified in a live environment

in which the guest can only monitor its own activity. Even after the guest

benchmarks its performance as a function of the resource bundle it rented,

neighbors sharing those same resources might still cause that performance

to vary [135]. Thus, there is a discrepancy between what providers provide

and what clients would actually like: in practice, what clients care about is

their virtual machines’ subjective performance.

To bridge this gap, researchers have proposed to sell client performance

instead of consumed resources [20,60,102,107]. This approach is only appli-

cable where performance is well defined, and where the client applications

are fully visible to the provider (as is the case in Software-as-a-Service (SaaS)

and Platform-as-a-Service (PaaS) clouds), or the client virtual machines fully

cooperate with the provider, as may be the case in private IaaS clouds. How-

ever, IaaS cloud providers and clients are separate economic entities. In gen-

eral, they do not trust each other, and do not cooperate without good reason.

Hence, guaranteeing client performance levels is not applicable to a public

IaaS cloud, where allocated resources affect the performance of different ap-

plications differently, where the very definition of performance is subjective,

where client virtual machines are opaque, and where the provider cannot

rely on clients to tell the truth with regard to their desired and achieved

performance. If the provider guarantees a certain performance level, it is in

the client’s interest to claim the performance is still too low, so that the

provider will add resources.

We believe that public clouds will have to forsake the approach of charg-

ing users a predefined sum for resource bundles of unknown performance. For

high-paying clients, providers can raise prices and forgo resource overcom-

mitment. For low-paying clients, a cheap or free tier of unknown performance

can be offered. However, for mid-range clients, providers will have to follow

one of the following routes to handle the problem of unpredictable resource

availability: (1) tackle the hard task of precisely measuring all the system’s

resources to quantify the real use each virtual machine made of them, and

then charge the clients precisely for the resources they consumed, or (2)

switch to a market-driven model.

A market-driven model is based on how clients value the few monitored

83

resources. It does not necessitate precise measurement of resource use on the

part of the provider—only the final outcome, the client’s subjective valuation

of its performance, matters. Clients, in turn, will have to develop their own

model to determine the value of a smaller number of monitored resources.

The model needs to implicitly factor in virtual machine interference over non-

monitored resources. For example, clients might use a learning algorithm that

produces a time-local model for the connection between monitored resources

and client performance. Though highly expressive, the client’s model need

not be complicated: it is enough that the client can adjust the model to the

required accuracy level. Hence, the minimal client model can be as simple as

a specific sum for a specific amount of resources: below these requirements,

the client will not pay. Above them, the client will not add money. The

client willingness to pay will affect the prices and the resource allocation.

Unlike previously proposed models, this economic model can accommodate

real-world, selfish, rational clients.

5.3.4 Tiered Service Levels

Tiered service [103], where different clients get different levels of service,

can be found in certain scientific grids. Jobs of clients with low privileges

may be preempted (aborted or suspended) by jobs of clients with higher

privileges. Although clouds did not, at first, offer such prioritized service but

rather supplied service at only one fixed level (on-demand), Amazon has since

introduced different priority levels within EC2. The higher priority levels are

accorded to the reserved (introduced March 2009) and on-demand instances.

Spot instances (introduced December 2009) provide a continuum of lower

service levels, since Amazon prioritizes spot instances according to the bid

price stated by each client. Gridspot (2012) operates in a similar manner.

As in grids, these priorities are relative, so it is hard to explicitly define their

meaning in terms of absolute availability. For example, the availability of

on-demand instances depends on the demand for reserved instances. The

PaaS provider Dotcloud (announced in 2010)14 and Google App Engine15

also offer different SLA levels for different fees.

Having clients with different priorities is useful to the provider, who can

provide high-priority clients with elasticity and availability at the expense

of lower-priority clients, while simultaneously renting out currently-spare

84

resources to low-priority clients when high-priority clients do not need them.

Likewise, different priorities allow budget-constrained cloud clients cheap

access to computing resources with poorer availability. Mixing clients of

different relative priorities will allow the providers to simultaneously achieve

high resource utilization and maintain adequate spare capacity for handling

sudden loads.

Extrapolating from the progression of SLA terms we have seen to-date,

we expect that in the RaaS cloud clients will be able to define their own

priority level, choosing from a relatively priced continuum. Moreover, if prices

are market driven, and priority levels reflect the client’s willingness to pay,

then we expect that clients will be able to change their desired priority levels

as often as prices change.

It is possible to extend the prevalent SLA language—”unavailability of a

minimal period X, which is at least a fraction Y of a service period Z”—to

express different absolute levels by controlling the parameters X,Y ,Z [20].

Yet, we extrapolate that as more cloud providers adopt flexible SLAs, they

will continue the existing trend of relative priorities, and not venture into

extending the absolute SLA language to several tiers.

5.4 Economic Dynamics

In the previous section, we surveyed several ongoing trends and tried to

surmise where they will lead us next. We now survey the economic forces

operating on clients and on providers and their implications. We believe

these forces caused the phenomena previously discussed and will continue

pushing today’s IaaS clouds forward until today’s clouds turn into RaaS

clouds.

5.4.1 Forces Acting on Clients

As clients purchase more cloud services their bill increases. When bills are

large, clients seek systematic savings. The best way to achieve this is by

paying only for the resources they need, and only when they need them.

The more flexible the provider offerings, the better control clients have over

their costs and the resulting performance. As providers offer increasingly

fine-grained resources and service levels, clients are incentivized to develop

85

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

MS Azure

Amazon

Google

Price reduction date (month in 2012)

C
lo

ud
 P

ro
vi

de
r

Figure 5.1: Correlated cloud price reduction dates for three major cloud
providers during 2012

or adopt resource provisioning methods. As the time scales involved shorten,

manual provisioning methods become tedious, increasing the clients’ incen-

tive to rely on computerized provisioning agents [154] to act on their behalf.

5.4.2 Forces Acting on Providers

Competition between IaaS cloud providers is increasing, as indicated by

recent cloud price reductions. During previous years, Amazon reduced its

prices in correlation with new instance type announcements, and only by

15%, while hardware costs dropped by 80% [137]. However, as shown in Fig-

ure 5.1, the timing of price cuts in 2012 by three major cloud providers is

correlated, a phenomenon referred to as a “cloud price war”.16

The competition is aided by the commoditization of cloud computing

platforms. Commoditization eases application porting between providers.

An example for such commoditization is the open source OpenStack,17 which

is the foundation of both Rackspace’s public cloud and HP’s. OpenStack also

offers Amazon EC2/S3 compatible APIs. As changing providers becomes

easier, and as hungry new providers join the fray, competition increases and

providers are forced to lower prices.

86

5.4.3 Implications of Increased Competition

As competition increases and prices decrease, providers attempt to cut their

costs,18 in an effort to maintain their profit margins. At any moment, given

the available revenue-creating client workload, the provider seeks to mini-

mize its costs (in particular, power costs) by idling or halting some machines

or parts thereof [49]. It does so by consolidating instances to as few physi-

cal machines as reasonably possible. When resources are overcommited due

to consolidation and clients suddenly wish to use more resources than are

physically available on the machine, the result is resource pressure.

The move towards tiered service and fine rental granularity is driven, in

part, by the need to reduce costs and the accompanying resource pressure.

When clients change their resource consumption on the fly, providers who

continue to guarantee absolute Quality of Service (QoS) levels have to re-

serve a conservative amount of headroom for each resource on each physical

server. This headroom—spare resources—is required just in case all clients

simultaneously require all the resources promised them. Clients who change

their resource consumption on-the-fly do not pay for this headroom unless

and until they need it, so keeping it around all the time is wasteful.

Under the fixed bundles model, if the host chooses to overcommit re-

sources, some clients will get less than the bundle they paid for. If the head-

room is too small and there is resource pressure, this underprovisioning will

be felt by the client in the form of reduced performance, and the illusion of

a fixed bundle will be broken.

Extending the current absolute SLA language to several tiers only re-

duces some of the headroom. To get rid of the headroom completely, providers

must resort to prioritization via tiered service levels, which only guarantees

clients relative QoS. Relative QoS requires that clients change their approach.

Relative QoS should thus be introduced gradually, allowing clients to control

the risk to which they agree to be exposed.

Here is a concrete example of how a provider might nowadays waste

its resources, and how a future provider might increase the utilization of

its powered-up servers and reduce its power costs. Let us consider a 4GB

physical machine, running an instance that once required 3GB of memory,

and now only uses 2GB. A new client would like to rent an instance with

2GB. Under the IaaS model, the new client cannot be accommodated on

87

this machine. 1GB goes unsold, and 2GB go unused. With tiered SLAs and

dynamic resources, the first client can temporarily reduce its holdings to

2GB, and the provider then can rent 2GB to the new client. If conflicts arise

later due to memory shortage, the provider can choose how much memory

to rent to each client on the basis of economic considerations. No memory

goes unused, and no extra physical server needs to be booted.

5.5 The RaaS Cloud

We have presented the distinct trends operating in IaaS clouds, along with

the economic forces that govern them. We believe that the combined effect

of all these trends and forces is leading to a qualitative transformation of

the IaaS cloud into what we call the Resource-as-a-Service (RaaS) cloud. We

present here our unified view of the RaaS cloud, and discuss possible steps

on the path to its realization.

5.5.1 Trading in Fine-Grained Resources

Seed virtual machine In RaaS clouds, the client purchases upon admit-

tance a seed virtual machine. The seed virtual machine has a minimal initial

amount of dedicated resources. All other resources needed for the efficient

intended operation of the virtual machine are continuously rented. This com-

bination of resource rental schemes—prepurchasing and multiple on-demand

levels—benefits the clients with the flexibility of choice. To draw from ex-

periments on human preference in Internet service provider payment plans,

clients who are presented with both flat-rate and usage-based resource rental

options tend to make use of the full range of choices [6].

Fine-grained resources The resources available for rent include CPU,

RAM, and I/O resources, as well as emerging resources such as computa-

tional accelerators (e.g., GPGPUs and FPGAs) and Flash devices. CPU

capacity is sold on a hardware-thread basis, or even as number of cycles per

unit of time; RAM is sold on the basis of memory frames; I/O is sold on the

basis of subsets of I/O devices with associated I/O bandwidth and latency

guarantees. Such devices include network interfaces and block interfaces. Ac-

celerators are sold both as I/O devices and as CPUs. A subset of an I/O

88

device may be presented to the virtual machine as a direct-assigned SR-IOV

Virtual Function(VF) [53] or as an emulated [12] or para-virtual device. Ev-

ery resource comes with a dynamically changing price tag. Resource rental

contracts are set for a minimal fixed period, which does not have to coincide

with the repricing period. The host may offer the guests renewal of their

rental contract at the same price for an additional fixed period.

Host economic coordinator To facilitate continuous trading, the provider’s

cloud software includes an economic coordinator representing the provider’s

interests. This coordinator operates an economic mechanism which defines

the resource allocation and billing mechanism: which client gets which re-

sources and at what price. Several auctions were proposed to such ends, e.g.,

by Kelly [75], Chun and Culler [35], Lazar and Semret [81], Waldspurger

et al. [146], and Lubin et al. [89]. In addition, the coordinator may act as a

clearing house and support a secondary market of computing resources inside

the physical machine, as SpotCloud19 offers to do for fixed-bundle virtual

machines and as Kash et al. [73] propose to do for the wireless spectrum.

Guest economic agent To take part in auctions or trade, clients’ virtual

machines must include an economic agent. This agent represents the client’s

business needs. It rents the necessary resources—given current requirements,

load and costs—at the best possible prices, from either the provider or its

neighbors—virtual machines collocated on the same physical machine, possi-

bly belonging to different clients. When demand outstrips supply, the agent

changes its bidding strategy (in cases where the provider runs an auction)

or negotiates with neighbors’ agents, mediating between the client’s require-

ments and the resources available in the system, ultimately deciding how

much to offer to pay for each resource at any given time.

Subletting Clients can secure resources early and sublet them later if

they no longer need them. The resource securing can be done either by

actively renting resources long term or by negotiating a future contract with

the host. Either way, resource subletting also lays the ground for resource

futures markets among clients. Clients can sublet to other clients on the same

physical machine using infrastructure provided by the host’s coordinator: the

clients agree to redivide resources between them and inform the coordinator,

89

who transfers the local resources from one guest to another (as Hu et al. [62]

do for bandwidth resources). In addition to trading with a limited number

of neighbors, clients can sublet excess resources to anyone, in the form of

nested full virtual machines [21], a concept which is gaining more and more

support. Examples resembling subletting exist today in the Amazon EC2

Reserved Instance Marketplace,20 in CloudSigma’s reseller option,21 and in

DotCloud, which is reselling EC2’s resources with an added value.22 The

subletting option reduces the risk for clients who commit in advance to rent

resources. It also partially relieves the provider of the burden of retail sales,

improves its utilization, and can increase its revenue through seller fees.23

Legacy clients IaaS providers can introduce RaaS capabilities gradually,

without forcing their clients to change their business logic. Legacy clients,

without an economic agent, can still function in the RaaS cloud just as they

do in an IaaS cloud. They can simply rent large RaaS seed machines, which

serve as IaaS instances. IaaS virtual machines function in a RaaS cloud just

as well as they do in an IaaS cloud. However, to get the RaaS benefits of

vertical elasticity and reduced costs, clients will need to adapt.

Private clouds Should the provider and clients all belong to the same

economic entity (e.g., as might happen in a company’s private cloud), then

the economic mechanism is not used for actual payments, but still reflects

the relative importance of the different clients and the subjective costs of

resources (electricity, for example).

5.5.2 Prioritized Service Levels

Priorities for headroom only In the RaaS cloud, the client gets an

absolute guarantee (for receiving the resources and for the price paid) only

for its minimal consumption, which is constant. Additional resources are

provided on a priority basis in market prices. A risk-averse client can prepay

for a larger amount of constant resources, trading low costs for peace of

mind. From the provider’s point of view, the aggregate constant consumption

provides a steady income source. Only resources which may go unused (the

headroom) are allocated on the basis of market competition.

90

Vertical elasticity: Robin Hood in reverse RaaS clients are offered

on-the-fly, fine-grained, fine-timed vertical elasticity for each instance: the

ability to expand and shrink the resource consumption of each virtual ma-

chine. The resources required for this vertical elasticity are limited by the

physical resources contained in a single machine, because migrating running

virtual machines from one physical machine to another will likely remain less

efficient than dynamically balancing the available resources between virtual

machines co-existing on the same physical machines. Hence, during peak

demand times, to enable one client to vertically upscale a virtual machine,

the additional resources must be taken from a neighbor. Instead of static

priorities, in the RaaS cloud providers use the willingness of clients to pay

a certain price for resources at a given moment (e.g., bids) to decide which

client gets which resource. Thus market forces dictate both the constantly

changing prices of resources and their allocation. In effect, the RaaS cloud

provider does the opposite of Robin Hood: it takes from the poor and gives

to the rich.

A few good neighbors The RaaS virtual machine’s vertical elasticity is

determined, via a market mechanism, by its neighbors’ willingness to pay.

The neighbors also determine the cost of the elastic expansion. Due to the

inherent inefficiencies of live virtual machine migration, RaaS clouds must in-

clude an algorithm for placing client virtual machines on physical machines.

The algorithm should achieve the right mixture of clients with different SLAs

on each physical machine in the cloud, such that high-priority clients always

have low-priority clients beside them, to provide them with more capacity

when their demands peak. The low-paying clients can use the high-paying

clients’ leftover resources when they do not need them, keeping the provider’s

machines constantly utilized. Another objective of the allocation algorithm

is to allow the low-priority clients enough aggregate resources for their needs.

A low priority client can be expected to tolerate a temporary loss of service

every so often, but if the physical resources are strictly smaller than the mean

demand, such a client will never get enough resources to make meaningful

progress. Therefore, to retain the low-priority clients, the placement algo-

rithm must provide them with enough resources to make (some) progress.

91

Full house The RaaS provider also influences the quality of service that

the RaaS client experiences by limiting the maximal possible aggregate de-

mand for physical resources on the machine. Demand can be limited by

controlling the number of virtual machines per physical machine and the

maximal vertical elasticity to which each virtual machine is entitled. When

the maximal possible aggregate demand is lower than the supply, resources

are wasted, but all virtual machines can freely expand. As the maximal

possible aggregate demand exceeds the supply, clients will be less likely to

succeed in vertical expansion when they need it, or might be forced to pay

more for the same expansion. Hence, RaaS clients are willing to pay more

to be hosted in a physical machine with lower maximal possible aggregate

demand. This encourages RaaS providers to expose information about the

aggregate demand and supply on the physical machine to its clients.

5.6 Implications, Challenges, Opportunities

The RaaS cloud gives rise to a number of implications, challenges, and op-

portunities for both providers and clients, which did not exist in markets of

entire virtual machines [7,105,110,123,134,156]. Broadly speaking, the new

research areas can be divided into two categories: technical mechanisms and

policies.

The RaaS cloud requires new mechanisms for allocating, metering, charg-

ing for, reclaiming, and redistributing CPU, memory and I/O resources be-

tween untrusted, not-necessarily-cooperative clients every few seconds. These

mechanisms must be efficient and reliable. In particular, they must be resis-

tant to side-channel attacks from malicious clients [115]. Hardware mecha-

nisms are especially needed for fine-grained resource metering in the RaaS

cloud.

The RaaS cloud requires new system software and new applications. Usu-

ally, current operating systems and applications are written under the as-

sumption that their underlying resources are fixed and always available. In

the RaaS cloud, virtual machines never know the precise amount of resources

that will be available to them at any given second. Thus, the software run-

ning in those virtual machines must adapt to changing resource availability

and exploit whatever resources the software has, when it has them. Assume

a client application that just got an extra 2Gbps of networking bandwidth

92

at a steal of a price, but only for one second. To use it effectively while it is

available, all the software layers, including the operating system, run-time

layer, and application must be aware of it.

The RaaS cloud requires efficient methods of balancing resources within a

single physical machine, while taking into consideration the different guaran-

teed service levels. Bottleneck-resource allocation [44,51,57] is a step towards

allocation of resource bundles, but it still requires an algorithm for setting

the system share to which each client is entitled.

The resource balancers are most efficient when guests with different ser-

vice levels are collocated on the same physical server. Hence, workload bal-

ancers, which balance resources across entire cloud data centers, will need to

consider the virtual machines, flexibility and SLA in addition to the current

considerations (static resource rquests only).

Under dynamic conditions, the intra-machine RaaS mechanisms will quickly

respond to flexibility needs, holding the fort until the slower live migration

can take place. However, live migration must take place to mitigate the re-

source pressure on the effectively most stressed machines, and allow clients

to change their flexibility bounds. Large IaaS providers apparently manage

without live migration [115]: the high rate of initialization and shutdown of

virtual machines makes the initial balancer effective enough. However, the

fine time granularity of the changes in the RaaS cloud means live migra-

tion is going to be required more often. Hence, the RaaS cloud will require

efficient methods for live migration of virtual machines and for network vir-

tualization.

On the policy side, the RaaS cloud requires new economic models for

deciding what to allocate, when to allocate it, and at what prices [39]. Ideally,

they should optimize the provider’s revenue or a social welfare function:

a function of the benefit of all the clients. The clients may measure their

benefit in terms of starvation, latency, or throughput, but the mechanisms

should optimize the impact of those performance metrics on the welfare

of the clients, for example by maximizing the sum of client benefits or by

minimizing the unhappiness of the most unsatisfied client.

These new economic models should also consider that resources may

complete or substitute one another in different ways for different clients.

For one client resources might be economic complements: if, for each thread

the application requires 1GB RAM and 1 core, a client renting 2GB and 2

93

cores will only be interested in adding a combination of 1GB and 1 core. For

another client, resources might be economic substitutes: every additional GB

allows the application to cache enough previous results to require one core

less. So when cores are expensive, a client that is renting 2GB and 2 cores

will be able to release one core and rent another GB instead.

These mechanisms should be incentive compatible: truth telling regard-

ing private information should be a good course of action for the clients, so

that the provider can easily optimize the resource allocations. The mecha-

nisms should be collusion-resistant: a virtual machine should not suffer if

several of the virtual machines it is co-located with happen to belong to the

same client. Like approximation algorithms for multi-unit auctions [43,140],

they should be computationally efficient at large scale, so that solving the

resource allocation problem does not become prohibitive.

The mechanisms should preserve the clients’ privacy [98] as well as min-

imize the price-of-anarchy [80]: the waste incurred by using a distributed

mechanism. Moreover, in order to work in the real world, the economic

mechanisms must accommodate realistic clients’ willingness to pay, which

is a function of their performance measurements. The mechanism must sup-

port such measured functions, which are not necessarily mathematically nice

and regular (e.g., contain steps [108]). Another real-world demand is simplic-

ity. If researchers combined some of the works mentioned above to create

a cumbersome mechanism with satisfactory theoretical qualities, that still

would not guarantee its acceptance by the market: the providers and the

clients.

In conclusion, making the RaaS cloud a reality will require solving hard

problems spanning the entire gamut from game theory and economic mod-

els to system software and architecture. The onus is now on us, the cloud

computing research community, to lead the way and build the mechanisms

and policies that will make the RaaS cloud a reality.

Notes

1http://www.cloudsigma.com
2http://gridspot.com
3http://www.profitbricks.com
4 https://developers.google.com/appengine/kb/billing\#time_granularity_instance_

pricing, accessed December 2012.

94

5https://cloud.google.com/pricing/compute-engine, accessed May 2013.
6“Fifty percent of the time the site is down in seconds—even when we’ve contacted site

owners and they’ve told us everything will be fine. It’s often an unprecedented amount

of traffic, and they don’t have the required capacity.”–Stephen Fry, http://tinyurl.com/

StephenFrySeconds.
7http://www.rackspace.com/cloud/public/servers/techdetails/
8http://www.gogrid.com
9https://cloud.google.com/pricing/compute-engine

10http://aws.amazon.com/about-aws/newsletters/2012/08/14/august-2012/
11http://aws.amazon.com/ebs/
12 https://developers.google.com/appengine/kb/billing
13Greg D’Alesandre, http://tinyurl.com/D-Alesandre .
14https://www.dotcloud.com/pricing.html
15https://cloud.google.com/pricing/
16http://tinyurl.com/cloud-price-war
17http://openstack.org
18James Hamilton, “Amazon cycle of innovation” slide, http://tinyurl.com/james-hamilton
19http://spotcloud.com
20http://aws.amazon.com/ec2/reserved-instances/marketplace/
21http://www.cloudsigma.com/cloud-computing/what-is-the-cloud/171
22http://docs.dotcloud.com/0.9/faq/
23http://aws.amazon.com/ec2/reserved-instances/marketplace/

95

Chapter 6

Ginseng: Market Driven

Memory Allocation

(Memory-as-a-Service)

6.1 Abstract

Physical memory is the most expensive resource in use in today’s cloud

computing platforms. Cloud providers would like to maximize their clients’

satisfaction by renting precious physical memory to those clients who value

it the most. But real-world cloud clients are selfish: they will only tell their

providers the truth about how much they value memory when it is in their

own best interest to do so. Under these conditions, how can providers find

an efficient memory allocation that maximizes client satisfaction?

We present Ginseng, the first market-driven framework for efficient al-

location of physical memory to selfish cloud clients. Ginseng incentivizes

selfish clients to bid their true value for the memory they need when they

need it. Ginseng continuously collects client bids, finds an efficient memory

allocation, and re-allocates physical memory to the clients that value it the

most. Ginseng achieves a ×6.2–×15.8 improvement in aggregate client sat-

isfaction when compared with state-of-the-art approaches for cloud memory

allocation. It achieves 83%–100% of the optimal aggregate client satisfaction.

96

6.2 Introduction

Infrastructure-as-a-Service (IaaS) cloud computing providers rent computing

resources to their clients. As competition between providers gets tougher and

prices start going down, providers will need to continuously and ruthlessly

reduce expenses, primarily by improving their hardware utilization. Physical

memory is the most constrained and thus precious resource in use in cloud

computing platforms today [54, 60, 61, 92, 102, 145]. One way for providers

to significantly reduce their expenses is by using less memory to run more

client guest virtual machines on the same physical hosts.

Whereas today cloud computing clients buy a supposedly-fixed amount of

physical memory for the lifetime of their guests, nothing stops their provider

from overcommitting this memory. Clients today have no idea and no way

to discern how much physical memory they are actually getting. Clients

would much prefer to have full visibility and control over the resources they

receive [3, 106]. They would like to pay only for the physical memory they

need, when they need it [17,52]. By granting clients this flexibility providers

can increase client satisfaction.

Therefore, finding an efficient allocation of physical memory on each

cloud host—an allocation that gives each guest virtual machine precisely

the amount of memory it needs, when it needs it, at the price it is willing

to pay—poses benefits for both clients, whose satisfaction is improved, and

providers, whose hardware utilization is improved.

Previous physical memory allocation schemes assumed fully cooperative

client guest virtual machines, where the host knows precisely what each guest

is doing, how much benefit additional memory would bring to it, and the im-

portance of that guest’s workload to the client [54, 60, 61, 102]. However,

when it comes to commercial cloud providers and their paying IaaS clients,

none of these assumptions are realistic. Real-world clients act rationally and

selfishly. They are black boxes with private information such as their perfor-

mance statistics, how much memory they need at the moment, and what it is

worth to them. Rational, selfish black-boxes will not share this information

with their provider unless it is in their own best interest to do so.

When white-box models are applied to selfish guests, the guests have

an incentive to manipulate the host into granting them more memory than

their fair share. For example, if the host gives memory to those guests that

97

will benefit more from it, each guest will say it benefits from memory more

than any other guest. If the host gives memory to those guests that perform

poorly with their current allocation, each guest will say it performs poorly.

If the host allocates memory on the basis of passive black-box or grey-box

measurements [72, 86, 92, 145] such as page faults, guests have an incentive

to bias the measurement results, e.g., by inducing unnecessary page faults.

Furthermore, black-box methods compare the guests only by technical quali-

ties such as throughput and latency, which are valued differently by different

guests under different circumstances.

In this work we address the cloud provider’s fundamental memory allo-

cation problem: How should it divide the physical memory on each cloud

host among selfish black-box guests? A reasonable meta-approach would be

to give more memory to guests who would benefit more from it. But how

can the host compare the benefits of additional memory for each guest?

We make the following three contributions. Our first contribution

is Ginseng, a market-driven memory allocation framework for allocating

memory efficiently to selfish black-box virtual machines. Ginseng is the first

cloud platform to optimize overall client satisfaction for black box guests.

Our second contribution is the Memory Progressive Second Price

(MPSP) auction, a game-theoretic market-driven mechanism which in-

duces auction participants to bid (and thus express their willingness to pay)

for memory according to their true economic valuations (how they perceive

the benefit they get from the memory, stated in monetary terms). In Ginseng,

the host periodically auctions memory using the MPSP auction. Guests bid

for the memory they need as they need it; the host then uses these bids to

compare the benefit that different guests obtain from physical memory, and

to allocate it to those guests which benefit from it the most. The host is not

manipulated by guests and does not require unreliable black-box measure-

ments.

Ginseng is the first full implementation of a single-resource Resource-

as-a-Service (RaaS) cloud [3]. It is ready for a world of dynamic-memory

applications—applications that can improve their performance when given

more memory on-the-fly over a large range of memory quantities and can

return memory to the system when needed. Dynamic-memory applications

are still scarce. Our third contribution is a dynamic-memory version

of Memcached, a widely-used key-value storage cloud application, as well

98

as MemoryConsumer, a dynamic memory benchmark we developed.

Ginseng achieves a ×6.2 improvement in aggregate client satisfaction

for MemoryConsumer and ×15.8 improvement for Memcached, when com-

pared with state-of-the-art approaches for cloud memory allocation. Overall,

it achieves 83%–100% of the optimal aggregate client satisfaction.

6.3 System Architecture

Ginseng’s system architecture is depicted in Figure 6.1. Ginseng is a market-

driven framework for allocating memory in the cloud using guest bids. Chal-

lenges in auctioning memory, as opposed to other kinds of resources, and

how Ginseng overcomes them, are described in Section 6.4.

Ginseng has a host component and a guest component. The host’s auc-

tioneer receives guest bids using the protocol specified in Section 6.5, per-

forms the MPSP auction described in Section 6.6, and uses a balloon [86]

to change each guest’s memory allocation according to the auction’s results.

Ginseng does not specifically depend on a balloon; it only requires that the

host supports some underlying mechanism for memory borrowing. We im-

plemented Ginseng for cloud hosts running the KVM hypervisor [76].

Guests utilize an economic learning agent to rent more or less physical

memory. Each guest’s agent acts on its behalf according to its valuation-of-

memory function within the framework of the MPSP protocol. The guest is

free to use any agent it wishes provided it speaks the MPSP protocol. We

describe the guest agent we implemented in Section 6.7. Since all commu-

nication between the agents and the auctioneer is over TCP/IP, the agents

and the auctioneer could run anywhere; our prototype runs them inside the

guests and in the host, respectively.

6.4 Memory Auctions

Ginseng auctions memory between guests. Each guest has a different, chang-

ing, private (secret) valuation for memory. We define the aggregate benefit of

a memory allocation to all guests—their satisfaction from auction results—

using the game-theoretic measure of social welfare. The social welfare of an

allocation is defined as the sum of all the guests’ valuations of the memory

they receive in this allocation. An efficient memory auction allocates the

99

Application

Balloon Driver

Perf(memory,load)

Vp(perf)

Strategy Adviser

Strategic Agent

Balloon Controller

Host Guest

Ginseng

Communicator

Auctioneer

Communicator

Figure 6.1: Ginseng system architecture

memory to the guests such that the social welfare is maximized. A necessary

condition for a memory auction to maximize the social welfare is Pareto

efficiency : there is no other allocation in which no guest benefits less, and

at least one guest benefits more. Another requirement for a good memory

auction is fairness: not preferring one guest over another [147]. An ex-post

fair auction—fair even after the allocation was made—is better than an ex-

ante fair auction, which is fair by expectation value, but may be unfair once

a random choice is made in the auction.

VCG [37, 55, 138] auctions optimize social welfare by incentivizing even

selfish participants with conflicting economic interests to inform the auction-

eer of their true valuation of the auctioned items. They do so by the exclusion

compensation principle, which means that each participant is charged for the

damage it inflicts on other participants’ social welfare, rather than directly

for the items it wins. VCG auctions are used in various settings, including

Facebook’s repeated auctions [58,91].

Various auction mechanisms, some of which resemble the VCG family,

have been proposed for divisible resources, in particular for bandwidth shar-

ing [75, 81, 93]. For practical reasons, bidders in these auctions do not com-

municate their valuation for the full range of auctioned goods. One of these

VCG-like auctions is Lazar and Semret’s Progressive Second Price (PSP)

100

auction [81]. None of the auctions proposed so far for divisible goods, includ-

ing the PSP auction, are suitable for auctioning memory, because memory

has two characteristics that set it apart from other divisible resources: first,

the participants’ valuation functions may be non-concave; second, transfer-

ring memory too quickly between two participants leads to waste.

6.4.1 Non-concave Valuation Functions

The memory valuation function, which also describes how much the guest

is willing to pay for different memory quantities, is a composition of two

functions: V (mem, load) = Vp(perf(mem, load)). perf(mem, load) describes

the performance the guest can achieve given certain load and memory quan-

tity. It can be measured either online [160] or offline [54, 61]. Performance

is a guest-specific metric that differs between guests. It might be measured

in hits per second for a webserver, transactions per second for a database,

trades per second for a high-frequency-trading system, or any other guest-

specific metric. Vp(perf), the guest’s owner’s (i.e., the client’s) valuation of

performance function, describes the value the client derives from a given

level of performance from a given guest. This function is different for each

client and is private information of that client.

If either of these functions is non-concave or not monotonically rising,

the composed function may be non-concave or not monotonically rising as

well. The PSP auction optimally allocates a divisible resource if and only

if all the valuation functions are monotonically rising and concave. Other

bandwidth auctions also rely on the monotonically rising concave property

of the valuation functions.

Guest performance perf(mem, load) is not necessarily a concave, monoton-

ically rising function of physical memory. For example, in the experimental

environment, our memcached version with dynamic cache size has a con-

cave, monotonically rising performance graph (Figure 6.2(a)). However, the

performance graph of off-the-shelf memcached in the same environment is

monotonically rising, but not concave (Figure 6.2(b)). The performance

graph of our dynamic memcached, in a default system configuration, is not

always concave or monotonically rising (Figure 6.2(c)). Because on-line mea-

surements of real production systems cannot be expected to always produce

concave, monotonically rising performance graphs, the valuation-of-memory

101

0.6 1.0 1.4 1.8 2.2
Memory [GB]

0

1

2

3

4

5

P
e
rf

o
rm

a
n
c
e
 [

K
h
it

s
/s

]

load: 10

load: 8

load: 6

load: 4

load: 2

load: 1

(a) Dynamic Memcached,
experimental system

0.4 0.5 0.6 0.7 0.8
Memory [GB]

0

1

2

3

P
e
rf

o
rm

a
n
c
e
 [

K
h
it

s
/s

]

load: 10

load: 8

load: 6

load: 4

load: 2

load: 1

(b) Memcached, 500MB
internal cache, default system

0.6 1.0 1.4 1.8 2.2 2.6
Memory [GB]

0

1

2

3

4

5

6

P
e
rf

o
rm

a
n
c
e
 [

K
h
it

s
/s

]

load: 10

load: 8

load: 6

load: 4

load: 2

load: 1

(c) Dynamic Memcached,
default system

0.6 1.0 1.4 1.8 2.2
Memory [GB]

0

1

2

3

4

5

6

7

8

9
P
e
rf

o
rm

a
n
c
e
 [

1
0

 h
it

s
/s

]
load: 10

load: 8

load: 6

load: 4

load: 2

load: 1

(d) MemoryConsumer,
experimental system

Figure 6.2: Application performance (“get” hit rate for Memcached, hit
rate for MemoryConsumer) as a function of guest physical memory, for

different load values. Load is number of concurrent requests.

graph V (mem, load) may also be non-concave or even not monotonically ris-

ing.

Auction protocols which assume monotonically rising concave valuation

functions either interpret a bid of unit price and quantity (p, q) as willingness

102

to purchase exactly q units for unit price p or as willingness to buy up to q

units at price p. In the first case, the bidding language is limited to exact

quantities. In the second case, if the valuation function is non-concave, the

guest may get a quantity that is smaller than the one it bid for, and pay

for it a unit price it is not willing to pay. If the function is not, at the very

least, monotonically rising, it may even get a quantity it would be better off

without.

MPSP supports non-concave and non-monotonic valuation functions by

specifying forbidden ranges. These are forbidden memory-quantity ranges

for a single price bid. The guest can use forbidden ranges to cover domains

in which its average valuation per memory unit is lower than its bid price. By

definition, MPSP will not allocate the guest a memory quantity within its

forbidden ranges. Rather, it will optimize the allocation given the constraints.

The guest can thus avoid getting certain memory quantities in advance while

still maintaining its expressiveness.

6.4.2 Memory Waste

Since guest valuations change over time, auctions must expire and allow

resources to be put up for auction again. Repeated bandwidth auctions

(rounds) can be analyzed as stand-alone auctions because the benefit from

increased bandwidth is immediate. In contrast, the benefit from winning

more memory is not immediate.

Memory is often used for caching. To utilize increased cache sizes, guests

need to retain the memory used for caches for relatively long periods of time,

to increase the likelihood of cache hits. Cycling allocations are repeating al-

location patterns involving guest and host behavior [23], where resources are

transferred back and forth between guests. If subsequent memory auctions

result in cycling allocations, then increasing auction frequency will yield less

benefit for guests; memory they rented but did not yet have time to use is

wasted. Hence, unlike in bandwidth auctions, memory auctions should not

be analyzed separately. Instead the auctioneer should control the amount of

memory exchanging hands in each auction round to balance memory waste

with the time required to respond to changing guest valuations.

Reclaim Factor. In MPSP, each guest i is set up permanently with the

bare minimal physical memory it requires to operate, denoted as barei. This

103

memory is charged for separately by a constant hourly fee. Only extra mem-

ory is rented using auctions. In each round, the auctioneer reclaims a reclaim

factor 0 < α ≤ 1 of each guest’s extra memory for a new auction. The guest

continues to rent the rest of the extra memory it won in previous auctions

at the prices for which it won it. The host can change the reclaim factor

between auctions. It can increase it to improve the system’s responsiveness

when the memory pressure rises or is expected to rise (e.g., a new guest is

launched), or when guests change bids fast, indicating fast valuation changes.

Otherwise, it can decrease it to decrease the potential memory waste.

Tie Breaking. Guests are sorted by the unit-prices they bid when they

queue for memory. When two or more bids are identical, the tie must be

broken, preferably fairly and Pareto-efficiently.

Tied PSP guests are excluded from the allocation [81], so that if some

bidders expect to be tied, they are incentivized to change their bids. A steady

state is when the auction’s personal results (a guest’s won goods and pay-

ment) turn out the same in subsequent auctions in response to the same

strategy. A Nash equilibrium is a steady state in which guests stick to their

bids if they know what other guests plan to bid. Breaking ties by excluding

guests prevents ties in Nash equilibria. However, in dynamic, real-life sce-

narios, guest bids are not always in Nash equilibrium, especially if guests do

not continuously inter-communicate. Hence, we sought alternatives to this

tie-breaking method, which we find unsuitable for memory auctions.

We considered three Pareto-efficient options. Dividing the memory among

all the tied guests is ex-post fair, but it is also NP-hard, because the forbid-

den ranges may turn solving it into solving a knapsack problem. Preferring

guests according to a random shuffle is ex-ante fair before each round. Pre-

ferring the current memory holder [160] is only ex-ante fair before the tie

is formed, but is the most efficient tie breaker. We opted for combining the

latter two approaches in Ginseng. Guests are sorted lexically by three quali-

ties: first by bid prices, then by their current holdings, and then by a random

shuffle.

6.5 Repeated Auction Protocol

In the MPSP auction, memory allocations change every round. The guest

rents the memory for the full duration of one round, or more if the reclaim

104

factor is small. Here we describe one MPSP auction round, indexed t.

Initialization. For each guest i, a reference point called the base memory

is initialized as basei(0) = barei when it enters the system. The guest’s initial

memory allocation is its base memory.

Auction Announcement. The host computes a decay in the base mem-

ory of each guest i according to the reclaim factor 0 < α ≤ 1 to

basei(t) = α · barei + (1 − α) · finali (t− 1) , (6.1)

where finali(t−1) is the total memory allocated to the guest in the previous

round (including the bare memory). It computes the free memory—maximal

amount of memory each guest can bid for—as the excess physical memory

beyond the host’s memory and the aggregate base memories. It then informs

each guest of its new base, the free memory, and the auction’s closing time,

after which bids are ignored.

Bidding. Interested guests bid for memory. Agent i’s bid is composed of

a unit price pi—memory price per MB per hour (billing is still done per sec-

ond according to exact rental duration.) and a list of desired ranges: mutually

exclusive, closed ranges of desired memory quantities [rji , q
j
i] for j = 1 . . .mi,

sorted in ascending order. The bid means that the guest is willing to rent

any memory quantity within the desired range list, in addition to its current

basic holdings basei(t), for a unit price pi. The forbidden ranges are those

that lie between the desired ranges. To simplify the notation in the context

of the same round, we drop hereafter the round indexing (t), e.g., basei(t)

can be denoted as basei.

Bid Collection. The host asynchronously collects guest bids. It consid-

ers the most recent bid from each guest, dismissing bids received before the

auction was announced. Guests that did not bid lose the auction automati-

cally. A guest that persists in not bidding gradually loses its extra memory,

until it is left with its bare minimal memory.

Allocation and Payments. The host computes the allocation and pay-

ments according to the MPSP auction protocol described in Section 6.6.

For each guest i, it computes how much memory it won (denoted by q′i)

and at what unit price (denoted by p′i). The payment rule guarantees that

0 ≤ p′i ≤ pi.

Accounting. In each round, a guest may win a memory chunk : a mem-

105

ory quantity with an attached rental unit-price. Over time, guests come to

hold memory chunks of different sizes with different unit prices. The host

holds this information as a list, sorted by unit price. The list is updated

at the end of the auction round in two stages: first, α of the guest’s extra

memory is released (the cheapest chunks or parts thereof). Then, if the guest

won memory quantity q′i in the auction, a memory chunk of size q′i, with a

unit price of p′i is added to the list. Note that for α = 1 one chunk at most

exists, and the accounting is trivial.

Informing Guests. The host informs each guest i of its personal re-

sults p′i, q
′
i. To improve the performance of guest learning algorithms, to be

described in Section 6.7.3, the host also announces information that guests

can work out anyhow, about borderline bids: the lowest accepted bid’s unit-

price and the highest rejected bid’s unit-price.

Adjusting and Moving Memory. After an adjustment period follow-

ing the announcement, the host actually takes memory from those who lost

it and gives it to those who won, by shrinking and expanding their balloons

as necessary. The purpose of this period is to allow each guest’s agent to

notify its applications of the upcoming memory changes, and then allow the

applications time to gracefully reduce their use of memory, if necessary. The

applications are free to choose when to start reducing their memory con-

sumption, according to their memory-release agility. This early notification

approach makes it possible for the guest operating systems to gracefully

tolerate sudden large memory changes and spares applications the need to

monitor second-hand information on memory pressure.

6.6 The Auction

The MPSP auction relies on finding an optimal allocation: an allocation

that maximizes the social welfare function (SW), defined as the sum of guest

valuations for the memory they won,

SW =

N∑
i=1

(Vi(finali(t)) − Vi(basei(t))) , (6.2)

where N is the number of guests and Vi(·) is guest i’s memory valuation

function for their current loads. To determine the optimal allocation, the

106

MPSP auction solves a constrained divisible good allocation problem. After

we define the allocation rule algorithm and the payment rule, we proceed to

discuss complexity and give an example. The correctness proof is omitted

for brevity.

6.6.1 Allocation Rule

The optimal allocation is found using a constrained divisible good allocation

algorithm. In each stage, a divisible good allocation is attempted: the guests

are allocated their maximal desired quantities according to the tie breaking

order (discussed in Section 6.4.2). If there are a guest g and a forbidden range

R such that g is allocated a memory quantity inside R, then the allocation

is invalid. If the SW value of the invalid allocation can improve the known

highest valid value, two constrained allocations are recursively considered

instead: one in which guest g gets a memory quantity beyond the forbidden

range R, and another in which it gets less than R’s starting point. The social

welfare of the valid allocations is compared to find the optimal allocation.

6.6.2 Payment Rule

The payments follow the exclusion compensation principle. According to the

PSP rule [81], if guest i gets some memory q′i > 0, it pays:

p′i =
1

q′i

∑
k 6=i

pk
[
q′k(0, s−i) − q′k(si, s−i)

]
, (6.3)

where si is agent i’s bid and s−i are the other guests’ bids. Note that to

compute the payment for a guest which gets allocated some memory, the

constrained divisible good allocation algorithm needs to be computed again

without this guest. In total, the allocation procedure needs to be called one

time more than the number of winning guests.

6.6.3 Complexity

The MPSP algorithm solves an NP-hard problem, because its bidding lan-

guage includes forbidden ranges. Its time complexity is O(N2 ·2M), where N

is the number of guests and M is the number of all the forbidden ranges in

all the bids. To find an optimal allocation, at most 2M divisible allocations

107

are attempted, each taking O(N) to compute. For the payment rule, O(N)

allocations need to be computed.

However, for real life performance functions, a few forbidden ranges are

enough to cover the non-concave regions (up to one for the functions we

measured and for Websphere [61]). Given the small number of guests on

a physical machine, the algorithm’s run-time is reasonable (less than one

second using a single hardware thread in our experiments). For concave

functions, the complexity is reduced to O(N2), as in the PSP auction [81].

Had Ginseng been implemented on the basis of bundles in a multi-unit

auction, the memory would have been divided to units. The clients would

have bid for bundles of such units. The host would have had to trade off the

accuracy of the final allocation with the complexity of the auction by con-

trolling the bundle size. As the number of units grows, the final allocation is

more accurate, but the auction’s complexity grows. In contrast, the MPSP

auction is of a continuous resource, and thus its fine-grained allocation ac-

curacy does not increase its algorithmic complexity.

6.6.4 Example of a Single Round

Consider a system with 6 MB of physical memory and two guests, bidding

bid1 = (p1 = 2, r1 = 3, q1 = 4) and bid2 = (p2 = 1, r2 = 3, q2 = 5). In the

first stage, we sort the guests by price, and try to allocate 4MB to guest 1

and 2MB to guest 2. This is an invalid allocation, because guest 2 gets a

quantity in its forbidden range, which is [0, 3). We examine two constrained

systems instead. (1) Guest 2 gets no more than the start of the forbidden

range, which is 0. In this case, the allocation is 4MB to guest 1, with a social

welfare of 8. (2) Guest 2 is guaranteed the full forbidden range, which is 3.

Then the rest of the free memory is allocated by the order of prices, so guest

1 gets the other 3 MB. The social welfare in this case is 9, and this is the

chosen allocation.

According to Equation 6.3, the guests pay p′1 = 1
3 (1 [5 − 3]) = 2

3 and

p′2 = 1
3 (2 [4 − 3]) = 2

3 , because in each other’s absence they each would have

gotten their maximal desired range.

108

6.7 Guest Strategy

In this section we present the bidding strategy used by the guests in the

performance evaluation in Section 6.9. To simplify the notation, we drop

the guest’s index in the remainder of this section.

The guest is myopic: it wishes to maximize its estimated utility in this

round Uest. The guest considers bidding for different maximal desired mem-

ory quantities. For each maximal quantity q, it is clear (as will be explained

in Section 6.7.1) that the best strategy would be to bid its true valuation for

the quantity. The guest then compares its estimated utility from bidding for

the different maximal quantities, as described in Section 6.7.2, with the help

of on-line learning algorithms (in Section 6.7.3). Our guest does not collude

with its neighbors.

6.7.1 Choosing the bid price p

In this section we assume the maximal desired memory quantity q is given.

For the simple case of an exact desired memory quantity (m = 1, rm = qm =

q), for any value q, bidding the mean unit valuation of the desired quantity

p(q) = V (base+q)−V (base)
q is the best strategy, no matter what the other guests

do. By bidding lower than p(q), the guest risks losing the auction, but by

bidding higher it risks operating at a loss (paying more than what it thinks

the memory is worth).

If the valuation function is (at least locally, in the range up to q) concave

monotonically rising, bidding p(q) is still the best strategy for q regardless of

other guests’ bids: p(q) is the guest’s minimal valuation for the range because

the unit valuation drops with the quantity. See for example Figure 6.3(a),

where the valuation function is above the line connecting the valuation of

1200 MB with the base (400 MB) valuation.

For other valuation functions, where the unit valuation may rise locally

with quantity, the guest avoids getting quantities for which the unit valuation

is lower than the bid price by covering them with the aforementioned forbid-

den ranges. This coverage ensures that the client never operates at a loss.

Such a case is demonstrated in Figure 6.3(b), where the range [1700, 2000]

MB is forbidden.

When the guest uses at least one forbidden range, bidding p(q) still pro-

tects the guest from operating at a loss, but it is not necessarily the best

109

(a) Single range (b) Multiple range

Figure 6.3: Strategies for choice of unit price for two maximal quantities,
using the same valuation function. Figure 6.3(a) demonstrates a single
desired range strategy for a concave monotonically rising part of the

valuation function. Figure 6.3(b) demonstrates a multiple desired range
strategy for a non-concave, not even monotonically rising part of the

valuation function.

strategy. For learning purposes, the guest can choose, according to its level

of risk aversion, to retain q, but lower the bid price if it allows it to decrease

its forbidden ranges. This will make the guest more flexible regarding the

memory quantities it can take, and enable the host to give it a partial allo-

cation in more cases, when the alternative might be not getting any memory

quantity at all.

However, in a steady state, the guest already knows how much memory

it can get for any bid it makes. The guest is incentivized to raise its bid price

to a maximum, and by this increase the exclusion compensation that other

guests pay, and make them more considerate. Hence, our guests always bid

p(qm).

6.7.2 Choosing qm

The guest chooses qm that maximizes Uest in a steady state. Uest is assessed

by estimating the quantity of memory it will get, which is defined for sim-

110

plicity as

qest(p, q
m) =

{
qm p > pmin

0 p ≤ pmin
(6.4)

where pmin is the lowest price the guest can offer and still have a chance of

getting any memory at all. The utility estimation also requires an estima-

tion of the unit price to be paid for the allotted memory amount, pest. The

estimated utility is defined as:

Uest(q
m) = V (base + qest(p, q

m)) − Y

−pest(qest(p, q
m)) · qest(p, qm), (6.5)

where Y denotes the known part of the cost (which is paid for the base

memory), and if pest is needed, it is assessed according to Section 6.7.3.

For concave valuation functions V (·) Uest(q
m) is maximized when p(qm) =

pmin. In such cases, the guest must only estimate and predict pmin to bid

optimally. For other functions, the guest needs to evaluate the full expression

in Equation 6.5, including pest and qest, to find arg maxqm(Uest). If several

values of qm maximize Uest, the guest prefers to bid with higher p values,

which improve its chances of winning the auction. For non-concave valuation

functions, the full expression in Equation 6.5 must be evaluated.

6.7.3 Evaluating Guest Utility

The guest evaluates pmin for the current round on the basis of ten recent

borderline bids. qest is predicted on the basis of pmin, according to Equa-

tion 6.4. The price to be paid, p′, depends mainly on non-granted bids. To

predict it, the guest maintains a historical table of (p′, q′) pairs, and uses it

as a basic estimate for pest. The pest estimate is further bounded from above

by the highest losing bid price in the last auction round.

6.8 Experimental Setup

In this section we describe the experimental setup in which we evaluate

Ginseng.

Alternative Memory Allocation Methods. Static is a fixed alloca-

tion of the same amount of memory to each guest without any overcommit-

111

ment. Host-swapping is the same as static except the host is allowed to swap

guest memory to balance memory between guests as it sees fit. The Memory

Overcommitment Manager (MOM) [86] collects data from its guests to learn

about their memory pressure and continuously adjusts their balloon sizes to

make the guests feel the same memory pressure as the host.

Workloads. To experiment with overcommitment trade-offs, we needed

benchmarks of dynamic memory applications: applications that can improve

their performance when given more memory on-the-fly over a large range of

memory quantities, and can return memory to the system when needed. We

experimented with a modified dynamic memcached and with MemoryCon-

sumer, a dedicated dynamic memory benchmark. Both applications inter-

acted with the Ginseng guest agent to dynamically adjust their heap sizes

when they won or lost memory.

Dynamic memcached is a version of memcached that changes its heap

size on the fly to respond to guest memory changes. Memcached was driven

by a memslap client. The application’s performance is defined as the “get”

hit rate. 1

MemoryConsumer is a dynamic memory benchmark. It tries to write

to a random 1MB-sized cell out of a range of 1950 cells. If the address is

within the range of memory currently available to the program, 1MB of data

is actually written to the memory address, and it is considered a hit. After

each attempt, whether a hit or a miss, it sleeps for 0.1 seconds, so that misses

cost time. The application’s performance is defined as the hit rate.

We profiled the performance of each workload with varying amounts of

memory to create its perf(mem, load) function. We measured performance

under different loads for four concurrent guests without memory overcommit-

ment, as also done by Hines et al. [61]. We gradually increased and decreased

the physical memory in small steps, waiting in each step for the performance

to stabilize. For memcached we waited and measured the performance for

200 seconds, and for MemoryConsumer for 60 seconds. The perf(mem, load)

graphs can be seen in Figure 6.2(a) for the dynamic Memcached and Fig-

ure 6.2(d) for MemoryConsumer.

Load. We defined “load” for memcached and MemoryConsumer as the

number of concurrent requests being made. We used two load schemes: static

loads, where each guest’s load is constant over time, and coordinated dynamic

1Dynamic-memcached is available from https://github.com/ladypine/memcached.

112

loads. In coordinated dynamic loads, each pair of guests exchange their loads

every Tload. The load-exchange timing is not coordinated among the different

guest pairs in the experiments. Loads are in the range [2, 10]. The total load

is always the number of guests ×6, so that the aggregate hit rate of different

experiments will be comparable.

Machine Setup. We used a cloud host with 12GB of RAM and two

Intel(R) Xeon(R) E5620 CPUs @ 2.40GHz with 12MB LLC. Each CPU has

4 cores with hyper-threading enabled, for a total of 16 hardware threads.

The host ran Linux with kernel 2.6.35-31-server #62-Ubuntu, and the

guests ran 3.2.0-29-generic #46-Ubuntu. To reduce measurement noise,

we disabled EIST, NUMA, and C-STATE in the BIOS and Kernel Samepage

Merging (KSM) [16] in the host kernel. To prevent networking bottlenecks,

we increased the network buffers. We dedicated hardware thread 0 to the

host and pinned the guests to hardware threads 1 . . . N . When the host also

drove the load for memcached, memslap processes were randomly (uniformly)

pinned to threads (N + 1) . . . 15.

Memory Division. 0.75GB were dedicated to the host. Thus, in static

allocation experiments, each guest got 11.25GB/N , where N denotes the

number of guests. To allow guests to both grow and shrink their memory

allocations, we configured all guests with a high maximal memory of 10GB,

most of which was occupied by balloons, leaving each guest with a smaller

initial memory. In Ginseng experiments, we started the guests with initial

memory equal to their bare memory (0.6GB) and limited the sum of current

memories to 11.25GB.

When using host-swapping based methods (static with host-swapping

and MOM), extensive host-swapping caused the host to freeze when the

maximal guest memory was set to 10GB. Hence we also compared against

hinted (white-box) methods, in which the maximal memory of each guest

was configured as 2GB instead of 10GB. In our experiments, 2GB is the

most memory any rational guest would ask for, since performance remains

flat with any additional memory beyond 2GB. This white-box configuration,

which is based on our knowledge of the experiment design, is intended to

get the best performance out of the alternative memory allocation methods.

The initial and maximal memory values are summarized in Table 6.1.

Reducing Guest Swapping. Bare metal operating systems shield ap-

plications from memory pressure by paging memory out and by clearing

113

Method/Memory (GB) Initial Maximal

Ginseng bare 10
Static 11.25/N —
MOM bare 10

Host-swapping 10 —
Hinted MOM bare 2

Hinted host-swapping 2 —

Table 6.1: Guest configuration: initial and maximal memory values for each
overcommitment method.

buffers and caches, but dynamic-memory applications should be exposed to

memory pressure to respond to it. To this end we minimized guest swapping

by setting vm.min free kbytes to 0.

Reducing Indirect Overcommitment. Bare metal operating systems

keep some memory free, in case of sudden memory pressure. In a virtualized

system, the hypervisor can indirectly overcommit this memory by giving it

to other operating systems while it is not in use; the hypervisor relies on

its ability to page out guests if and when sudden memory pressure occurs.

Since we focus on direct overcommitment (e.g., using balloons) we set the

tunable knob vm.overcommit memory to 1 in our guests, thus reducing the

amount of memory they maintain which the host can indirectly overcommit.

Time Scales. Three time scales define the usability of memory borrow-

ing and therefore the limits to the experiments we conducted: a typical time

that passes before the change in physical memory begins to affect perfor-

mance, Tmemory; the time between auction rounds, Tauction; a typical time

scale in which conditions (e.g., load) change, Tload. Useful memory borrow-

ing requires Tload >> Tmemory. This condition is also necessary for on-line

learning of memory valuation. To evaluate Tmemory, we performed large step

tests, making abrupt sizable changes in the physical memory and measur-

ing the time it took the performance to stabilize. We empirically determined

good values for Tload on the basis of step tests results: 1000 seconds for mem-

cached experiments, whereas for MemoryConsumer 200 seconds are enough.

We also used those step tests to verify that major faults (swapping) were

insignificant, and to verify that the performance measurement method was

getting enough time to evaluate the performance. For example, memslap

114

required 200 seconds to start experiencing cache misses.

In realistic setups providers should set Tauction < Tload. Therefore, we

set Tauction to 12 seconds. In each 12-second auction round the host waited

3 seconds for guest bids and then spent 1 second computing the auction’s

result and notifying the guests. The guests were then allowed 8 seconds to

prepare in case they lost memory.

6.9 Performance Evaluation

This section attempts to answer the following four questions: (1) which al-

location method provides the best social welfare? (2) how does the reclaim

factor affect social welfare? (3) what are the host revenue, wasted memory,

ties, and inefficiency in a Ginseng system? (4) how important (and accurate)

is off-line profiling of guest performance?

6.9.1 Comparing Social Welfare

We begin by evaluating the social welfare achieved by Ginseng vs. each of the

five other methods listed in Table 6.1 for a varying number of guests on the

same physical host. We evaluate Memcached guests and MemoryConsumer

guests in separate sets of experiments. In each experiment set, guests were

subject to dynamic loads. Each Memcached experiment lasted 60 minutes,

with Tload = 1000 seconds. Each MemoryConsumer experiment lasted 30

minutes with Tload = 200 seconds. For each experiment we present average

results of 5 experiments. The reclaim factor was set to 1. Ginseng guests use

the strategy described in Section 6.7.

In both benchmarks, perf(mem) is a concave function. To evaluate Gin-

seng’s abilities over non-concave functions, we used performance valuation

functions Vp(perf) that make the resulting composed valuation function V (mem)

non-concave.

In the first experiment set (MemoryConsumer), each guest i’s valuation

function is defined as

Vi(mem) = fi · (perf(mem))2 , (6.6)

where the fi values were drawn from the Pareto distribution, a widely used

model for income and asset distributions [129]. We used a Pareto index of

115

1.1, which is reasonable for income distributions [130], and a lower bound of

10−4 $
Khit .

The “square of performance” valuation function is characteristic of on-

line games and social networks, where the memory requirements are propor-

tional to the number of the users, and the income is proportional to user

interactions, which are proportional to the square of the number of users.

The composed valuation function is drawn in Figure 6.4(a).

In the second experiment set (dynamic memcached), each guest i’s val-

uation function is defined as V(mem) = fi · perf(mem), where the fi values

were distributed according to a Pareto distribution with a Pareto index of

1.36, another reasonable value for income distributions, bounded in the range

[10−4, 100] $
Khit . The bounding represents the fact that on-line trading does

not span the whole range of human transactions: some are too cheap or too

expensive to be made on-line. The highest coefficient was set as:

f1 =

{
0.1 $

Khit perf(mem) < 3.4Khit
s

1.8 $
Khit otherwise.

(6.7)

This sort of piecewise-linear valuation functions characterizes service level

agreements that distinguish usage levels by unit price. The valuation func-

tion for the first guest is shown in Figure 6.4(b).

The social welfare of the different experiments is compared in Figure 6.5.

The figures contain two upper bounds for the social welfare, achieved through

a simulator, which is presented in Section 6.9.3. The tighter bound results

from a simulation of Ginseng itself, and the looser bound results from a

white-box on-line simulation. The MOM and host-swapping methods yield

negligible social welfare values for these experiments, and are not presented.

As can be seen in Figure 6.5, Ginseng achieves much better social welfare

than any other allocation method for both workloads. It improves social

welfare by up to ×15.8 for memcached and up to ×6.2 for MemoryConsumer,

compared with both black-box approaches (static) and white-box approaches

(hinted-mom). Since each guest is allocated a fixed amount of memory (bare)

on startup, as the number of guests increases, the potential for social welfare

increases, but our host has less free memory to auction; hence the relative

peak in social welfare for 7 guests (MemoryConsumer). In the Memcached

experiment the relative peak is flat because the first guest’s valuation is

116

0.6 1.0 1.4 1.8 2.2
Memory [GB]

0

1

2

3

4

5

6

7

8

V
a
lu

a
ti

o
n
 [

$
/s

]

load: 10

load: 8

load: 6

load: 4

load: 2

load: 1

(a) MemoryConsumer

0.6 1.0 1.4 1.8 2.2
Memory [GB]

0

1

2

3

4

5

6

7

8

9

V
a
lu

a
ti

o
n
 [

$
/s

]

load: 10

load: 8

load: 6

load: 4

load: 2

load: 1

(b) Dynamic Memcached

Figure 6.4: Valuation functions for different loads

significantly larger than the rest. In both experiment sets, Ginseng achieves

83%–100% of the optimal social welfare. The sharp decline in Ginseng’s

social welfare for 13 guests comes when Ginseng no longer has enough free

memory to answer even the needs of the most valuable guest.

As can be seen in Figure 6.6, in which the performance of the different

methods is compared, the improvement that Ginseng delivers does not come

at a cost when the aggregate performance is considered: Ginseng’s aggregate

performance is roughly equivalent to the performance of the better methods,

namely hinted-MOM and static division.

6.9.2 Reclaim Factor Analysis

To examine the impact of the reclaim factor on social welfare in a real system,

we combined a statically loaded memcached guest, which is vulnerable to

allocation cycles, with a dynamically loaded MemoryConsumer guest, whose

load changed every 60 seconds. Each guest got bare = 0.8GB. The results

of this experiment for various reclaim factors are given in Figure 6.7. As can

be seen in Figure 6.8, lowering the reclaim factor reduces the penalty that

MemoryConsumer suffers when conditions change and it needs to change

its strategy. When the reclaim factor is lower, the system gets sluggish and

does not stabilize before the load changes again.

117

5 6 7 8 9 10 11 12 13
Number of VMs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
S
o
c
ia

l
W

e
lf
a
re

 [
$

/s
]

static

ginseng

hinted-host-swapping

hinted-mom

Upper Bound

Ginseng Simulation

(a) MemoryConsumer, valuation is square of performance

6 7 8 9 10 11 12 13

Number of VMs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

S
o
c
ia

l
W

e
lf
a
re

 [
$

/s
]

static

ginseng

hinted-host-swapping

hinted-mom

Upper Bound

Ginseng Simulation

(b) Memcached, first guest valuation is piecewise linear

Figure 6.5: Social welfare (mean and standard deviation) under different
allocation schemes as a function of the number of guests, for dynamic load
experiments. The dashed lines indicate simulation-based upper bounds on

Ginseng’s social welfare.

118

In real systems there is a tradeoff between system responsiveness and

limitation of allocation cycles that does not exist in simulations. This exper-

iment proves the importance of the reclaim factor as a knob for the host to

control the system’s stability.

6.9.3 Simulated Experiments

To evaluate various aspects of Ginseng’s performance, we augmented the ex-

perimental results with simulated experiments. The simulator was created by

re-using Ginseng’s algorithmic core with simulated guests that use the same

strategy as real guests; our simulations can be seen, therefore, as emulations

of the Ginseng process.

In our simulations we measured social welfare, sum of guest utilities, and

host revenue. In addition we measured an upper bound on waste, ties, and

the inefficiency, as explained below.

Waste and Ties. The simulations did not account for the impact of

fast ownership changes on the actual value obtained from memory, because

the performance of simulated guests stabilized immediately once the memory

size changes. We defined the upper bound on memory waste due to ownership

changes as the maximal total allocated memory minus the static allocations

over the last 40 auction rounds:

Waste(t) =
t

max
τ=t−40

N∑
i=1

finali(τ) −
N∑
i=1

t
min

τ=t−40
finali(τ).

Waste can be caused by fast load changes (Tload . Tmemory) as well as by

cycling allocations. Ties do not cause cycles because when they are broken,

preference is given to the previous owner, leading to a stable solution. Since

the simulations lasted 1000 rounds, a moving window of 40 rounds filtered

out transient effects while still catching large cycles.

Inefficiency. The simulation environment also enabled an on-line white-

box computation of the optimal allocation which we compare with Gin-

seng’s experimental results. The optimal allocation results from a centralized

constraint-satisfaction algorithm, with which the guests share their full valua-

tion functions. The social welfare that originates from the optimal allocation

is denoted by SWmax. We computed the inefficiency, defined as 1 − SW
SWmax

,

using the simulation results. Inefficiency quantifies the aggregate valuation

119

degradation experienced due to the mechanism design and the bidding lan-

guage.

Simulation Setup. We ran the simulations with 10 MemoryConsumer

guests, with identical linear valuation functions, with bare memories of 0.8GB

and with static loads that sum up to a total load of 60, the same total load

as in the 10-guest experiments. We performed a parametric sweep over the

reclaim factor and the total physical memory of the system, in the range

of 11–20GB, corresponding with decreasing memory overcommitment ratios

of 4–1. We defined the memory overcommitment ratio as the sum of each

guest’s maximal demand for rented memory (at any point in time during the

experiment) divided by the memory that was available for rent at t = 0. The

higher the overcommitment ratio, the fiercer is the competition for memory.

Simulation Results can be seen in Figure 6.9. In the static Memo-

ryConsumer simulations, the reclaim factor has a low impact on the host

revenue and sum of guest utilities, and no impact on the social welfare and

the inefficiency. The inefficiency ranges from 0 in a well provisioned system to

35% for an overcommitment ratio of 3.5. The inefficiency can be reduced by

using a richer bidding language [93]. There are no ties in the MemoryCon-

sumer simulations, and usually no waste either. We attribute the lack of

ties to the different slopes of the MemoryConsumer performance graphs for

the different loads (in Figure 6.2(d)). In contrast, memcached performance

graphs share the same slope in their lower parts (Figure 6.2(a)), and indeed

in memcached simulations (not shown due to lack of space) up to 80% of

the simulation rounds resulted in ties. This is consistent with our design

assumption in Section 6.4.2, that ties do happen in real life, and supports

our claim that they must be efficiently dealt with.

Discussion: Host Revenue. Ginseng does not attempt to maximize

host revenue directly. Instead, it assumes that the host charges an admittance

fee for cloud services and maximizes the aggregate client satisfaction (the

social welfare). Maximizing social welfare improves host revenues indirectly

because better-satisfied guests are willing to pay more. Likewise, improving

each cloud host’s hardware (memory) utilization should allow the provider

to run more guests on each host. Nevertheless, it is interesting to examine

the host’s direct revenues.

For small overcommitment ratios (< 1.3) the host revenue is negligible

(< 5% of the maximal social welfare): the guests’ profits (Figure 6.9(b)) equal

120

their valuations (Figure 6.9(a)). As the overcommitment ratio increases, host

revenue decreases because there is less memory to rent. When the host rev-

enue is zero and the social welfare is high, as is the case for the low overcom-

mitment range, the system is functioning well and is in a state of equilibrium,

where guests are more considerate of their neighbors thanks to the exclusion

compensation principle. Our guests reach such equilibria using indirect ne-

gotiations that result from their learning strategy (in Section 6.7.3). More

sophisticated guests may directly negotiate to ease their way into an equi-

librium [18].

We also ran simulations with dynamic loads, for an overcommitment

ratio of 1.5, changing the dynamicity of the system by controlling the ratio

of Tload and Tauction. According to Figure 6.9(f), the social welfare in the

simulation improve as the system is less dynamic and as the reclaim factor

is increased.

6.9.4 Impact of Off-Line Profiling

In our experiments we used performance graphs that were measured in ad-

vance in a controlled environment. In real life, artificial intelligence methods

should be used to collect such data on-the-fly. Since the accuracy of the

best on-the-fly methods is bounded by the accuracy of hindsight, we can

bound the impact of refraining from on-the-fly evaluation on the performance

graphs. In Figure 6.10 we compare our benchmarks’ predicted performance

(according to measured load and memory quantities, and using Figure 6.2)

with performance values measured during Ginseng experiments for the same

loads and memory quantities. The experimental values were collected after

the memory usage stabilized (more than Tmemory after a memory change).

The comparison shows that the profiled data is accurate enough, as can

be seen when comparing Ginseng’s experiment results to its simulations in

Figure 6.5.

6.10 Conclusions

Ginseng is the first cloud platform that allocates physical memory to self-

ish black-box guests while maximizing their aggregate benefit. It does so

using the MPSP auction, in which even guests with non-concave valuation

121

of memory are incentivized to bid their true valuations for the memory they

request. Using the MPSP auction, Ginseng achieves an order of magnitude

of improvement in the social welfare.

Although Ginseng focuses on selfish guests, it can also benefit altruistic

guests (e.g., when all guests are owned by the same economic entity). In this

case, economic valuations can distinguish between guests that perform the

same function for different purposes, such as a test server vs. a production

server.

Ginseng is the first concrete step towards the Resource-as-a-Service (RaaS)

cloud [3]. In the RaaS cloud, all resources, not just memory, will be bought

and sold on the fly. Extending Ginseng to resources other than physical

memory remains as future work.

122

5 6 7 8 9 10 11 12 13
Number of VMs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
e
rf

o
rm

a
n
c
e
 [
1
0
2

h
it

s
]

static

ginseng

hinted-host-swapping

hinted-mom

Upper Bound

Ginseng Simulation

(a) MemoryConsumer, valuation is square of performance

6 7 8 9 10 11 12 13

Number of VMs

0.0

0.5

1.0

1.5

2.0

2.5

P
e
rf

o
rm

a
n
c
e
 [
1
0
4

h
it

s
]

static

ginseng

hinted-host-swapping

hinted-mom

Upper Bound

Ginseng Simulation

(b) Memcached, first guest valuation is piecewise linear

Figure 6.6: Performance (mean and standard deviation) under different
allocation schemes as a function of the number of guests, for dynamic load
experiments. The dashed lines indicate the performance according to the

simulations that yield an upper bound on the social welfare, as indicated in
Figure 6.5.

123

0.05 0.25 0.50 0.75 1.00

Reclaim Factor

0.0

0.2

0.4

0.6

0.8

1.0
1.2

1.4

1.6

R
e
la

t
iv

e
 S

W

1
.0

0

1
.3

0

1
.4

0

1
.2

4

1
.2

5

Figure 6.7: Impact of reclaim factor on social welfare for a mixed workload
of memcached and MemoryConsumer

0

10

20

30

40

50

60

m
e
m

c
a
c
h
e
d

S
W

 [
$

/s
]

0.0

0.5

1.0

1.5

2.0

M
e
m

o
ry

 [
G

B
]

0

2

4

6

8

10

L
o
a
d

0 2 4 6 8 10 12 14 16

Time [m]

0

10

20

30

40

50

60

M
e
m

o
ry

-C
o
n
s
u
m

e
r

S
W

 [
$

/s
]

0.0

0.5

1.0

1.5

2.0

M
e
m

o
ry

 [
G

B
]

0

2

4

6

8

10
L
o
a
d

SW α=0.5 Memory α=0.5 SW α=1 Memory α=1 Load

Figure 6.8: Two mixed-workload experiment traces of utility and memory
allocation

124

0.1 0.4 0.7 1.0

Reclaim Factor

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
e
m

o
ry

 O
v
e
rc

o
m

m
it

m
e
n
t

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

(a) Social welfare

0.1 0.4 0.7 1.0

Reclaim Factor

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
e
m

o
ry

 O
v
e
rc

o
m

m
it

m
e
n
t

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Sum of guest utilities

0.1 0.4 0.7 1.0

Reclaim Factor

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
e
m

o
ry

 O
v
e
rc

o
m

m
it

m
e
n
t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

(c) Host revenue

0.1 0.4 0.7 1.0

Reclaim Factor

1.0

1.5

2.0

2.5

3.0

3.5

4.0
M

e
m

o
ry

 O
v
e
rc

o
m

m
it

m
e
n
t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(d) Inefficiency

0.1 0.4 0.7 1.0

Reclaim Factor

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
e
m

o
ry

 O
v
e
rc

o
m

m
it

m
e
n
t

0

50

100

150

200

250

(e) Waste (MB)

0.1 0.4 0.7 1.0

Reclaim Factor

0.01

0.10

1.00

D
y
n
a
m

ic
it

y
 (
T
a
u
ct
io
n
/T

lo
a
d
)

0.80

0.82

0.84

0.86

0.88

0.90

(f) Social welfare (dynamic)

Figure 6.9: Impact of reclaim factor and overcommitment ratio on Ginseng
time-averaged performance for MemoryConsumer guests. Figure 6.9(f)

shows the impact of the reclaim factor and dynamicity on social welfare in
dynamic simulations for an overcommitment ratio of 1.5. Social welfare,
revenue and profit values are normalized by the maximal social welfare

achieved in the parametric sweep.

125

0 1 2 3 4 5 6
Predicted [khits/s]

0

1

2

3

4

5

6

A
c
tu

a
l
[k

h
it

s
/s

]

Theoretical

(a) memcached

0 2 4 6 8 10
Predicted [0.1 hits/s]

0

2

4

6

8

10

A
c
tu

a
l
[0

.1
 h

it
s
/s

]

Theoretical

(b) MemoryConsumer

Figure 6.10: Comparison of predicted performance values (according to the
profile graphs, given load and memory allocation) with measured

performance.

126

Chapter 7

RaaS: Additional Research

Directions

In this section we outline several research directions that might build on the

concept of RaaS, with a focus on our implementation of Ginseng. We begin

with challenges within the Ginseng scope, continue to outline an extension

of Ginseng to a multi-resource system, turn to analyze side-channel attacks

that can be made on Ginseng and their ramifications, and conclude with a

proposal for a mechanism with improved stability.

7.1 Single Resource

7.1.1 Game-Theoretic Challenges

The MPSP auction is uncharted territory with regard to game theory: the

reclaim factor, which reduces waste, introduces private guest-states that

change over time and affect the guests’ valuation of additional memory

chunks. When the base memory changes, the forbidden ranges and the bid

price change as well (because the base memory and its valuation are their

point of reference). In addition, valuations may change at random due to

dynamic loads. In this work we only analyzed guest strategies with a hori-

zon of one auction round. In simpler problems of repeated games without

private states, there may be rational strategies which are irrational to play

as a stage game (single round). This may also be the case here: there are

strategies that are irrational in the stateless game (with α = 1), but are

127

rational in the private-state game. For example, if a guest expects a fast

increase of demand for memory, it can plan ahead and bid for more mem-

ory than it currently needs. It will benefit from keeping its payments lower

for several rounds, until the system reaches a new equilibrium. Even in a

stateless game, prediction of other guests’ bids may incentivize a guest to lie

about its valuation in a repeated VCG auction. Analysis of such strategies

calls for new theoretic approaches.

7.1.2 Guest Logic

The current guest agent is rather simplistic. It does not communicate with

its neighbors, nor does it make future plans (even when a low reclaim fac-

tor is used). There are many directions in which the the guest agent can

evolve. The guest agent’s accuracy can improve through learning. For ex-

ample, if the agent is enhanced with a load anticipation capability, it will

be able to bid according to predictions rather than according to the current

load. If it communicates with the application, it can learn of an upcoming

increased need for resources. If the guest communicates with its neighbors, it

can trade in resources that it previously rented for a low price, and sell them

for a higher price. If the guest collects data on its performance on the fly, it

will be able to update the perf(mem) function on-line, and thus adapt it to

changing conditions. For example, if the network has become a bottleneck

and a memory increase does not improve the performance, the guest can

learn this on-line and stop bidding for large memory increases.

7.1.3 Host Logic

The reclaim factor is a knob that requires a policy, a heuristic to operate

it. It can be changed dynamically, but the host needs to decide how to do

so. The dynamic changing of the reclaim factor must be made in light of

the total amount of memory that was bid for, the available memory and the

provider’s plans for adding or removing guests. Another type of information

that might affect the reclaim factor is black-box measurements, which might

be used to assess the rate at which conditions change.

128

7.1.4 Provider Logic: Global Cloud View

The host logic must be combined with a global cloud view mechanism that

matches guests to hosts. The matching should include a per-host pricing

of entrance to that host. Hosts with lower resource pressure should have a

higher entrance fee. The global view algorithm must also be combined with

a live migration recommendation system that optimizes the social welfare

while considering the migration overhead.

7.1.5 Minimal Price

When the host does not lose from renting a resource, maximizing the so-

cial welfare of all the guests (the aggregate valuation) also maximizes the

aggregate utility of the guests and the host:

SW =

N∑
i=1

Ui +Uhost =

N∑
i=1

(Vi(finali)−p′i) +

N∑
i=1

p′i =

N∑
i=1

Vi(finali). (7.1)

In this case, renting spare resources for extremely low prices (and even for

free) still improves the social welfare, as long as the renting guest benefits

from the resource.

However, the host may prefer not to rent the resource. Hosts that can

power down unused resources (e.g., memory segments or cores) value them

at least as the difference of the active and suspended resource operational

costs. In addition, the host may consider the wear and tear (in particular

in Flash devices) and missed opportunity costs (for being less responsive to

future resource pressure). In such cases, the social welfare is higher when the

memory is rented only to clients who value it more than the host does. To this

end, the host’s valuation of resources can be represented in the auction as a

special guest, whose bid is the minimal price for the full system’s memory.

7.1.6 Memory Shedding

When the reclaim factor is smaller than 1, the guest’s base memory changes

with each auction round. To make for a Pareto-efficient system, the guest

must be allowed to promptly shed any non-required memory, without waiting

for its base memory to dwindle over time. Otherwise, the gradual decay

might lead the base memory into one of the guest’s forbidden ranges, thus

129

forcing the guest to pay for memory that degrades its performance. When the

guest’s requirements change quickly but the reclaim factor is small, shedding

unrestricted amounts of extra memory within a single round will protect the

guest from system sluggishness without hurting the other guests.

Memory shedding also enables the guest to adjust the price it pays for

memory rented long ago. In the chunks method, memory is tagged according

to the price for which it was rented. In time, the most expensive memory

chunks remain. For concave monotonically rising functions, the payment

converges from below to the exact valuation of the memory. However, if prices

drop and memory pressure is lower, the guest should be able to announce

memory shedding. This means that the guest is willing to lose all the memory

it is currently renting, but if it wins it, it wins it for a low price (the current

market price).

7.2 Multi-Resource Allocation

Ginseng can be expanded to a full RaaS [3] implementation, allocating multi-

ple resources simultaneously (e.g., memory, I/O, and CPU) [3]. In this section

we outline the algorithm for a multi-resource RaaS, without implementing

it. The implementation is left for future work.

The expansion to multi-resource introduces the notions of economic com-

plements: resources are called economic complements if guests would like to

rent more of one resource when they rent more of the other. For example,

consider an application that utilizes a core and 500MB in each thread. Guest

A has 500MB and one core, and guest B has 1000MB and one core. They

both perform at a rate of a single thread. However, guest B values an ad-

ditional core more than guest A, because given an additional core, guest B

will double its performance, while guest A’s performance will remain the

same. Gutman and Nissan [57] assume such utility functions, denoted Leon-

tief utilities. However, resources may also be economic substitutes: resources

are called economic substitutes if guests would like to rent less of one re-

source when they rent more of the other. For example, when using a caching

application such as memcached, a guest which rents a large memory quantity

will require less bandwidth to get the stored items, or it might require less

CPU cycles to compute them again. Furthermore, the same resources might

be substitutes for one guest, and complements to another. This dependency

130

might be of high order. However, the guest does not have to state its full

valuation function, but rather state its local manifestation, since Ginseng’s

bidding language includes the designation of desired ranges. For a small

enough range, an approximation to the first order of the guest’s valuation

of resources is accurate enough. Formally, a guest’s valuation of D resources
~d ∈ RD

+ can be multi-linearly approximated locally as

V (~d) =
∑

v∈{0,1}D
av

D∏
k=1

dvkk . (7.2)

We denote the coefficients a for short as a ~a ∈ R2D . For the simplest multi-

resource case, Equation 7.2 is reduced to a bilinear function:

V (d1, d2) = a00 + a01d1 + a10d2 + a11d1d2. (7.3)

We set the valuation of the reference point V (~0) = 0, and thus a~0 = 0 and

2D−1 free coefficients are left. This setting is consistent with using only one

free coefficient in the single-resource case (the bid price p).

7.2.1 Bidding Language

The extended bidding language for D resources includes the unit-price coeffi-

cients ~a, and a list of m desired ranges (D-dimensional boxes) in which the

unit-price coefficients are valid. Formally, the bid is of the form

~a , (~r1, ~q1) . . . (~rm, ~qm) (7.4)

where ~a ∈ RD (7.5)

and ∀ j = 1 . . .m, ~rj , ~qj ∈ RD
+ . (7.6)

The bid is interpreted as a willingness to pay a global price according to

Equation 7.2 for resources within the desired ranges. The resource unit-

prices are computed as the partial derivatives derived from Equation 7.2:

pk =
∂V (~d)

∂dk
∀1 ≤ k ≤ D. (7.7)

131

For the two resource case, we derive the resource unit-prices from Equa-

tion 7.3:

p1 =
∂V (d1, d2)

∂d1
= a01 + a11d2 (7.8)

p2 = a10 + a11d1 (7.9)

Note that although the valuation might decrease with any resource (e.g.,

the valuation of cores might decrease with additional bandwidth), the prices

must still be positive. If the prices are non-positive, the guest should not bid

at all in this range.

7.2.2 Allocation Rule

The multi-resource allocation rule is an extension of the single resource rule.

The single resource allocation rule is computed by attempting a divisible-

good allocation, which is efficiently done by sorting the bids, and then split-

ting the case along a 2-tree structure if a forbidden range was split by the

divisible good algorithm. However, multi-resource bids are not necessarily

sortable by unit price.

Consider an auction for memory and bandwidth. There are two guests,

A and B. Guest A bids a higher unit-price for bandwidth than guest B, while

for memory guest B’s unit price exceeds A’s. Now suppose there is enough

bandwidth for both guests, but memory is insufficient, so it is a bottleneck

resource of the system. In this case, the multi-resource auction should be

reduced to the single resource MPSP, the bids should be reduced to unit-

prices for memory when bandwidth is at the full desired ranges, and guest

B should be sorted before guest A. However, if bandwidth is the bottleneck

resource, then unit-prices for memory matter, and the multi-resource auction

should be reduced to a single-resource bandwidth auction, preferring guest

A over guest B. These examples demonstrate the problem of sorting points

in a multi-dimensional space. In the case of the bilinear bids the problem is

even harder. In each bid, one resource’s unit-price depends on the amount

of other resources allocated to the guest. This means one bid’s unit-price

might exceed another bid’s unit-price for one allocation, but be lower for

another. Hence, even the divisible multi-resource allocation problem cannot

be solved using a simple sorting of bids by their unit-prices, as done in the

132

single resource auction.

We define the divisible multi-resource allocation problem as a linear pro-

gramming problem: Find vectors ~di ∈ RD
+ ∀i = 1 . . . N that maximize the

social welfare SW =
∑N

i=1 Vi(~di) under the constraints

0 ≤
N∑
i=1

dik ≤ Ak ∀k = 1 . . . D (7.10)(
mi

min
j=1

rjik

)
≤ dik ≤

(
mi

max
j=1

qjik

)
∀i = 1 . . . N, k = 1 . . . D, (7.11)

where Ak denotes the amount of resource k available for auction. That is,

the solution does not allocate more resources than the host can allocate, and

the resources allocated to each guest are within a D-dimensional box that

covers all of the guest’s desired ranges.

The indivisible multi-resource allocation problem can be solved using a

branching algorithm, which is an extension of the 2-tree in the single re-

source auction. In each step of the tree, a divisible multi-resource allocation

is attempted. If the divisible allocation is a valid indivisible allocation, it is

evaluated as a candidate for the optimal allocation. However, the resulting

allocation may be invalid : it may allocate a guest with resource amounts out-

side any of its desired ranges, as demonstrated in the example in Figure 7.1.

In this case, the guest’s box, as defined for the divisible multi-resource al-

gorithm, is divided to sub-boxes that do not contain the guest’s allocated

resource amounts.

The simplest division covers each desired range in a separate box, since

each desired range is convex. However, there is an opportunity for complexity

reduction for large numbers of desired ranges. An alternative method for sub-

box division is demonstrated in Figure 7.4. First, a forbidden box is defined

around the allocated amounts, such that it is a maximal box that has no

intersection with any desired range. The maximal box is not unique: its shape

is determined by the order of the dimensions in which the forbidden box’s

sizes are maximized, as demonstrated by the different maximal forbidden

boxes in Figures 7.2 and 7.3.

Once the forbidden bounding box is chosen, the guest’s covering box

minus the forbidden range is expressed as a union of disjoint boxes. When

possible, the division lines are chosen such that they do not divide any desired

133

range. This is how the solid blue lines in Figure 7.4 were chosen. Then the

bounding boxes are shrunk to minimal boxes covering the desired ranges,

as demonstrated by the solid black rectangles in Figure 7.4. A covering box

might shrink to zero volume (like the non-existent box which could have

covered the high memory regimes in Figure 7.4) because it does not contain

any desired ranges. Such shrunken boxes do not lead to a branch.

The choice of the forbidden box and branching option can affect the

computations required to find the optimal allocation, but not the correctness

of the algorithm or the maximal social welfare. The chosen box and branching

option might also affect the order in which optimal allocations are discovered,

so that if an order criterion is used in the process (e.g., in case of a tie, prefer

the previously found allocation), the final allocation might also be affected.

Bandwidth (MB/s)

Memory (MB)

Desired
Range

Desired
Range

Desired
Range

Desired
Range

Desired
Range

Allocated resources

Convex Coverage

Figure 7.1: Indivisible multi-resource allocation. The blue point indicates
the result of the divisible multi-resource auction for one guest, located

outside this guest’s divisible ranges, but inside those ranges’ covering box.

7.3 Side-Channel Attacks

Memory overcommitment and dynamic memory allocation methods are a

side channel through which information can leak from one guest to its neigh-

134

Bandwidth (MB/s)

Memory (MB)

Desired
Range

Desired
Range

Desired
Range

Desired
Range

Desired
Range

Allocated resources

Figure 7.2: Forbidden bounding box choice (red box)—maximizing the
bandwidth dimension first.

Bandwidth (MB/s)

Memory (MB)

Desired
Range

Desired
Range

Desired
Range

Desired
Range

Desired
Range

Allocated resources

Figure 7.3: Forbidden bounding box choice (red box)—maximizing the
memory dimension first.

135

Bandwidth (MB/s)

Memory (MB)

Desired
Range

Desired
Range

Desired
Range

Desired
Range

Desired
Range

Range
Forbidden

Figure 7.4: Indivisible multi-resource allocation branching. The pink box is
a forbidden range that includes the allocated resource amounts.

bor. A hostile guest might then use this information, or even just the fact

that it might leak, to harm other guests or the host. In this section, the term

neighbor denotes a non-malicious guest, co-located with a malicious guest

on the same physical machine.

7.3.1 Information Leakage

In Ginseng, the borderline bids (the bid unit-prices of the accepted bid with

the lowest unit-price and of the rejected bid with the highest unit-price) are

announced by the host, because they are important to the convergence of the

bidding process. Were they not announced, the guest could still approximate

them by recording how much it was charged. One way to approximate them

is for the malicious guest to bid for a small memory quantity while gradually

raising its bid price until it is allocated some memory, thus discovering the

lowest accepted bid’s unit-price, which would then equal its own bid. The

unit-price that this malicious guest is charged would be the highest rejected

bid’s unit-price.

136

In a system with only two guests, a guest can easily deduce full informa-

tion about its neighbor’s memory valuation function. It can bid repeatedly

for all of the system’s memory with a gradually increasing low bid price. In a

steady state (that is, if the neighbor does not change his bid), the guest can

delimit the unit-price in its neighbor’s bid between two of its own bids’ unit-

prices. Its own highest bid that did not win the full memory is a lower bound

for the unit-price of the neighbor’s bid, and its own lowest fully-winning bid’s

unit-price serves as an upper bound. These bounds can be as close as the

guest wishes, and thus reveal the unit-price of the neighbor’s bid to any

desired accuracy. This method can also inform the guest of its neighbor’s re-

quired memory for this price by comparing the memory quantities it won in

those two bids that close on the neighbor’s bid. This method will inform the

guest of one p, qm point on the neighbor’s valuation function. By collecting

several such points, the guest can learn the neighbor’s valuation function for

the relevant ranges (ranges which the neighbor used for bidding).

The malicious guest can even monitor changes in its neighbor’s memory

valuation over time. As we demonstrated earlier, changes in the neighbor’s

load can result in changes in its memory valuation function. In addition,

valuation functions may change due to the subjective importance of the

neighbor’s workload. By comparing the evolution of the function p(qm) over

time, the guest can learn when the neighbor needs memory more (that is,

when the memory is more important to the neighbor). Such information

about times in which resources are more crucial to the neighbor’s operation

might be used by the malicious guest to initiate hostile, disruptive activ-

ity. However, the information gathering activities themselves damage the

neighbor, causing it to lose an auction or only partially win it.

In a system with more than two guests, deducing the neighbors’ valuation

functions is harder but not impossible, because the information gathering

process can be repeated, and thus noise (coming form other neighbors) can

be cleaned. Furthermore, to disrupt the system, a malicious guest does not

need to know its neighbors’ full valuation function. It is enough for the

malicious guest to discover the memory quantity requested by all the other

guests together and the highest unit-price of the bids.

137

7.3.2 Disruptive Activity

A hostile client may design a hostile guest that we denote a soldier. The

soldier causes damage to its neighbors while maintaining its own costs rea-

sonably low. The lower its costs are, the more soldiers the hostile client can

afford to operate.

Soldiers can invalidate their neighbors’ caches. If the soldier bids a high

unit-price for a large memory quantity, it takes hold of memory that was pre-

viously rented to other guests. The ownership change requires that the host

itself clear the memory of its contents, to prevent information leak between

guests. When the soldier allows the neighbor to win (in the next auction),

the memory is already wiped out, and needs to be slowly filled again with

cached items and files. The soldier pays for the rental of a large memory

quantity, but only for a single auction round’s duration, and only as much

as it is worth to the neighbor. If memory shedding is allowed, even a low

reclaim factor will not increase the soldier’s costs.

Such soldiering activity disrupts the system’s stability. It invalidates the

neighbors’ assumption of a steady state, and slows down the system’s con-

vergence to an efficient allocation. As a result of the instability, memory is,

in effect, wasted, because the neighbors benefit less than they could have

from the memory that they rent. The hostile activity also raises the border-

line bids, and thus causes simple advisors, such as the one we developed, to

respond by bidding higher (often for a smaller amount of memory). Thus

the effect of the temporary artificial memory pressure is imprinted on the

learning algorithms for several more auction rounds, until it decays. Overall,

a soldier’s activity on a host degrades the quality of service on this host for

all the other neighbors. To cause more damage, the soldier might trigger its

hostile activity when its neighbors’ memory valuation is high.

7.3.3 Prevention of Disruptive Activity

The host would like to identify such disruptive behavior, contain and prevent

it. However, positive identification is hard, because such disruptive bidding

may be the result of benign fast load changes, as demonstrated in the ex-

periment in Figure 6.8. Soldiers might be better identified by examining the

correlation of their bidding strategy with that of their neighbors’. However,

correlation between guests’ bids does not necessarily indicate malicious in-

138

tent. It can also be a benign response to the introduction of instability, e.g.,

the addition of a new guest on the same host or a notable bid change made

by a third guest (that increases the resource pressure). Such benign guest

bidding strategies need to be filtered out to identify malicious guests.

Under uncertainty, without proof of the maliciousness of a guest, the

provider will be reluctant to prevent such bidding. A safer measure on the

part of the provider would be to contain the suspicious guest: prevent it

from harming other clients, while avoiding harm to the suspicious client

itself. Such containment can be achieved by live migration of the suspicious

guest to a host that only holds guests belonging to the same client.

Causing the provider to co-locate one client’s guests on the same physical

machine, without any guest belonging to any other client, is the equivalent of

Amazon’s dedicated instances, for which Amazon currently charges $10 per

hour per region [8]. Dedicated instances have many benefits. They have fast

inter-guest communication. They can be used with shared memory mecha-

nisms (e.g., shared memory MPI), which are faster than MPI over Ethernet.

They might also be used more efficiently for scientific computing. In addition,

dedicated instances are protected against various side channel attacks [115].

139

Chapter 8

Conclusion

In this work we set out to pursue the goal of efficient sharing of computing

resources. Starting with a combination of grids and a cloud, we tried to

improve the overall efficiency by finding the most efficient client strategies.

We were able to control the inefficiency by assigning a cost to it. However,

changing only one side of the client-provider equation was not enough—the

most efficient strategies still suffered the inherent waste of replication.

Our journey in pursuit of this goal lead us to examine cloud computing

models, in which payments are explicit and cost saving is an intuitive client

goal. We discovered that Amazon’s spot instances, the cloud model which we

first perceived as the most efficient sharing method in a cloud environment,

were actually not market driven, and hence not very efficient: artificially

raised prices maximize neither the provider’s nor the clients’ revenue. How-

ever, spot instances themselves are still a good candidate for efficient sharing

of computing resources.

To reach the holy grail of efficient resource sharing, we charted a road

map that follows current cloud trends to their culmination in the RaaS cloud.

We outlined how memory would be allocated and shared in the RaaS cloud,

and set out to implement its prototype. Our early results were promising:

a ×6.2–×15.8 improvement in aggregate client satisfaction when compared

with state-of-the-art approaches for cloud memory allocation. We are con-

vinced that the cloud industry is indeed marching towards the Resource-as-a-

Service cloud model, and that this change will make the sharing of computing

resources more efficient.

140

Appendix: Software

Spot Price Simulation

There are many functions that the Matlab scripts can perform, most of which

were used for the analysis of the spot instance traces. However, what might

be useful to other researchers is the simulation of spot instance prices given

workload traces (such as those available from the Parallel Workloads Archive

or the Grid Workload Archive).

The script paper sims.m loads a trace in the SWF format, using get trace.m.

The body of the simulation is done in the script cloud 2nd price loads.m.

The simulation is event driven, with two kinds of events: the arrival of a new

instance bid and the change of the reserve price (if the reserve price is set to

be random). On each such event, the running and waiting instance bids are

sorted, and the number of sold instances that maximizes the host revenue

is computed. Then instances are killed and/or admitted accordingly. The

input key user values controls the distribution from which the user bids

are taken.

This is an example of the script’s printout:

next random step chosen at time 9825050.000000 as 2309.000000

spot price =

0.9376

done with 10892/20001 free hosts 32/70 waiting bids 8777

done with 10892/20001 free hosts 32/70 waiting bids 8777

done with 10892/20001 free hosts 32/70 waiting bids 8778

done with 10892/20001 free hosts 32/70 waiting bids 8779

141

done with 10892/20001 free hosts 32/70 waiting bids 8780

done with 10892/20001 free hosts 32/70 waiting bids 8781

done with 10892/20001 free hosts 31/70 waiting bids 8781

As demonstrated in the printout, many of the bids might never get a

chance to run. Realistic users would quit the queue with such bids, but this

behavior is not implemented in the simulation. We end the simulation when

the last instance request arrives. We do so because we do not wish to describe

the gradual decline of occupancy that results from the ending of the trace.

The spot instance analysis was performed on the basis of data from now

inactive Web sites whose data is nonetheless still available from the following

locations:

SpotWatch https://s3-eu-west-1.amazonaws.com/ruben.ruben/SpotWatch.

tar

CloudExchange http://files.evercu.be/cloudexchange.tgz

The simulator code is available as free software from http://www.cs.

technion.ac.il/~ladypine/spotprice.tar.gz.

Dynamic memcached

Memcached provides key-value hashing for values of a wide range of sizes. It

stores the items in slabs according to their size. Each slab group can hold

items whose size is within a fixed range. This structure works well for a

fixed distribution of item sizes, but might pose a problem if the item size

distribution changes: memcached might be unable to store items of one size

due to lack of space, while storing obsolete items of other sizes.

Dormando, one of memcached’s lead developers, created a branch of mem-

cached 1.4 in which it is possible to move a slab between groups, so that it

can hold items of a different size. This mechanism cleans all the items from a

slab of one group and adds it as a new slab to another group. The slab group

from which a slab will be taken is chosen on the basis of recent utilization

statistics.

We extended this version of memcached, allowing it to shrink the heap

size by cleaning slabs and not reassigning them. The heap shrink is triggered

142

by a change of the desired heap size, which can now be communicated to

memcached on the fly, using the command “-m” (the same syntax which is

used for setting the heap size when initializing the program.) The aggressive-

ness of the shrinking operating is controlled by the automove level. In the

most aggressive mode, a slab group from which slabs will be taken is chosen

even without gathering utilization statistics, to enable a quick response to

memory pressure.

Another method which hastens memory shrinkage is to order the release

of several slabs together. First we define a slab group’s equal share of released

slabs as the ratio of the number of slabs that must be released and the number

of active slab groups. This is the number of slabs that should be released

from each active slab group if there is no preference for any slab group,

so that the release is done evenly. Then we determine the first candidate

for slab release on the basis of available utilization data. Since this data is

deleted when read, the first candidate is usually also the best candidate. The

best candidate might not be strictly preferable to other candidates, but at

least it is not worse than them. From this candidate we release its a number

of slab which equals the equal share, as defined earlier. If all the items are

of the same size, there is only one active slab group. In this case, all the

slab release commands are given at once, without gathering more utilization

statistics. When there is more than one slab group, the rest of the releases

are determined on the basis of the poorer utilization data gathered from this

point on.

Heap shrinkage can also be manually activated from the command line,

by issuing the command:”slab reassign N -S”, where N is the slab index to

shrink, and S is the number of slabs to take from this item size.

This is the printout of the slabs shrink.t test, showing an allocation

of slabs for two item sizes, followed by a shrinkage, and expansion and then

another shrink operation.

ok 1

ok 2

ok 3 - verbose is not 0

ok 4 - slab 31 evicted is nonzero

ok 5 - slab 25 evicted is nonzero

gap 4718848 for gap 5 to reach from 6291456 to 2097152 when currently

using 6816000

143

ok 6 - slab shrink was ordered

emergency source changed from 0 to 25

emergency source changed from 0 to 31

ok 7 - slabs shrunk is nonzero

ok 8 - slab 25+31 pagecount changed

Slabs class 31 25

Changed from 4 2

to 1 1

limit maxbytes 2 total malloced 2

ok 9 - stored key

ok 10 - stored key

ok 11 - slab expand was ordered

ok 12 - slab 31 pagecount increased - using the increased memory limit

Slabs class 31 25

Changed from 1 1

to 8 2

gap 7864576 for gap 8 to reach from 20971520 to 3145728 when currently

using 11010304

ok 13 - slab shrink was ordered

emergency source changed from 0 to 25

emergency source changed from 0 to 31

ok 14 - slabs shrunk is nonzero

ok 15 - slab 25+31 pagecount changed

Slabs class 31 25

Changed from 8 2

to 1 1

Memcached is free software, released under the BSD license. Our version

is available from https://github.com/ladypine/memcached.

144

Bibliography

[1] Hussein A. Abbass, Ruhul Sarker, and Charles Newton. PDE:

A Pareto-frontier differential evolution approach for multi-

objective optimization problems. In CEC, 2001.

[2] Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and

Dan Tsafrir. Deconstructing Amazon EC2 spot instance pricing.

In IEEE Third International Conference on Cloud Computing

Technology and Science (CloudCom), 2011.

[3] Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and

Dan Tsafrir. Raas: Resource as a service. In USENIX Conference

on Hot Topics in Cloud Computing (HotCloud), 2012.

[4] K. Agrawal, A. Benoit, L. Magnan, and Y. Robert. Scheduling al-

gorithms for linear workflow optimization. In Parallel Distributed

Processing (IPDPS), 2010 IEEE International Symposium on,

pages 1 –12, 2010.

[5] Nezih Yigitbasi Alexandru Iosup and Dick Epema. On the per-

formance variability of production cloud services. In Cluster,

Cloud and Grid Computing (CCGrid), 2011.

[6] Jörn Altmann and Karyen Chu. How to charge for net-

work services—flat-rate or usage-based? Computer Networks,

36(5):519 – 531, 2001.

[7] Jörn Altmann, Costas Courcoubetis, George Stamoulis, Manos

Dramitinos, Thierry Rayna, Marcel Risch, and Chris Bannink.

GridEcon: A market place for computing resources. In Grid

145

Economics and Business Models, volume 5206 of Lecture Notes in

Computer Science, pages 185–196. Springer Berlin / Heidelberg,

2008.

[8] Amazon EC2 dedicated instances. http://aws.amazon.com/

dedicated-instances. [Accessed Apr, 2013].

[9] Amazon EC2 spot instances. http://aws.amazon.com/ec2/

spot-instances. [Accessed Aug, 2011].

[10] Spot instance termination conditions? http://tinyurl.com/

2dzp734, Mar 2010. Online AWS Developer Forums discussion.

[Accessed Apr, 2011].

[11] AMD. ACP — the truth about power consumption starts

here. white paper, 2007. http://www.amd.com/us/Documents/

43761C_ACP_WP_EE.pdf.

[12] Nadav Amit, Muli Ben-Yehuda, Dan Tsafrir, and Assaf Schus-

ter. vIOMMU: efficient IOMMU emulation. In USENIX Annual

Technical Conference (ATC), 2011.

[13] David P. Anderson, Eric Korpela, and Rom Walton. High-

performance task distribution for volunteer computing. In e-

Science, pages 196–203, 2005.

[14] Artur Andrzejak, Derrick Kondo, and David P. Anderson. Ex-

ploiting non-dedicated resources for cloud computing. In

NOMS’10.

[15] Artur Andrzejak, Derrick Kondo, and Sangho Yi. Decision model

for cloud computing under SLA constraints. In IEEE/ACM In-

ternational Symposium on Modelling, Analysis and Simulation of

Computer and Telecommunication Systems (MASCOTS), 2010.

[16] Andrea Arcangeli, Izik Eidus, and Chris Wright. Increasing mem-

ory density by using ksm. In Ottawa Linux Symposium (OLS),

pages 19–28, 2009.

146

[17] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D

Joseph, Randy Katz, Andy Konwinski, Gunho Lee, David Patter-

son, Ariel Rabkin, Ion Stoica, and Matei Zaharia. A view of cloud

computing. Communications of the ACM, 53(4):50–58, 2010.

[18] Lawrence M. Ausubel and Paul Milgrom. Combinatorial auc-

tions, chapter The lovely but lonely Vickrey auction, pages 17–40.

2006.

[19] Junjik Bae, Eyal Beigman, Randall Berry, Michael L. Honig, and

Rakesh Vohra. An efficient auction for non concave valuations.

In 9th International Meeting of the Society for Social Choice and

Welfare, 2008.

[20] Salman A. Baset. Cloud SLAs: Present and future. ACM

SIGOPS Operating Systems Review (OSR), 46(2), Jul 2012.

[21] Muli Ben-Yehuda, Michael D. Day, Zvi Dubitzky, Michael Factor,

Nadav Har’El, Abel Gordon, Anthony Liguori, Orit Wasserman,

and Ben-Ami Yassour. The turtles project: Design and imple-

mentation of nested virtualization. In USENIX Symposium on

Operating Systems Design & Implementation (OSDI), pages 423–

436, 2010.

[22] A. Benoit, Y. Robert, A. L. Rosenberg, and F. Vivien. Static

strategies for worksharing with unrecoverable interruptions. In

IPDPS, 2009.

[23] Christian Borgs, Jennifer T. Chayes, Nicole Immorlica, Kamal

Jain, Omid Etesami, and Mohammad Mahdian. Dynamics of bid

optimization in online advertisement auctions. In International

Conference on World Wide Web (WWW), pages 531–540, 2007.

[24] Sem Borst, Onno Boxma, Jan Friso Groote, and Sjouke Mauw.

Task allocation in a multi-server system. J. of Scheduling,

6(5):423–436, 2003.

[25] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. The

skyline operator. In ICDE, pages 421–430, 2001.

147

[26] Paul Brebner and Anna Liu. Performance and cost assessment

of cloud services. In Service-Oriented Computing, volume 6568

of Lecture Notes in Computer Science, pages 39–50. 2011.

[27] Rajkumar Buyya, David Abramson, Jonathan Giddy, and Heinz

Stockinger. Economic models for resource management and

scheduling in grid computing. Concurrency and Computation:

Practice and Experience, 14(13-15):1507–1542, 2002.

[28] Rajkumar Buyya and Manzur Murshed. Gridsim: A toolkit for

the modeling and simulation of distributed resource management

and scheduling for grid computing. Concurrency and Computa-

tion: Practice and Experience, 14(13).

[29] Henri Casanova. On the harmfulness of redundant batch re-

quests. In HPDC, pages 255–266, 2006.

[30] Henri Casanova, Arnaud Legrand, and Martin Quinson. SimGrid:

a generic framework for large-scale distributed experiments. In

10th IEEE International Conference on Computer Modeling and

Simulation, March 2008.

[31] Jeffrey S. Chase, Darrell C. Anderson, Prachi N. Thakar,

Amin M. Vahdat, and Ronald P. Doyle. Managing energy and

server resources in hosting centers. In ACM Symposium on Op-

erating Systems Principles (SOSP), 2001.

[32] Junliang Chen, Chen Wang, Bing Bing Zhou, Lei Sun,

Young Choon Lee, and Albert Y. Zomaya. Tradeoffs between

profit and customer satisfaction for service provisioning in the

cloud. In HPDC, 2011.

[33] Ran Chen and Hao Li. The research of grid resource scheduling

mechanism based on pareto optimality. In Software Engineering

(WCSE), 2010 Second World Congress on, 2010.

[34] Navraj Chohan, Claris Castillo, Mike Spreitzer, Malgorzata

Steinder, Asser Tantawi, and Chandra Krintz. See spot run: us-

ing spot instances for mapreduce workflows. In USENIX Con-

ference on Hot Topics in Cloud Computing (HotCloud), 2010.

148

[35] Brent N. Chun and David E. Culler. Market-based proportional

resource sharing for clusters. Technical report, Berkeley, CA,

USA, 2000.

[36] Walfredo Cirne, Francisco Brasileiro, Daniel Paranhos, Lúıs

Fabŕıcio W. Góes, and William Voorsluys. On the efficacy, ef-

ficiency and emergent behavior of task replication in large dis-

tributed systems. Parallel Comput., 33(3), 2007.

[37] Edward H. Clarke. Multipart pricing of public goods. Public

Choice, 11(1):17–33, Sep 1971.

[38] Daniel Cordeiro, Pierre-François Dutot, Grégory Mounié, and De-

nis Trystra. Tight analysis of relaxed multi-organization schedul-

ing algorithms. In IEEE Int’l Parallel & Distributed Processing

Symposium (IPDPS), 2011.

[39] Amir Danak and Shie Mannor. Resource allocation with supply

adjustment in distributed computing systems. In Int’l Confer-

ence on Dsitributed Computing Systems (ICDCS), 2010.

[40] Kalyanmoy Deb. Multi-Objective Optimization Using Evolution-

ary Algorithms. John Wiley and Sons, first edition, 2001.

[41] Yang Ding, Mahmut Kandemir, Padma Raghavan, and

Mary Jane Irwin. A helper thread based EDP reduction scheme

for adapting application execution in cmps. In IPDPS, 2008.

[42] Menno Dobber, Robert D. van der Mei, and Ger Koole. Dynamic

load balancing and job replication in a global-scale grid environ-

ment: A comparison. IEEE Trans. Parallel Distrib. Syst., 20(2),

2009.

[43] Shahar Dobzinski and Noam Nisan. Mechanisms for multi-unit

auctions. Journal of Artificial Intelligence Research, 37:85–98,

2010.

[44] Danny Dolev, Dror G. Feitelson, Joseph Y. Halpern, Raz Kupfer-

man, and Nathan Linial. No justified complaints: on fair sharing

of multiple resources. In Innovations in Theoretical Computer

Science Conference (ITCS), pages 68–75. ACM, 2012.

149

[45] Jack J. Dongarra, Emmanuel Jeannot, Erik Saule, and Zhiao Shi.

Bi-objective scheduling algorithms for optimizing makespan and

reliability on heterogeneous systems. In Nineteenth Annual ACM

Symposium on Parallel Algorithms and Architectures (SPAA),

2007.

[46] Benjamin Edelman, Michael Ostrovsky, and Michael Schwarz. In-

ternet advertising and the generalized second-price auction: Sell-

ing billions of dollars worth of keywords. American Economic

Review, 97(1):242–259, March 2007.

[47] John P. Holdren et al. Realizing the full potential of government-

held spectrum to spur economic growth. Technical report, The

President’s Council of Advisors on Science and Technology, 2012.

[48] Dror Feitelson. Parallel workloads archive. Website. http://

www.cs.huji.ac.il/labs/parallel/workload/index.html.

[49] Anshul Gandhi, Mor Harchol-Balter, and Michael A. Kozuch.

Are sleep states effective in data centers? In International Green

Computing Conference (IGCC), 2012.

[50] Gaurav D. Ghare and Scott T. Leutenegger. Improving speedup

and response times by replicating parallel programs on a snow.

In JSSPP ’04.

[51] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski,

Scott Shenker, and Ion Stoica. Dominant resource fairness: Fair

allocation of multiple resource types. In USENIX Symposium

on Networked Systems Design & Implementation (NSDI), 2011.

[52] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. Press: Predic-

tive elastic resource scaling for cloud systems. In International

Conference on Network and Service Management (CNSM), pages

9–16. IEEE, 2010.

[53] Abel Gordon, Nadav Amit, Nadav Har’El, Muli Ben-Yehuda,

Alex Landau, Dan Tsafrir, and Assaf Schuster. ELI: Bare-metal

150

performance for I/O virtualization. In ACM Architectural Sup-

port for Programming Languages & Operating Systems (ASP-

LOS), 2012.

[54] Abel Gordon, Michael Hines, Dilma Da Silva, Muli Ben-

Yehuda, Marcio Silva, and Gabriel Lizarraga. Ginkgo: Auto-

mated, application-driven memory overcommitment for cloud

computing. In ASPLOS RESoLVE ’11: Runtime Environ-

ments/Systems, Layering, and Virtualized Environments (RE-

SoLVE) workshop, 2011.

[55] Theodore Groves. Incentives in teams. Econometrica, 41(4):617–

631, Jul 1973.

[56] Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan Savage,

Alex C. Snoeren, George Varghese, Geoffrey M. Voelker, and

Amin Vahdat. Difference engine: harnessing memory redundancy

in virtual machines. In USENIX Symposium on Operating Sys-

tems Design & Implementation (OSDI), 2008.

[57] Avital Gutman and Noam Nisan. Fair allocation without trade.

In International Conference on Autonomous Agents and Multia-

gent Systems (AAMAS), volume 2, pages 719–728, 2012.

[58] John Hegeman. Facebook’s ad auction. Talk at Ad Auctions

Workshop, May 2010.

[59] Joseph L. Hellerstein, Walfredo Cirne, and John Wilkes. Google

cluster data. Website, 2011. http://code.google.com/p/

googleclusterdata/.

[60] Jin Heo, Xiaoyun Zhu, Pradeep Padala, and Zhikui Wang. Mem-

ory overbooking and dynamic control of xen virtual machines in

consolidated environments. In IFIP/IEEE Symposium on Inte-

grated Management (IM), 2009.

[61] Michael Hines, Abel Gordon, Marcio Silva, Dilma Da Silva,

Kyung Dong Ryu, and Muli Ben-Yehuda. Applications know

best: Performance-driven memory overcommit with ginkgo. In

151

CloudCom ’11: 3rd IEEE International Conference on Cloud

Computing Technology and Science, 2011.

[62] Liting Hu, Kyung Dong Ryu, Dilma Da Silva, and Karsten

Schwan. v-bundle: Flexible group resource offerings in clouds.

In Int’l Conference on Dsitributed Computing Systems (ICDCS),

2012.

[63] Alexandru Iosup, Catalin Dumitrescu, Dick H. J. Epema, Hui Li,

and Lex Wolters. How are real grids used? The analysis of four

grid traces and its implications. In GRID, 2006.

[64] Alexandru Iosup, Mathieu Jan, Omer Ozan Sonmez, and Dick

H. J. Epema. On the dynamic resource availability in grids. In

GRID, 2007.

[65] Alexandru Iosup, Hui Li, Mathieu Jan, Shanny Anoep, Catalin

Dumitrescu, Lex Wolters, and Dick H. J. Epema. The Grid Work-

loads Archive. Future Generation Comp. Syst., 24(7):672–686,

2008. http://gwa.ewi.tudelft.nl/pmwiki/.

[66] Alexandru Iosup, Simon Ostermann, Nezih Yigitbasi, Radu Pro-

dan, Thomas Fahringer, and D. Epema. Performance analysis

of cloud computing services for many-tasks scientific computing.

IEEE Trans. on Parallel and Distrib. Sys., 22, 2011.

[67] Alexandru Iosup, Ozan Sonmez, and Dick Epema. Dgsim: Com-

paring grid resource management architectures through trace-

based simulation. In Euro-Par ’08.

[68] Keith R. Jackson, Lavanya Ramakrishnan, Karl J. Runge, and

Rollin C. Thomas. Seeking supernovae in the clouds: a perfor-

mance study. In HPDC, pages 421–429, 2010.

[69] Bahman Javadi and Rajkumar Buyya. Comprehensive statisti-

cal analysis and modeling of spot instances in public cloud envi-

ronments. Technical Report CLOUDS-TR-2011-1, Cloud Com-

puting and Distributed Systems Laboratory, The University of

Melbourne, 2011.

152

[70] Emmanuel Jeannot, Erik Saule, and Denis Trystram. Bi-

objective approximation scheme for makespan and reliability

optimization on uniform parallel machines. In Euro-Par 2008,

volume 5168 of Lecture Notes in Computer Science, chapter 94,

pages 877–886. 2008.

[71] Ramesh Johari and John N. Tsitsiklis. Efficiency loss in a net-

work resource allocation game. Mathematics of Operations Re-

search, 29(3):407–435, 2004.

[72] Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H.

Arpaci-Dusseau. Geiger: monitoring the buffer cache in a vir-

tual machine environment. In ACM Architectural Support for

Programming Languages & Operating Systems (ASPLOS), pages

14–24, 2006.

[73] Ian A. Kash, Rohan Murty, and David C. Parkes. Enabling

spectrum sharing in secondary market auctions. In Workshop on

the Economics of Networks, Systems, and Computation, 2011.

[74] Rama Katkar and David H. Reiley. Public versus secret reserve

prices in ebay auctions: Results from a pokémon field experiment.

Advances in Economic Analysis and Policy, 2006.

[75] Frank Kelly. Charging and rate control for elastic traffic. Euro-

pean Transactions on Telecommunications, 8:33–37, 1997.

[76] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and

Anthony Liguori. KVM: the Linux virtual machine

monitor. In Ottawa Linux Symposium (OLS), pages

225–230, 2007. http://www.kernel.org/doc/ols/2007/

ols2007v1-pages-225-230.pdf.[Accessed Apr, 2011].

[77] Derrick Kondo, Andrew A. Chien, and Henri Casanova. Resource

management for rapid application turnaround on enterprise desk-

top grids. In SC’04, 2004.

[78] Derrick Kondo, Gilles Fedak, Franck Cappello, Andrew A. Chien,

and Henri Casanova. Characterizing resource availability in en-

terprise desktop grids. Future Generation Com. Sys., 23(7).

153

[79] Derrick Kondo, Bahman Javadi, Alexandru Iosup, and Dick H. J.

Epema. The failure trace archive: Enabling comparative analysis

of failures in diverse distributed systems. In CCGRID, 2010.

[80] Elias Koutsoupias and Christos Papadimitriou. Worst-case equi-

libria. pages 404–413, 1999.

[81] Aurel Lazar and Nemo Semret. Design and analysis of the

progressive second price auction for network bandwidth shar-

ing. Telecommunication Systems - Special issue on Network Eco-

nomics, page http://comet.columbi, 1999.

[82] Young Choon Lee, Riky Subrata, and Albert Y. Zomaya. On the

performance of a dual-objective optimization model for workflow

applications on grid platforms. IEEE Trans. Parallel Distrib.

Syst., 20(9):1273–1284, 2009.

[83] Moshe Levy and Sorin Solomon. New evidence for the power-law

distribution of wealth. Physica A, 242:90–94, 1997.

[84] Huagang Li and Guofu Tan. Hidden reserve prices with risk-

averse bidders. Technical report, University of British Columbia,

2000.

[85] Tong Li and Isabelle Perrigne. Timber sale auctions with random

reserve prices. Review of Economics and Statistics, 85(1):189–

200, 2003.

[86] Adam G. Litke. Memory overcommitment manager. website,

2011. https://github.com/aglitke/mom.

[87] Huan Liu. A measurement study of server utilization in pub-

lic clouds. In Int’l Conference on Cloud and Green Computing

(CGC), 2011.

[88] Tim Lossen. Cloud exchange. http://cloudexchange.org/.

[Accessed Apr, 2011].

[89] Benjamin Lubin, David C. Parkes, Jeff Kephart, and Rajarshi

Das. Expressive power-based resource allocation for data cen-

154

ters. In International Joint Conference on Artificial Intelligence

(IJCAI), 2009.

[90] Uri Lublin and Dror G. Feitelson. The workload on parallel

supercomputers: modeling the characteristics of rigid jobs. J.

Parallel Distrib. Comput., 63:1105–1122, November 2003.

[91] Brendan Lucier, Renato Paes Leme, and Eva Tardos. On rev-

enue in the generalized second price auction. In International

Conference on World Wide Web (WWW), 2012.

[92] Dan Magenheimer. Memory overcommit... without the commit-

ment. In Xen Summit. USENIX association, June 2008.

[93] Patrick Maillé and Bruno Tuffin. Multi-bid auctions for band-

width allocation in communication networks. In IEEE INFO-

COM, 2004.

[94] Patrick Maillé and Bruno Tuffin. Multi-bid versus progressive

second price auctions in a stochastic environment. Quality of

Service in the Emerging Networking Panorama, pages 318–327,

2004.

[95] Michael Mattess, Christian Vecchiola, and Rajkumar Buyya.

Managing peak loads by leasing cloud infrastructure services

from a spot market. In IEEE Int’l Conference on High Per-

formance Computing and Communications (HPCC), 2010.

[96] Christopher A. Mattson and Achille Messac. Pareto frontier

based concept selection under uncertainty, with visualization.

Optimization and Engineering, 6(1), 2005.

[97] Michele Mazzucco and Marlon Dumas. Achieving performance

and availability guarantees with spot instances. In IEEE Int’l

Conference on High Performance Computing and Communica-

tions (HPCC), 2011.

[98] Frank McSherry and Kunal Talwar. Mechanism design via differ-

ential privacy. In The 48th Annual Symposium on Foundations

of Computer Science (FOCS), 2007.

155

[99] Emmanuel Medernach. Workload analysis of a cluster in a grid

environment. In Workshop on Job Scheduling Strategies for Par-

allel Processing, 2005.

[100] Achille Messac, Amir Ismail-Yahaya, and Christopher A. Matt-

son. The normalized normal constraint method for generating

the Pareto frontier. Structural and Multidisciplinary Optimiza-

tion, 25(2), 2003.

[101] Grzegorz Mi loś, Derek G. Murray, Steven Hand, and Michael A.

Fetterman. Satori: Enlightened page sharing. In USENIX An-

nual Technical Conference (ATC), 2009.

[102] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. Q-clouds:

Managing performance interference effects for qos-aware clouds.

In ACM SIGOPS European Conference on Computer Systems

(EuroSys), 2010.

[103] Andrew Odlyzko. Paris metro pricing for the internet. In Pro-

ceedings of the 1st ACM Conference on Electronic Commerce,

EC ’99, pages 140–147, New York, NY, USA, 1999. ACM.

[104] Ana-Maria Oprescu and Thilo Kielmann. Bag-of-tasks schedul-

ing under budget constraints. In CloudCom, 2010.

[105] Fernando Martinez Ortuno and Uli Harder. Stochastic calculus

model for the spot price of computing power. In Annual UK

Performance Engineering Workshop (UKPEW), 2010.

[106] Zhonghong Ou, Hao Zhuang, Jukka K Nurminen, Antti Ylä-

Jääski, and Pan Hui. Exploiting hardware heterogeneity within

the same instance type of amazon EC2. In USENIX Conference

on Hot Topics in Cloud Computing (HotCloud), 2012.

[107] Pradeep Padala, Kai-Yuan Hou, Kang G. Shin, Xiaoyun Zhu,

Mustafa Uysal, Zhikui Wang, Sharad Singhal, and Arif Merchant.

Automated control of multiple virtualized resources. In ACM

SIGOPS European Conference on Computer Systems (EuroSys),

2009.

156

[108] David C. Parkes, Ariel D. Procaccia, and Nisarg Shah. Beyond

dominant resource fairness: Extensions, limitations, and indivisi-

bilities. In The ACM Conference on Electronic Commerce (EC),

2012.

[109] Lucian Popa, Arvind Krishnamurthy, Sylvia Ratnasamy, and Ion

Stoica. Faircloud: Sharing the network in cloud computing. In

ACM HotNets, 2011.

[110] Muntasir Raihan Rahman, Yi Lu, and Indranil Gupta. Risk

aware resource allocation for clouds. Technical report, University

of Illinois at Urbana-Champaign, 2011.

[111] Christina Ramberg. Internet Marketplaces: The Law of Auctions

and Exchanges Online. Oxford, 2002.

[112] Sarvapali D. Ramchurn, Perukrishnen Vytelingum, Alex Rogers,

and Nicholas R. Jennings. Putting the ’smarts’ into the smart

grid: a grand challenge for artificial intelligence. Commun. ACM,

55(4):86–97, April 2012.

[113] Juan Manuel Ramı́rez-Alcaraz, Andrei Tchernykh, Ramin

Yahyapour, Uwe Schwiegelshohn, Ariel Quezada-Pina, José Luis

González-Garćıa, and Adán Hirales-Carbajal. Job allocation

strategies with user run time estimates for online scheduling in

hierarchical grids. J. Grid Comput., 9:95–116, March 2011.

[114] Stefan Ried, Holger Kisker, Pascal Matzke, Andrew Bartels, and

Miroslaw Lisserman. Sizing the cloud—understanding and quan-

tifying the future of cloud computing. Technical report, Forrester,

2011.

[115] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan

Savage. Hey, you, get off of my cloud: exploring information

leakage in third-party compute clouds. 2009.

[116] Kyung Dong Ryu, Xiaolan Zhang, Glenn Ammons, Vasanth Bala,

Stefan Berger, Dilma M Da Silva, Jim Doran, Frank Franco,

Alexei Karve, Herb Lee, James A Lindeman, Ajay Mohindra,

157

Bob Oesterlin, Giovanni Pacifici, Dimitrios Pendarakis, Darrell

Reimer, and Mariusz Sabath. RC2–a living lab for cloud comput-

ing. In Proceedings of the 24th international conference on Large

installation system administration (LISA), pages 1–14. USENIX

Association, 2010.

[117] Dmitriy Samovskiy. Amazon ec2 spot instances - a flop? http:

//tinyurl.com/somic11, Aug 2011. [Accessed Sep, 2011].

[118] Sujay Sanghavi and Bruce Hajek. Optimal allocation of a divis-

ible good to strategic buyers. In IEEE Conference on Decision

and Control (CDC), 2004.

[119] Erik Saule and Denis Trystram. Analyzing scheduling with tran-

sient failures. Inf. Process. Lett., 109:539–542, May 2009.

[120] Martin Schwidefsky, Hubertus Franke, Ray Mansell, Himanshu

Raj, Damian Osisek, and JongHyuk Choi. Collaborative memory

management in hosted linux environments. In OLS ’06: 2006

Ottawa Linux Symposium, 2006.

[121] Vyas Sekar and Petros Maniatis. Verifiable resource accounting

for cloud computing services. In ACM Cloud Computing Security

Workshop (CCSW), 2011.

[122] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John

Wilkes. Cloudscale: elastic resource scaling for multi-tenant

cloud systems. In ACM Symposium on Cloud Computing

(SOCC), page 5. ACM, 2011.

[123] Jeffrey Shneidman, Chaki Ng, David C. Parkes, Alvin Auyoung,

Alex C. Snoeren, Amin Vahdat, and Brent Chun. Why markets

could (but don’t currently) solve resource allocation problems

in systems. In USENIX Workshop on Hot Topics in Operating

Systems (HOTOS), page 7, 2005.

[124] Mark Silberstein. Building online domain-specific computing

service over non-dedicated grid and cloud resources: Superlink-

online experience. In CCGRID ’11, 2011.

158

[125] Mark Silberstein, Artyom Sharov, Dan Geiger, and Assaf Schus-

ter. Gridbot: Execution of bags of tasks in multiple grids. In

SC’09.

[126] Mark Silberstein, Anna Tzemach, Nickolay Dovgolevsky, Maáyan

Fishelson, Assaf Schuster, and Dan Geiger. Online system for

faster multipoint linkage analysis via parallel execution on thou-

sands of personal computers. The American Journal of Human

Genetics, 78(6):922–935, 2006.

[127] Daniel Paranhos Da Silva, Walfredo Cirne, Francisco Vilar

Brasileiro, and Campina Grande. Trading cycles for informa-

tion: Using replication to schedule bag-of-tasks applications on

computational grids. In Euro-Par, 2003.

[128] Gurmeet Singh, Mei-Hui Su, Karan Vahi, Ewa Deelman, Bruce

Berriman, John Good, Daniel S. Katz, and Gaurang Mehta.

Workflow task clustering for best effort systems with pegasus.

In MG ’08.

[129] Wataru Souma. Universal structure of the personal income dis-

tribution. Fractals, 9(04):463–470, 2001.

[130] Wataru Souma. Physics of personal income. http://arxiv.

org/pdf/cond-mat/0202388, 2002.

[131] Douglas Thain, Todd Tannenbaum, and Miron Livny. Dis-

tributed computing in practice: the Condor experience. Con-

currency - Practice and Experience, 17(2-4):323–356, 2005.

[132] Adel Nadjaran Toosi, Rodrigo N. Calheiros, Ruppa K. Thu-

lasiram, and Rajkumar Buyya. Resource provisioning policies to

increase iaas provider s profit in a federated cloud environment.

In IEEE Int’l Conference on High Performance Computing and

Communications (HPCC), 2011.

[133] Bhuvan Urgaonkar, Prashant Shenoy, and Timothy Roscoe. Re-

source overbooking and application profiling in a shared internet

hosting platform. ACM Trans. Internet Technol., 9(1), 2009.

159

[134] Kurt Vanmechelen, Wim Depoorter, and Jan Broeckhove. Com-

bining futures and spot markets: A hybrid market approach to

economic grid resource management. Journal of Grid Comput-

ing, 9:81–94, 2011.

[135] Akshat Verma, Puneet Ahuja, and Anindya Neogi. Power-aware

dynamic placement of hpc applications. In ACM Int’l Conference

on Supercomputing (ICS), 2008.

[136] Kurt Vermeersch. Spot watch. http://spotwatch.eu/input/.

Accessed Apr, 2011.

[137] Kurt Vermeersch. A broker for cost-efficient qos aware resource

allocation in EC2. Master’s thesis, Universiteit Antwerpen, 2011.

[138] William Vickrey. Counterspeculation, auctions, and competitive

sealed tenders. Journal of Finance, 16(1), 1961.

[139] Daniel R. Vincent. Bidding off the wall: Why reserve prices

may be kept secret. Journal of Economic Theory, 65(2):575–584,

1995.

[140] Berthold Vöcking. A universally-truthful approximation scheme

for multi-unit auctions. In Annual ACM-SIAM Symposium on

Discrete Algorithms, 2012.

[141] William Voorsluys, Saurabh Kumar Garg, and Rajkumar Buyya.

Provisioning spot market cloud resources to create cost-effective

virtual clusters. In ICA3PP, 2011.

[142] Anton Vorontsov. Add mempressure cgroup. http://lwn.net/

Articles/528687/, Accessed April 2013, Dec 2012.

[143] N. Vydyanathan, U. Catalyurek, T. Kurc, J. Saltz, and P. Sa-

dayappan. Toward optimizing latency under throughput con-

straints for application workflows on clusters. In Euro-Par, 2007.

[144] Nagavijayalakshmi Vydyanathan, Umit Catalyurek, Tahsin

Kurc, Ponnuswamy Sadayappan, and Joel Saltz. A duplication

160

based algorithm for optimizing latency under throughput con-

straints for streaming workflows. In Proceedings of the 2008 37th

International Conference on Parallel Processing, ICPP ’08, 2008.

[145] Carl A. Waldspurger. Memory resource management in Vmware

ESX server. In USENIX Symposium on Operating Systems De-

sign & Implementation (OSDI), volume 36, pages 181–194, 2002.

[146] Carl A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart,

and W. S. Stornetta. Spawn: A distributed computational econ-

omy. IEEE Transactions on Software Engineering, Feb 1992.

[147] Hongyi Wang, Qingfeng Jing, Rishan Chen, Bingsheng He,

Zhengping Qian, and Lidong Zhou. Distributed systems meet

economics: pricing in the cloud. In USENIX Conference on Hot

Topics in Cloud Computing (HotCloud), 2010.

[148] Sewook Wee. Debunking real-time pricing in cloud computing.

In Cluster, Cloud and Grid Computing (CCGrid), 2011.

[149] Alexander Wieder, Pramod Bhatotia, Ansley Post, and Rodrigo

Rodrigues. Brief announcement: modelling mapreduce for opti-

mal execution in the cloud. In ACM SIGACT-SIGOPS sympo-

sium on Principles Of Distributed Computing (PODC), 2010.

[150] Joshua Wingstrom and Henri Casanova. Probabilistic allocation

of tasks on desktop grids. In IPDPS, 2008.

[151] UW-Madison CS Dept. Condor pool. Website. http://www.cs.

wisc.edu/condor/uwcs/.

[152] Timothy Wood, Gabriel Tarasuk-Levin, Prashant Shenoy, Peter

Desnoyers, Emmanuel Cecchet, and Mark D. Corner. Memory

buddies: exploiting page sharing for smart colocation in virtual-

ized data centers. In ACM/USENIX Int’l Conference on Virtual

Execution Environments (VEE), pages 31–40, 2009.

[153] Sangho Yi, Artur Andrzejak, and Derrick Kondo. Monetary cost-

aware checkpointing and migration on Amazon cloud spot in-

stances. IEEE Transactions on Services Computing, 2011.

161

[154] Sangho Yi, Derrick Kondo, and Artur Andrzejak. Reducing costs

of spot instances via checkpointing in the Amazon Elastic Com-

pute Cloud. In IEEE International Conference on Cloud Com-

puting (CLOUD), 2010.

[155] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy

Katz, and Ion Stoica. Improving mapreduce performance in het-

erogeneous environments. In OSDI’08, 2008.

[156] Sharrukh Zaman and Daniel Grosu. Combinatorial auction-

based dynamic vm provisioning and allocation in clouds. In

IEEE International Conference on Cloud Computing Technology

and Science (CloudCom), 2011.

[157] Qi Zhang, Eren Gurses, Raouf Boutaba, and Jin Xiao. Dynamic

resource allocation for spot markets in clouds. In Workshop on

Hot Topics in Management of Internet, Cloud, and Enterprise

Networks and Services (Hot-ICE), 2011.

[158] Han Zhao, Xinxin Liu, and Xiaolin Li. Hypergraph-based task-

bundle scheduling towards efficiency and fairness in heteroge-

neous distributed systems. In IEEE Int’l Parallel & Distributed

Processing Symposium (IPDPS), 2010.

[159] Han Zhao, Miao Pan, Xinxin Liu, Xiaolin Li, and Yuguang Fang.

Optimal resource rental planning for elastic applications in cloud

market. In IEEE Int’l Parallel & Distributed Processing Sympo-

sium (IPDPS), 2012.

[160] Weiming Zhao and Zhenlin Wang. Dynamic memory balanc-

ing for virtual machines. In ACM/USENIX Int’l Conference on

Virtual Execution Environments (VEE), pages 21–30, 2009.

[161] Xia Zhou, Sorabh G, Subhash Suri, and Haitao Zheng. eBay

in the sky: Strategy-proof wireless spectrum auctions. In ACM

International Conference on Mobile Computing and Networking

(MobiCom), 2008.

162

`l dliri aeygn ia`yn zwelg
ziteziy

dcedi-oa oenb` dpxe`

`l dliri aeygn ia`yn zwelg

ziteziy

xwgn lr xeaig

x`ezd zlawl zeyixcd ly iwlg ielin myl

diteqelitl xehwec

dcedi-oa oenb` dpxe`

l`xyil ibelepkh oekn – oeipkhd hpql ybed

2013 ipei dtig b"ryz'd fenz

.aygnd ircnl dhlewta xhqey sq` 'text ziigpda dyrp xwgnd

-lzyda daicpd zitqkd dkinzd lr xph`lt eq`d oeknle oeipkhl dcen ip`

.izen

xivwz

miiteziy-`l zegewl ,opra .sqk `ed oprd aeygn ly xzeia aeygd oiit`nd

onfa ,miynzyn md mda mitzeynd aeygnd ia`yn zxenz miwtql minlyn

oeebn ipta zlc zgzet zkxrnl itqkd ievitd zqpkd .mda miynzyn mdy

-eqid z` mixweg ep` .mitzeyn aeygn ia`yn ly dliri dwelg ly zeiexyt`

mileki mda miycg mipepbpn mirivne opr aeygn zekxrn ly miilklkd zec

aeygn ia`yn welgl ick ,ynzydl miiteziy-`l miize`ivn zegewle miwtq

.zeliria

zeielr z`e dvixd onf z` zipnf ea xrfnl mileki zegewl cvik minibcn ep`

ly oekpd aeliyd iab lr mzvxd ici lr ,rval mpevxay zeceard ly aeyigd

zifg mipea ep` .zelhn iwiz zgilyl dty migztn ep` jk myl .opre cixb ia`yn

dty ik mi`xn ep` .ef dty zxbqna xzeia zelirid aeyigd zeibhxhq` ly ehxt

zeiaihi`ehpi` zehiyn xzei miliri mdy zepexzt lelkl ick witqn dxiyr ef

xzeia lirid yeniyd ote` ik mi`xn ep` ok-enk .miiqetih miynzyn zeynynd

xezy meyn z`f .`ln oprd aeygnl xezd z` wifgdl `ed opre cixb ly aeliya

on lhazdle oprl zepiznn ody onfa cixbd lr miizqdl zelhnl xyt`n `ln

aeyig ly llekd onfd jxe`l zelr oiay zexenz lelwy lk xear oekp xacd .xezd

.elek zelhnd wiz

ely rvidd scer z` xgnzn ,oefn` ,liaen opr wtq da jxcd z` migzpn ep`

mixignd zeixehqid zpigal dycg jxc mibivn ep` .("hetq" myd zgz xknpd)

cecnl yi epzhiyl .onf ielz sxbk dk cr epgap j` lkl zepinf xy` ,oefn` ly

ozip did ea dixehqidd jxe`l onfd xay z` xnelk ,xign lk ly zepinfd z`

ly mixigna dax zeizhiy zniiw ik mi`ven ep` .df xigna aeygn gek biydl

,zizek`ln zipiite` dxev yi mitxbl :mihetqd zepinf z` mipgea xy`k ,oefn`

zniiwe ,"dyixc itl" xign zhiya aeygnd xigna milnxepn md xy`k midf md

.zepey dlrtd zekxrna mixignd zeizhiy oia zepey

`

.yewiae rvd lr miqqean hetqd ixign ik dpen`d dgeex epzcear zbvd mxh

-xignd ,ef dxikn zhiy meiwl zepey`xd mipya ,ef dpen`l cebipa ik mi`xn ep`

mixignd ik epxwgnn dler ok enk .oefn` ici lr ilnecpx ote`a mvra exvei mi

-ne ,dkenp dziid dyixcd xy`k miizek`ln eid oefn` ici lr enqxet xy`

.epgzipy mixignd zeixehqida onfd on feg` dpenye miryza miiwzd df av

ea ,miizek`ln mixign mzixebl` ly diipa zervn`a epzprh z` miyy`n ep`

on iaiqxbx-ehe` jildz itl dpzyn lawl wtqd okeny xzeia jenpd xignd

jildza miynzyn ep` .y`xn dreaw mixign zrevxl obern xy` oey`xd xcqd

xevil ick oefn` ly mixignd iepiy icren z` epgezipa oke mixign zriawl df

ly dpfd zervn`a .oprl zeybend zelhn ly zeawr ici lr zrpend divleniq

-xehqid mixfgyn ep` divleniqd zpkzl mippr dyely lye cixb ly zeawr

mixignd zeixehqid ly mipiite`l minec miizeki` mipiite` zelra mixign zei

`ed ziaiqxbx-ehe` zilnecpx xegnz zhiy ly xzeia hlead oexzid .oefn` ly

eply xwgnd meqxt mr caa ca .xvena xr yeniy miiw ik zegewld ziily`

.miilnecpx minxeb lr cer zqqean dpi` `ide ,dxiknd zhiy z` oefn` dzpiy

mixkyen aeygn ia`yn ik mi`vene ,oprd aeygn weya zenbn migzpn ep`

-ev ep` ,ok enk .dpicr ziidpe zkledy zeipirxba ,mixvwzne mikled onf iwxtl

-ldy dxenzde ,wey ilewiyn xzei mirtyen eidi aeygnd ia`yn ixign ik mit

-eyn iqgi zexy dfeg ly migpena dpezp didz melyzd xear milawn zegew

miiwqrd milcend lr epzifgz z` miqqan ep` .miiheleqa` migpena `le ak

-xweg ly zevlnde mixwgn lr mb enk ,mda miiepiyde opr aeygn zexag ly

dpey`xl df xwgn mqxet f`n ,z`fn dxzi .miilklk milewiy lre mixg` mi

:zecaerk xak o`k zebven xn`na epnqxty zepey zeifgze ,iepiyd avw u`ed

-ln(oprd aeygn iwpr oia mixign zngln dvxt dpexg`d dpyd jldna ,lynl

lr efixkd miycg miwtqe ,(meik crzl mileki ep` dze` xy`e ,epifgy dng

,el` zenbnn d`vezk .zexetq zewc ly onf iwxt itl maeige mia`yn zxkyd

dbxcda slgei ("zexiyk zizyz") xzeia iqiqad oprd aeygn lceny mitev ep`

xignd z` minlyn zegewld df lcena ."zexiyk a`yn" ly lcenl jetdiy cr

-xvl mipiipern ok` md xy`k wxe j` mikxev mdy mia`ynd xear mi`znd

mileki mdy zexenzd z` millwyn zegewld ,ze`cee yekxl mewna .mze` je

aeign epi` gewld jk .mdl dni`znd zexyt`a mixgeae ,mtqk zxenz lawl

z` lihdl leki oprd aeygn wtq eli`e ,icn aiign zeki` zghad dfeg yekxl

oepbpn eneiw aiign dfk lcen .zegt minlynd eizegewl lr zeihql`l db`cd ler

lirtdl gewld lr mia`ynd zeyinbn zepdil ick .zifit dpekn lk jeza ilklk

.mia`yna ipyn xgqa elit`e zeyikxa exear lthi xy` mkg okeq

a

xikyn xy` ,"zexiyk a`yn" ly lcena opr aeygn ly qetih a` mibivn ep`

`ed oexkif .miiteziy `l zegewll oexkif zexidnae dpicr zeipirxba ,zeliria

wxt xg`l wx zwten oexkifn zlrezdy oeeikn ,dwelgl xzeia dywd a`ynd

z`vwda sqep iyew .rcind z` oexkifd oqg` ea ,reaw `weec e`l ,mieqn onf

,dler zipehepen divwpet gxkda dpi` oexkifd on zegewld zlrezy `ed oexkif

a`ynl zeni`zn opi` zextqa zeniiwd mitivx mia`yn zwelg zehiy jkitle

z` ccern xy` ,ipy xign fxkn ienc lcen lr qqean qetihd a` .df sivx

ote`a .a`yn ly znieqn zenkn mdly zizn`d zlrezd lr xidvdl zegewld

wteqnd a`yna zelzk gewld irevia ly dcicnd ziira lr mixabzn ep` df

.rval cvik rcei `l wtqde dize`vez z` siifl ieyr gewld xy` dcicn ,el

ly zekxrdd mekq :zizxag dgeex ly migpena miccen ep` zkxrnd irevia z`

dgeex ly ze`vez biyn qetihd a` .milawn mdy mia`ynd lr zegewld lk

.zexg` zeipkcr zehiy znerl lceb xcqa zexteyn xy` zizxag

zpqg`n xy` ziyteg dpkez ly dqxb epgzit qetihd a` ly ezkxrdn wlgk

oexkifa inpic yeniy zeyrl zlbeqn epgzity dqxbd .jxre gztn ly oenhn

biydl epglvd jk ici lr .zkxrnd ikxevl m`zda dpihwdle dlicbdl ,dnixrd

dnbec deedn dpkzd xnelk ,ievnd ifitd oexkifd zenka zelzk mirevia zeyinb

."zexiyk a`yn" qetihn oprl zecreind zepkzl

zaexn zkxrn xear "zexiyk a`yn" opr ly yeninl zipkz zbvda miniiqn ep`

mibeq ,lynl) miitilgk mipey mia`yn ze`xl miieyr zegewld da ,mia`yn

jexvl leki gewld xy`k ,lynl) minilynk e` (zepey zeiexidna oexkif ly mipey

zetwzd mipgea ep` ok enk . (lirtn `edy carn lkl zia-dbn ze`n yng weica

-`i dl` zetwzd ."zexiyk a`yn" lcena opr lr ipyn uexr qetihn zeixyt`

lr mipkyd zrtydn d`vezk zifit dpekn miwlegd mipky lr rcin seqi` exyt

zegewld ly zlrezd zcin z` llekd rcin :oierd owgyd ly d`vwdd z`vez

mda mipnf lr cirdl zeieyr xy` ,gewld zetcrda miiepiy mb enk oexkifd on

migzpn oke df ote`a byedy rcina oier yeniy mix`zn ep` .xzei ribt gewld

.dl` minei` mr zeccenzd ikxc

b

