Efficient, Non-Cooperative
Sharing of Computing
Resources

Orna Agmon Ben-Yehuda

Efficient, Non-Cooperative
Sharing of Computing
Resources

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Orna Agmon Ben-Yehuda

Submitted to the Senate of
the Technion — Israel Institute of Technology
Tamuz 5773 Haifa June 2013

The research thesis was done under the supervision of Prof. Assaf Schuster
in the Computer Science Department.

The generous financial support of the Technion and the Hasso-Plattner
Institute is gratefully acknowledged.

Publication List

(J-1) Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan
Tsafrir. “Deconstructing Amazon EC2 Spot Instance Pricing.” ACM
Transactions on Economics and Computation (TEAC). Accepted. ACM
TEAC’s impact factor is still undefined.

I did the research as well as most of the writing. The other authors
helped with the structuring of the paper and the writing, as well as
with obtaining data from IBM Research.

(C-1) Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and
Dan Tsafrir. “Deconstructing Amazon EC2 Spot Instance Pricing.”
In Proceedings of the 3rd IEEE International Conference on Cloud
Computing Technology and Science (CloudCom) 2011. Acceptance ra-
tio: 24%. I did the research as well as most of the writing The other
authors helped with the structuring of the paper and the writing.

(C-2) Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Alexandru Iosup, As-
saf Schuster, Mark Silberstein, Artyom Sharov, and Dan Tsafrir. “Fx-
PERT: Pareto-Efficient Task Replication on Grids and a Cloud.” In
Proceedings of the 26th IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2012. Acceptance ratio: 21%. I did
the writing and the theoretical analysis, designed and wrote the Ex-
PERT code, ran the simulated experiments and analyzed both the
simulated experiments and the real ones. Prof. Iosup acted as a co-
adviser. Mr. Sharov conducted the real experiments. Dr. Silberstein
helped with the real experiments’ system setup, and suggested the ini-
tial research problem.

(C-3) Orna Agmon Ben-Yehuda, Muli Ben Yehuda, Assaf Schuster, Dan
Tsafrir. “The Resource-as-a-Service (RaaS) Cloud.” In Proceedings
of the 4th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud), June 2012. Acceptance ratio: 32%. The paper was solicited
for publication in the Communications of the ACM (CACM). CACM
had an ISI impact factor of 1.92 for 2011, and it was rated 2/18 in the
field of software engineering. I did the research and most of the writing.
This paper represents a vision that Mr. Ben-Yehuda and I share.

Contents

Abstract 1
Abbreviations and Notations 2
1 Introduction 8
2 Related Work 11
2.1 Pareto-Efficient Task Replication on Grids and a Cloud . . . 11
2.2 Amazon EC2 Spot Instances 13
2.3 Ginseng and Resource-as-a-Service 15

3 ExPERT: Pareto-Efficient Task Replication on Grids and a

Cloud 19
3.1 Abstract 19
3.2 Introduction. 20
3.3 The Basic System Model 22
3.3.1 Terminology 22
3.3.2 Model and Assumptions 24

3.4 The Scheduling Strategy Space 25
3.5 The ExPERT Framework 27
3.6 The Experimental Setup 35
3.7 The Experimental Results 38
3.8 Conclusion 45
4 Deconstructing Amazon EC2 Spot Instance Pricing 46
4.1 abstract e 46

4.2 Introduction 46

4.3
4.4
4.5

4.6
4.7

4.8
4.9
4.10
4.11

The
5.1
5.2
5.3

5.4

9.5

5.6

Pricing Cloud Instances 48

Methodology 49
Evidence for Artificial Pricing Intervention 50
4.5.1 Market-Driven Auctions 50
4.5.2 FEvidence: Availability as a Function of Price 50
4.5.3 Dynamic Random Reserve Price 54
Pricing Epochso 58
Spot Price Simulation 59
4.7.1 Simulator Event-Driven Loop 60
4.7.2 Workload Modeling, 60
4.7.3 Customer Bid Modeling 61
4.7.4 Price Change Timing 62
4.7.5 Simulation Results 63
Dynamic Reserve Price Benefits 64
Reexamination of Prior Work 65
Conclusions 66
Epilogueo 67
Resource-as-a-Service (RaaS) Cloud 78
abstract 78
Introduction 79
Recent TaaS Trends 80
5.3.1 Duration of Rent and Pricing 80
5.3.2 Resource Granularity 81
5.3.3 Market-Driven Resource Pricing 82
5.3.4 Tiered Service Levels 84
Economic Dynamics00, 85
5.4.1 Forces Actingon Clients 85
5.4.2 Forces Acting on Providers 86
5.4.3 Implications of Increased Competition 87
The RaaS Cloud 88
5.5.1 Trading in Fine-Grained Resources 88
5.5.2 Prioritized Service Levels 90
Implications, Challenges, Opportunities 92

ii

6 Ginseng: Market Driven Memory Allocation (Memory-as-a-

Service) 96
6.1 Abstract 96
6.2 Introduction. 97
6.3 System Architecture L. 99
6.4 Memory Auctions oo 99
6.4.1 Non-concave Valuation Functions 101
6.4.2 Memory Waste 103

6.5 Repeated Auction Protocol 104
6.6 The Auction. 106
6.6.1 Allocation Rule 107
6.6.2 Payment Rule. 107
6.6.3 Complexity 107
6.6.4 Example of a Single Round 108

6.7 Guest Strategyo 109
6.7.1 Choosing the bid pricep 109
6.7.2 Choosing ¢ 110
6.7.3 Evaluating Guest Utility 111

6.8 Experimental Setup oo oL 111
6.9 Performance Evaluation 115
6.9.1 Comparing Social Welfare 115
6.9.2 Reclaim Factor Analysis 117
6.9.3 Simulated Experiments 119
6.9.4 Impact of Off-Line Profiling 121

6.10 Conclusions 121
7 RaaS: Additional Research Directions 127
7.1 Single Resource o oL 127
7.1.1 Game-Theoretic Challenges 127
7.1.2 Guest Logic oL 128
7.1.3 Host Logic 128
7.1.4 Provider Logic: Global Cloud View 129
7.1.5 Minimal Price. 129
7.1.6 Memory Shedding 129

7.2 Multi-Resource Allocation 130
7.2.1 Bidding Language 131

iii

7.2.2 Allocation Rule

7.3 Side-Channel Attacks

7.3.1 Information Leakage

7.3.2 Disruptive Activity

7.3.3 Prevention of Disruptive Activity

8 Conclusion
Appendix:Software

Abstract in Hebrew

iv

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

4.12

Remaining tasks over time 23
A Pareto frontier 23
NTDM, task instance flow 26
ExPERT stages o o i 27
CDF of single result turnaround time 32
Pareto frontier and sampled strategies 33
Pareto frontier and examples of best points 34
Static strategies compared 39
Pareto frontiers obtained for various M, values 43
Reliable pool use by efficient strategies. 44
Availability of Windows-running spot instance types 51
Availability of Linux-running spot instance types 52

Availability of Windows types as a function of normalized price 53

Standard deviation of white noise 56
Periodogram Lo oL 56
Autocorrelation of mean daily values 68
Time epochs of us-east.windows.ml.small 69
CDF of runtime on various systems 70
Inter-arrival time autocorrelation 71
CDF of time interval between price changes 71

Simulation results for various bidding models, with constant
and AR(1) reserve price, on the basis of a grid trace (LPC-
EGEE) e 72
Simulation results for various bidding models, with constant
and AR(1) reserve price, on the basis of a trace of cloud 1 . . 73

4.13

4.14

4.15
4.16
4.17

5.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

6.9
6.10

7.1
7.2
7.3
7.4

Simulation results for various bidding models, with constant

and AR(1) reserve price, on the basis of a trace of cloud 2 . . 74
Simulation results for various bidding models, with constant

and AR(1) reserve price, on the basis of a trace of cloud 3 . . 75
Availability in the second epoch 76
Running time truncation 0. 76
The history of this paper and a price trace 77

Correlated cloud price reduction dates for three major cloud
providers during 2012o oo 86

Ginseng system architecture 100
Application performance as a function of guest physical memory102
Strategies for choice of unit price for two maximal quantities 110

Valuation functions for different loads 117
Social welfare comparison 118
Performance comparison L0000 123

Impact of reclaim factor on social welfare for a mixed workload124
Two mixed-workload experiment traces of utility and memory

allocation 124
Simulation results of Ginseng performance 125
Comparison of predicted performance with measured perfor-

MANCE . . v v v v e e e e e e e e e e e e e e 126
Indivisible multi-resource allocation. 134
Forbidden bounding box (bandwidth first) 135
Forbidden bounding box (memory first) 135
Indivisible multi-resource allocation branching 136

vi

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6

6.1

User-defined parameters 28
Values for user-defined parameters 35
Workloads 36
Real resource pools used in our experiments 37
Experimental parameters 41
Experimental results 42
Guest configurationo 114

vii

viii

Abstract

The defining characteristic of cloud computing platforms is money. In clouds,
non-cooperative clients pay their providers for the shared computing re-
sources they use as they use them. The introduction of monetary compen-
sation thus gives rise to a host of new possibilities for efficiently sharing
computing resources. We investigate the economic foundations of cloud com-
puting systems and propose new mechanisms for non-cooperative clients and
providers to share cloud resources efficiently. We (1) demonstrate how clients
can co-optimize both the run-time and costs of their workloads by running
them on the right combination of cloud and grid resources; (2) analyze how
the leading cloud provider, Amazon EC2, prices its spare capacity (”spot
instances”) and show that contrary to popular belief, spot instance prices,
supposedly based on supply and demand, were actually artificially generated
by Amazon; (3) propose the Resource-as-a-Service (RaaS) economic model
of cloud computing, where clients pay the right price for the resources they
need as they need them; and (4) present a prototype RaaS cloud computing
platform that efficiently rents physical memory to non-cooperative clients at
a fine-grained time and resource granularity.

Abbreviations and Notations

Chapter-local symbols, which might be used differently in different chapters,
are marked with ~.

Introduction and Related Work

BoT Bag of Tasks,
a group of tasks that needs to be completed in full
TaaS Infrastructure-as-a-Service,
a cloud model in which full virtual machines are rented
EC2 Elastic Compute Cloud, Amazon’s TaaS offering
VMM Virtual Machine Manager, also referred to as host or hypervisor
VM Virtual Machine, also referred to as guest
MB MegaByte
CPU Central Processing Unit
RaaS Resource-as-a-Service,
a cloud model in which resources are rented to virtual machines
Ginseng Our RaaS prototype: a memory allocation framework
ExPERT Our grids and cloud recommendation system
m1l.small An EC2 instance type

ap-southeast
SLA

An EC2 region
Service Level Agreement

I/0 Input Output

PSP Progressive Second Price, a divisible good auction

MPSP Memory Progressive Second Price, a divisible memory auction
GSP Generalized Second Price, Google’s auction

VCG Vickrey-Clarke-Groves,

the original second price auction [37,55,138|

ExPERT (Chapter 3)

Tiail
GridBoT
BOINC
T’LLT'

NTDM,

N

ACP
Tech
OSG

The tail phase start time

A user scheduling system for grid and cloud BoTs
Berkeley Open Infrastructure for Network Computing
Mean CPU time of a successful task instance

on an unreliable machine [second]

Our replication strategy model,

which is composed of the parameters N, T', D, and M,
The maximal number of instances sent for each task

to the unreliable system since the start of the tail phase.
A deadline for an instance,

measured from its submission to the system [second]

A timeout, the minimal waiting time before

submitting another instance of the same task. [second]
The ratio of the effective sizes of reliable and unreliable pools
Task CPU time on a reliable machine [second]
Cents-per-second cost of unreliable machine
Cents-per-second cost of reliable machine

Maximal ratio of reliable machines to unreliable machines
Cumulative Distribution Function

The CDF of result turnaround time

The effective size of the unreliable pool [number of nodes]
Instance turnaround time [second]

Instance sending time [second]

The CDF of successful task instances

The unreliable pool’s reliability at time ¢’

The CDF of successful instances during the second epoch
The CDF of successful instances during the first epoch
F(t,t") as was computed for instances sent at time ¢’
First Come First Served

A random variable

Workload

University of Wisconsin Madison

AMD’s Average CPU Power metric

Technion

Open Science Grid

AR

TR
AUR
B=175
CNoo
CN1TO
TMS

Watt

All to Reliable (a user strategy)

all Tail to Reliable (a user strategy)

All to UnReliable (a user strategy)

Budget of $7.5 for a BoT of 150 tasks (a user strategy)
Combine resources, no replication (a user strategy)
Combine resources, replicate at tail with N =1, T =0
Tail phase MakeSpan

Cost per task

Deviation of simulated values from real ones

[same units as values]

The number of task instances sent to the reliable pool.
Average

Spot Instance Pricing (Chapter 4)

a
epsilon
stgma
P;

X

y
PSD

LPC-EGEE
RC2
LANL-CM5
SDSC-Paragon
N

Declared bid price

A spot price trace file, a history

the Beginning of a time interval within a history [hour]
The End of a time interval within a history [hour]
The time between T}, and T, [hour]

The number of goods sold in an auction

Floor price [$/hour]

Ceiling price[$/hour]

price changes in a price trace [$/hour]

An auto-regressive process of the first order

A coefficient of the AR(1) process

White noise [$/hour]

White noise standard deviation [$/hour]

A price in the list, whose index is i[$/hour]

band width [$/hour]

Matched white noise of AR(1) process [$][$/hour]
Power Spectral Density [dB/rad/sample]

LHC Physics Center-Enabling Grids for E-sciencE
Research Compute Cloud

Los Alamos National Laboratory Connection Machine 5
San-Diego Supercomputer Center Paragon
Normal distribution

The Resource-as-a-Service (RaaS) Cloud (Chapter 5)

SaaS
PaaS
X

Y

Z

HP

S3

API
QoS

GB
RAM
GPGPU
FPGA
SR-IOV
Gbps

~

Software-as-a-Service

Platform-as-a-Service

A minimal unavailability period that is considered
a breach of contract

A minimal fraction of the service period that

is considered a breach of contract

A service period

Hewlett-Packard

Amagzon Simple Storage Service

application programming interfaces

Quality of Service

GigaByte

Random Access Memory

General-Purpose Graphics Processing Unit
Field-Programmable Gate Array

Single-Root Input/Output (I/O) Virtualization
Giga bit per second

Ginseng: Market Driven Memory Allocation (Memory-as-a-Service) (Chapter 6)

KVM
TCP/IP

V (mem, load)
V(mem)

perf(mem, load)

Va(pery)

~

~

Kernel Virtual Machine

Transmission Control Protocol / Internet Protocol
The memory valuation function (for a given load)
The memory valuation function

(for the load the guest is currently experiencing)
The performance the guest can achieve

given certain load and memory quantity.
Measured as performance rate, e.g., [Khit/second]
The guest’s owner’s (i.e., the client’s)

valuation of performance function [$/second]

Bid unit-price ([$/second/MB])

Bid maximal required quantity [MB]

Guest index

The bare minimal physical memory a guest requires to operate
Reclaim factor

Auction round index

Uest

Pmin

Gest

Dest

Y

LLC
EIST
NUMA
C-STATE
BIOS
KSM

Tmemory

Tauction
T’load

fi
Waste
SWmax

Base memory for guest i, a round’s reference point [MB]
The total memory allocated to guest 4 in round ¢ [MB]

The number of desired ranges in guest ¢’s bid

Desired range j in guest i’s bid [M B?]

Memory quantity won by guest i [MB]

Unit-price paid by guest i[$/second /MB]

Social welfare[$/second]

The number of guests

A guest

A forbidden range of guest g [M B?]

The strategy (bid) used by guest i

The strategies (bids) used by the rest of the guests, excluding i
The total number of forbidden ranges in all the guests’ bids
Guest utility, as estimated by it[$/second]

The lowest price the guest can offer

and still have a chance of getting any memory

at all[$/second/MB]

The memory amount that the guest will get,

as estimated by it[MB]

The unit-price that the guest will get,

as estimated by it[$/second/MB]

The known part of the cost

Last Level Cache

Enhanced Intel SpeedStep® Technology

Non-Uniform Memory Access

CPU state, a power mode

Basic Input/Output System

Kernel Samepage Merging

A typical time that passes

before the change in physical memory

begins to affect performance [second]

The time between auction rounds[second]

A typical time scale in which conditions (e.g., load) change[second]
A guest specific coefficient, weight [$/Khit]

An upper bound on memory waste [MB]

The social welfare that originates from the optimal allocation

Additional Directions of RaaS (Chapter 7)

Uhost

S TR T YRS

MPI

Utility of guest ¢

The utility of the host

Guest indices

Number of resources (also number of problem dimensions)
The multi-resource allocation space

A multi-resource allocation vector

A multi resource valuation function

A vector holding either 0 or 1 for each of the resources
Multi-resource valuation function local approximation coefficients
Start point of a desired range (in all the resources)

End point of a desired range (in all the resources)

The amount of resource k that is available for auction
Message Passing Interface

Chapter 1

Introduction

Shared computers are liable to be inefficiently utilized due to conflicts of
interest: the hardware and electricity bill are paid for by one economic entity,
while the workloads that make use of the computers benefit other economic
entities: the clients. Examples of such shared computers are clouds and grids.
Grids are a way for privileged clients to barter surplus computing resources.
The grid privileges of a client are defined by a complex system that involves
the client’s historical use of the grid, the amount of computing resources
that the client’s employer shared, and the client’s type of business (with a
preference to academic researchers, or specific scientific domains). The basic
compute unit in the grid is called a job or a task. It is a process group on
the shared machine that is controlled by the client. Tasks can be combined
in larger dependency structures such as Bags of Tasks (BoTs): groups of
tasks that need to be completed in full. To ensure a timely completion of
such BoTs, clients often use replication: they execute the same task several
times.

Clouds, on the other hand, rent computing resources to clients for a fee,
in a simple exchange system. Unlike grids, Clouds allow for many models
of resource sharing. When we analyze clouds in this work we focus on the
model that supplies the closest environment to the one in grids: sharing of full
operating systems, denoted Infrastructure-as-a-Service (IaaS). A major laaS
provider nowadays is Amazon, offering the Elastic Compute Cloud (EC2) at
three commitment levels: reserved (where an instance is partially paid for
in advance, and the client is guaranteed its availability for a low price); on-
demand (where the client gets an instance if the provider has one to let);

and spot (where the provider may terminate the instance if it needs it back).

We examine resource utilization strategies available to clients in a tradi-
tional environment of grids, assisted by an on-demand IaaS cloud. Due to the
unreliable nature of the grids, which suffer from deliberate task preeemption,
these strategies involve task replication. The less reliable the grids are, the
more wasteful the strategies are. The role of the cloud in these replication
strategies is to limit BoT makespan by verifying that the task is performed
within a deadline. We propose a model for task replication on grids and a
cloud, and develop a recommendation system that finds a Pareto-efficient op-
tion within the model, which we demonstrate is extensive enough to include
the required efficient solutions. Strategic client behavior is also required, for
example, in Amazon EC2’s spot instances, which are unreliable due to rapid
price change. Spot instance prices are supposed to reflect changes in supply
and demand, but we discovered that most of the perceived unreliability was
artificially generated, masking resource under-utilization.

TaaS clouds are implemented using virtualization techniques. In a virtual
system, the provider runs a basic operating system called a hypervisor, vir-
tual machine manager (VMM), or host on a bare metal machine. On top of
this host run guests, which are also called virtual machines (VMs).The host
replaces the hardware functionality for the guests. It does so using various
methods: by changing drivers, by changing the guest’s code on-the-fly, and
even using hardware assistance. It also controls the amount of resources that
are exposed to the guest (on a sub-machine level). The most general form
of virtualization is that of unmodified operating systems, which allows any
operating system to be a guest without any need for further adaptations. It
allows the client the freedom of choice of its own working environment.

Amagzon was, for a while, the spearhead of several trends in the public
cloud industry. These trends include refining the resource rental-time gran-
ularity, refining the resource quantity granularity, and offering more flexible
service level agreements. Other providers soon followed suit, pushing these
trends further by reducing the rental-time granularity to minutes and the
resource granularity to hundreds of MBs and CPU fractions. They also freed
the sub-machine resources (cores, memory and bandwidth) from bundling.
Due to the need for non-cooperative users to efficiently share resources,
these trends will likely culminate in the rise of a new economic model that
we term the Resource-as-a-Service (RaaS) cloud. Instead of fixed bundles,

cloud providers will increasingly sell resources individually, reprice them, and
adjust their quantity every few seconds in accordance with market-driven
supply-and-demand conditions.

We propose Ginseng, a RaaS prototype that efficiently rents physical
memory to non-cooperative virtual machines at a fine time and resource
granularity, at personally adapted prices, and with flexible service level agree-
ments. Ginseng achieves a x6.2—x15.8 improvement in aggregate client sat-
isfaction when compared with state-of-the-art approaches for cloud memory
allocation. It achieves 83%—-100% of the optimal aggregate client satisfaction.

Thus, in this work we demonstrate how the development of the shared
computing resource models from a bartering economy to a simple exchange
economy is already making the use of shared computing resources more
efficient. On top of this shift, we predict the rise of a new cloud model, that
will enable an even more efficient cloud. We lay out the design of such a
prototype and demonstrate its efficiency.

10

Chapter 2

Related Work

2.1 Pareto-Efficient Task Replication on Grids
and a Cloud

Much research on replication algorithms has relied on the assumption that
computation is free of charge [29,36,42,77,127,150] and limited only by
its effect on load and makespan, whereas we explicitly consider execution
costs. Dobber, van der Mei, and Koole [42] created an on-the-fly criterion
for choosing between immediate replication and dynamic load balancing.
Casanova [29] showed the impact of simple replication policies on resource
waste and fairness. Kondo, Chien, and Casanova [77] combined replication
with resource exclusion. Resource exclusion can also be combined with our
work. Cirne et al. [36] and Silva et al. [127] analyzed immediate replica-
tion with no deadline for perfectly reliable heterogeneous machines. Borst
et al. [24] used a slotted machine approach, which produced a geometric dis-
tribution for the turnaround time. Wingstrom and Casanova [150] assumed
a specific distribution (generalized doubly folded normal distribution) prob-
ability of task failures and used it to maximize the probability of a whole
BoT to finish executing, by choosing replication candidates. In contrast, we
optimize cost and time simultaneously.

Bi-objective time-related problems were also analyzed in task scheduling.
Vydyanathan et al. [143] aimed to minimize latency while meeting strict
throughput requirements using replication, subject to a certain amount of
resource waste, in terms of the number of occupied processors. They [144]

11

also aimed to maximize the throughput while meeting latency constraints,
as did Agrawal et al. [4] for linear task graphs. Our work optimizes one
time-related and one monetary objective for BoTs.

The concept of utility functions as the target of the optimization process
has also received attention. Buyya et al. [27] researched economic mecha-
nisms for setting grid computation costs, for several utility functions. One
of their estimation methods is Pareto-efficiency. Cirne et al.’s workqueue
with replication strategy instructs the user to replicate a task [36], to get
the fastest result. Our replication model language allows for improvement
of this strategy with regard to energy saving by sending the replicas after
the first result has failed to return for some time. Ding et al. [41] aimed to
minimize the utility function of the energy-delay product on a multi-CPU
machine, by using a helper thread which collects statistics and determines a
deployment strategy. Lee, Subrata and Zomaya [82] aimed to minimize both
grid resource use and makespan for a workflow application, by giving them
an equal weight. Benoit et al. [22] assumed a linear risk model for machine
unavailability on homogeneous remote machines, and considered overhead
and operational costs. Our work allows for both a general user function and
a general probability distribution of task success. Andrzejak, Kondo, and
Anderson [14] controlled reliable and unreliable pool sizes in a combined
pool to Pareto-optimize cost and availability for Web services.

Pareto frontier approximations were previously used in scheduling for the
makespan and reliability objectives, but not for cost, by Dongarra et al. [45],
who scheduled task graphs, by Saule and Trystram [119], and by Jeannot et
al. [70].

Ramirez-Alcaraz et al. [113] evaluated scheduling heuristics and opti-
mized a combined objective for parallel jobs, because they believed that
computing a Pareto frontier in a grid environment is too slow. However, ap-
proximating the Pareto frontier for the cases we demonstrate in this work
using ExPERT takes only minutes—hardly “too slow” for a BoT that runs
for hours.

Oprescu and Kielmann [104] learned the run-time CDF on-line from the
execution of the same BoT, as we do. However, they did not deal with relia-
bility, since they used only clouds, and they utilized a heuristic to minimize
makespan for a given budget. In contrast, our approach provides the client
with full flexibility of choice, without forcing the choice of budget first, and

12

is valid for grids, too, where reliability is an issue.

Pareto frontiers were also used to concurrently optimize the same objec-
tive for different users, to achieve socially efficient scheduling and resource
management [33,38]. Zhao et al. [158] designed a market for BoT’s, aiming to
efficiently optimize social welfare under agent budget constraints. Our work
focuses on multiple objectives of the same user.

2.2 Amazon EC2 Spot Instances

Pay-as-you-go TaaS cloud workload traces are quite rare, with the main data
originating from spot prices. These traces were used as characteristic IaaS
traces by many researchers, both to design user strategies and to learn more
from the provider’s point of view. Despite their name, spot instances are
not markets, and in particular not Spot and Future markets. Works on such
markets of computational resources are another trace source. In our work
we claim that Amazon is using a certain random reserve price, which is a
hidden minimal price. In this section we review therefor works that compare
the reserve price with the minimal price method. In section 4.9 we discuss
the trace-analyzing literature further in view of our results.

Cloud Traces IaaS pay-as-you-go cloud workload traces and models are
so hard to come by that researchers like Toosi et al. [132] resorted to a
grid and parallel systems model [90] with adapted runtime parameters to
describe cloud workloads. Google [59] released two backend workload traces,
the longest of which lasts 29 days. Liu [87] measured week-long traces of
CPU utilization of EC2 machines, showing a strong daily pattern of the
guest machines on the measured host. This pattern indicates that clients
prefer to keep instances running idle rather than shut them off for the night.
Such client behavior weakens the daily cycle of demand for EC2 machines
in general (not necessarily spot instances).

Reserve Prices Li and Tan [84] showed that a (hidden) reserve price
improves revenues of first price, sealed bid auctions for risk-averse clients. Li
and Perrigne [85] showed that for first price sealed bid auctions, an optimal
announced minimal price increases the seller’s revenue compared with an
arbitrary reserve price. They used data of timber sales in Canada. Katkar and

13

Reiley [74] found that for low-priced eBay sales of up to $20, (hidden) reserve
prices deter good clients and yield lower revenues than minimal (published)
prices. However, none of these works relate to an auction with a random
reserve price, in which the price is set by the highest bidder that does not
win the good. Ramberg [111] says that “the existence of a hidden reserve
price is to a great extent similar to the situation where the invitor is bidding.”
She recommends that when the auction is run by the invitor (as is the case

[13

with Amazon’s spot instances), “...it should not be a second price auction,
or otherwise there should be some assurance that the invitor/operator will

not submit bids.”

Analyzing Spot Price Traces Concurrently with our work, Wee [148]
also analyzed price-availability graphs of early EC2 traces, noted the knees
and the different behavior of ml.small, and that the average price does not
change over time. Wee only analyzed epochs in which the timing of price
changes always included a quiet hour and assumed that Amazon does not
have an incentive to change prices more often than once an hour. However,
as we show in Section 4.7.4, Amazon’s early price change timing was a vul-
nerability, incentivizing it to change prices more frequently than once an
hour, as it later did. Wee [148] and Javadi and Buyya [69] also checked EC2
price traces for cycles. Javadi and Buyya, who computed various price trace
statistics, claimed spot prices have daily and weekly cycles, but Wee found
that cycles are statistically insignificant. Our findings agree with Wee’s.

Using Spot Price Traces for Client Strategy Evaluation Most stud-
ies that use price traces use them to evaluate client strategies. Andrzejak,
Kondo and Yi used spot price histories to advise the client how to minimize
monetary costs while meeting a Service Level Agreement (SLA) [15], and
to schedule checkpoints [154] and migrations [153]. Voorsluys et al. [141]
created a spot instance broker.

Mattess, Vecchiola, and Buyya [95] examined client strategies for using
spot instances to manage peak loads on scientific workloads. They identified
a price band, noted that bidding just above the band is almost as good as
bidding very high, and recommended bidding right under the on-demand
price.

Chohan et al. [34] processed price histories to compute the probability

14

that an instance with a certain bid price would last a certain time. They
also identified a price-band and noted the cost-effectiveness of bidding at its
top.

Wieder et al. [149] described a model for optimizing map-reduce on clouds
using a utility function that depends on execution time, data transfer costs,
and computation costs, which they assumed can be predicted for spot in-
stances. Brebner and Liu [26] assessed cost and performance of various clouds,
including spot instances. Vermeersch [137] analyzed spot price histories with
the goal of optimizing the client’s choice of deals on EC2.

Free Spot and Futures Markets While Amazon is currently the only
provider offering “spot instances,” free computing resource markets have
already been analyzed. Ortuno and Harder [105] modeled a free market for
computing power. Altmann et al. [7] described GridEcon, a foundation for a
free spot and futures market. Vanmechelen, Depoorter, and Broeckhove [134]
modeled a free market for computing power using spot and futures deals.

2.3 Ginseng and Resource-as-a-Service

Resource allocation can be done either in a white-box model, where the host
knows what the guest is doing and has full visibility into it, or in a black-box
model, where the host has no visibility into the guest. The latter is a reason-
able assumption for a public cloud. Guest hinting is a method in which the
guest passes specific information to the host, to make the allocation process
more efficient. Most of the literature on divisible good allocation assumed
that the client valuation of a good is monotonically rising and concave, mean-
ing that the law of diminishing returns applies to it. In our work we show
that for memory allocation this assumption is unrealistic.

White-Box Memory Overcommitment. Heo et al. [60] balanced
memory allocations according to desired performance levels. Like us, they
avoided quick changes, but for reasons of stability of the feedback loop. Un-
der memory pressure they divided the memory according to a fair share
policy. In Q-clouds, Nathuji, Kansal and Ghaffarkhah followed a concept of
both measuring and selling performance [102]: The guest specifies several
performance and payment levels and the host chooses which level to fulfill.
This approach is convenient to the host, which is guaranteed a demand for

15

any excess production power it has. OQur approach is guest oriented, leaving
the designation of the current required resource amount in the hands of the
guest. In Ginkgo, Hines et al. [61] and Gordon et al. [54] used optimization
with constraint satisfaction to optimize a general social welfare function of
the guests’ performance. These works assume guest cooperation, while we
analyze the guest as a non-cooperative, selfish agent. Our work is the first
work on memory allocation which assumes non-cooperative guests.

Black-Box Techniques. Magenheimer [92] used the guests’ own per-
formance statistics to guide overcommitment. Jones, Arpaci-Dusseau, and
Arpaci-Dusseau [72] inferred information about the unified buffer cache and
virtual memory by monitoring IO and inferring major page faults. Zhao and
Wang [160] monitored use of physical pages. Waldspurger [145] randomly
sampled pages to find unused pages to reclaim, and introduced the “idle
memory tax,” which resembles our reclaim factor. These methods can be
fooled by a selfish guest, and like white-box methods, ignore the client’s
valuation of performance. Gupta et al. [56] did not require any guest co-
operation for their content based page sharing. Wood et al. [152] allocated
guests to physical hosts according to their memory contents. Gong, Gu and
Wilkes [52] and Shen et al. [122] used learning algorithms to predict guest
resource requirements.

Sekar and Maniatis [121] argued that all resource use must be accurately
attributed to the guests who use it so that it can be billed. In contrast,
Ginseng lays the burden of metering on the client: the client can measure its
current performance and decide how much it is willing to pay for memory.

Concurrently with our work, Vorontsov [142] proposed the mempressure
control group, which includes an interface for requesting that applications
release memory.

Guest Hint Techniques. Schwidefsky et al. [120] used guest hints to
improve host swapping. Milo$ et al. [101] incentivized guests to supply shar-
ing hints by counting a shared page as a fraction of a non-shared page. Like
Ginseng, their method can be applied to non-cooperative guests.

General Resource Allocation For Monotonically Rising, Con-
cave Valuations. Kelly [75] used a proportionally fair allocation: clients
bid prices, pay them, and get bandwidth in proportion to their prices. His
allocation is optimal for price taking clients (who do not anticipate their
impact on the price they pay). Popa et al. [109] traded off proportional

16

fairness with starvation prevention. Johari and Tsitsiklis [71] computed the
price of anarchy of Kelly’s auction, and Sanghavi and Hajek [118] improved
the auction in this respect.

Maillé and Tuffin [93] extended the PSP to multi-bids, thus saving the
auction rounds needed to reach equilibrium. Their guests disclosed a sam-
pling of their resource valuation functions to the host, which computed the
optimal allocation according to these approximated valuation functions. One
such single auction has the complexity of a single PSP auction, times the
number of sampling points. Though a multi-bid auction is more efficient for
static problems, it loses its appeal in dynamic problems which require re-
peated auction rounds anyhow. Other drawbacks of the multi-bid auction
are that the guest needs to know the memory valuation function for the
full range; that frequent guest updates pose a burden to the host; and that
the guest cannot directly explore working points which currently seem less
than optimal. (It can do so indirectly by faking its valuation function.) In
contrast, our memory progressive second price (MPSP) auction leaves the
control over the currently desired resource allocation to the guest, who best
knows its own current and future needs. Maillé and Tuffin also showed that
the PSP’s social welfare converges to theirs [94].

Chase et al. [31] allocated CPU time assuming client valuations of the
resource are fully known, concave, and monotonically increasing.

Google’s generalized second price (GSP) auction uses a limited bidding
language and is not a VCG auction [46].

Urgaonkar, Shenoy, and Roscoe [133] overbooked bandwidth and CPU
cycles given full profiling information but did not address memory.

Unlike bandwidth and CPU auctions, our memory auction is oriented
toward minimizing transfer of ownership. Unlike divisible good auctions, it
supports non-concave valuation functions.

Ghodsi et al. [51], Dolev et al. [44] and Gutman and Nisan [57] considered
allocating multiple resources to strategic guests whose private information
is the relative quantities they require of the resources. In contrast, Ginseng
compares valuations of different strategic clients.

Auctions With Non-concave Valuations. Bae et al. [19] supported a
single bidder with a non-concave valuation function. Dobzinski and Nisan [43]
presented truthful polynomial time approximation algorithms for multi-unit
auctions with k-minded valuations. They only assumed that the valuations

17

are non-decreasing (because they allow free disposal—shedding of unneeded
goods), and did not require them to be concave, but allowed the guests to
make queries before bidding. Our bidding language of forbidden ranges is
more efficient than free disposal, because it allows immediate auctioning of
the undesired memory.

18

Chapter 3

ExPERT': Pareto-Efficient
Task Replication on Grids
and a Cloud

3.1 Abstract

Many scientists perform extensive computations by executing large bags of
similar tasks (BoTs) in mixtures of computational environments, such as
grids and clouds. Although the reliability and cost may vary considerably
across these environments, no tool exists to assist scientists in the selec-
tion of environments that can both fulfill deadlines and fit budgets. To ad-
dress this situation, we introduce the ExPERT BoT scheduling framework.
Our framework systematically selects from a large search space the Pareto-
efficient scheduling strategies, that is, the strategies that deliver the best
results for both makespan and cost. ExPERT chooses from them the best
strategy according to a general, user-specified utility function. Through sim-
ulations and experiments in real production environments, we demonstrate
that EXxPERT can substantially reduce both makespan and cost in compari-
son to common scheduling strategies. For bioinformatics BoTs executed in
a real mixed grid+cloud environment, we show how the scheduling strategy
selected by ExPERT reduces both makespan and cost by 30%-70%, in com-
parison to commonly-used scheduling strategies.

19

3.2 Introduction

The emergence of cloud computing creates a new opportunity for many scien-
tists: using thousands of computational resources assembled from both grids
and clouds to run their large-scale applications. This opportunity, however,
also adds complexity, as the shared grid systems and the pay-per-use public
clouds differ with regard to performance, reliability, and cost. How can scien-
tists optimize the trade-offs between these three factors and thus efficiently
use the mixture of resources available to them? To answer this question,
we introduce ExPERT, a general scheduling framework which finds Pareto-
efficient job execution strategies in environments with mixtures of unreliable
and reliable resources.

Today’s grids and clouds reside in two extremes of the reliability and cost
spectrum. Grid resources are often regarded as unreliable. Studies [64,78,79]
and empirical data collected in the Failure Trace Archive [79] give strong
evidence of the low long-term resource availability in traditional and desk-
top grids, with yearly resource availability averages of 70% or less. The
constrained resource availability in grids is often a result of the sharing
policy employed by each resource provider—for example, the grid at UW-
Madison [151] employs preemptive fair-share policies [131], which vacate
running tasks of external users when local users submit tasks. Commercial
clouds, in contrast, have service-level agreements that guarantee resource
availability averages of over 99%. Cost-wise, scientists often perceive grids
as being free of charge, whereas clouds are pay-per-use. Accordingly, many
grid users are now exploring the opportunity to migrate their scientific ap-
plications to commercial clouds for increased reliability [66,68,128], which
could prove prohibitively expensive [128].

Scientific grid applications are often executed as Bags of Tasks (BoT's)—
large-scale jobs comprised of hundreds to thousands of asynchronous tasks
that must be completed to produce a single scientific result. Previous stud-
ies [63,65] have shown that BoTs consistently account for over 90% of the
multi-year workloads of some production grids. Thus, BoTs have been the
de facto standard for executing jobs in unreliable grid environments over the
past decade.

When executing BoTs in a grid environment, scientists replicate tasks.
Replication increases the odds of timely task completion despite resource un-

20

reliability [13,29,77,125,155], but also wastes CPU cycles and energy, and
incurs other system-wide costs [29] such as scheduler overload and delays to
other users. It is difficult to select a replication strategy that yields the desired
balance between the BoT response time (makespan) and the BoT execution
cost. A wrong strategy can be expensive, increasing both makespan and cost.
Although various heuristics were devised to pick a “good” replication strat-
egy, our study is the first to focus on explicitly identifying Pareto-efficient
strategies, that is, strategies that incur only the necessary cost and take no
longer than necessary to execute a given task.

We envision a world in which BoTs are executed on whatever systems
are best suited to the user’s preferences at that time, be they grids, clouds,
dedicated self-owned machines, or any combination thereof. This vision
presents many optimization opportunities; optimizing the structure of the
reliable+unreliable environment is only one of many examples. These op-
portunities can be exploited only when taking into account the individual
preferences of each scientist. One scientist might want to obtain results by
completing a BoT as quickly as possible, regardless of cost. Another might
choose to minimize the cost and complete the BoT only on grid resources.
Yet another scientist might try to complete work as soon as possible but
under strict budget constraints (e.g., [104]). What all users share is a desire
for efficient scheduling strategies.

Our main research goal is to determine which strategies are Pareto-efficient
and which of them the user should pick. The following four questions will
guide us in helping the user choose the best possible strategy. What mizture
of reliable and unreliable resources should be used? How many times should
tasks be replicated on unreliable resources? What deadline should be set for
those replicas? What is the proper timeout between submitting task instances?
Although Pareto-efficient strategies have been investigated before in different
contexts [1,40,96,100], they are generally considered too computationally-
intensive for online scheduling scenarios. However, we show here that even
low-resolution searches for Pareto-efficient strategies benefit scheduling large
numbers of tasks online.

Our first contribution is a model for task scheduling in mixed environ-
ments with varying reliability and cost (Sections 3.3 and 3.4). Our second
contribution is ExPERT, a framework for dynamic online selection of a Pareto-
efficient scheduling strategy, which offers a wide spectrum of efficient strate-

21

gies for different user makespan-cost trade-offs, leading to substantial savings
in both (Section 3.5). We evaluate ExPERT through both simulations and ex-
periments in real environments (Section 3.6), and show (Section 3.7) that
ExXPERT can save substantial makespan and cost in comparison to scheduling
strategies commonly used for workload scheduling in grids.

3.3 The Basic System Model

In this section we introduce the basic system model used throughout this
work. We first build towards the concept of the Pareto frontier, then present
the model for the system and the environment.

3.3.1 Terminology

A task is a small computational unit. A task instance is submitted to a
resource. If the resource successfully performs the task, it returns a result.
For a successful task instance, the result turnaround time is the time between
submitting an instance and receiving a result. For a failed instance, this is co.
A BoT is a set of asynchronous, independent tasks, forming a single logical
computation. Users submit BoTs to be executed task-by-task. We divide
BoT execution into the throughput phase and the tail phase, as depicted
in Figure 3.1. The remaining tasks are tasks which have not yet returned a
result. The tail phase start time (Tyq;) occurs when there are fewer remaining
tasks than available unreliable resources. A BoT is completed when each of
its tasks has returned a result. The makespan of a BoT is the period elapsed
from its submission to its completion. Similarly, the tail phase makespan is
the period elapsed from Tj,;; until the completion of the BoT.

Replication is the submission of multiple instances of the same task,
possibly overlapping in time. A task is complete when one of its instances
returns a successful result. The reliability of a resource pool is the probability
that an instance submitted to that pool will return a result.

Cost is a user-defined price tag for performing a task, and may reflect
monetary payments (e.g., for a cloud), environmental damage, or depletion
of grid-user credentials. We ignore the costs of failed instances since it is
difficult to justify charging for unobtained results.

The user’s scheduling system (user scheduler) sends and replicates the

22

[o2]

o

o
T

I

Remaining tasks

__ __ __ Tail phase start time (Ttail)

N

o

o
T

pra

<< > = - |
200} Throughput Phase QPhase
\
L \

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time [s]

\J

Number of
remaining tasks

o
I

Figure 3.1: Remaining tasks over time during the throughput and tail
phases. Input: Experiment 6 (Table 3.5).

? Dominated Dominated
! Area Strategy S,
Cost| @& » Non-dominated
Non-dominated I-Da~ret~0— == - : ,,S,tfzit??)i %,
StrategyS Frontier ~ @ = .
Makespan B}

Figure 3.2: A Pareto frontier. Strategies S; and S form the Pareto
frontier. S; dominates Ss.

user’s tasks to the available resource pools. A user strategy is a set of input
parameters indicating when, where, and how the user wants to send and
replicate tasks.

The performance metrics are cost per task (the average cost of all BoT
tasks) and makespan. A user’s utility function is a function of the perfor-
mance metrics of a strategy that quantifies the benefit perceived by the user
when running the BoT. The user would like to optimize this function, for
a given BoT and environment, when selecting a strategy. For example, a
user who wants the cheapest strategy can use a utility function that only
considers costs.

A strategy is dominated by another strategy if its performance is worse
than or identical to the other for both metrics (cost and makespan) and
strictly worse for at least one. A strategy that is not dominated by any

23

other strategy is Pareto-efficient; the user cannot improve this strategy’s
makespan without paying more than its cost. As illustrated in Figure 3.2,
several Pareto-efficient strategies may co-exist for a given unreliable+reliable
system and workload (BoT). The Pareto frontier (or “Skyline operator” [25])
is the locus of all efficient strategies with respect to the searched strategy
space. Any strategy that optimizes the user’s utility function is Pareto-
efficient. Furthermore, for any Pareto-efficient strategy, there exists a utility
function that the strategy maximizes in the search space.

3.3.2 Model and Assumptions

We outline now the model and the assumptions for this work, first the en-
vironment, then the execution infrastructure. The assumptions are inspired
by real-world user schedulers such as GridBoT [125], which are designed for
CPU-bound BoTs that are not data bound.

Our model of the environment consists of two task queues. One queue is
serviced by the unreliable pool, and the other is serviced by the reliable pool.

We characterize the reliable and unreliable pools in terms of speed, re-
liability, and effective size. Unreliable machines operate at various speeds;
reliable machines are homogeneous. (We assume they are of the same cloud
instance type or belong to a homogeneous self-owned cluster. Thus, they
are far more homogeneous than the unreliable machines.) Failures in the
unreliable pool are abundant and unrelated across different domains [64];
reliable machines never fail (we justify the approximation by the large re-
liability difference between the unreliable and reliable pools). The reliable
and unreliable pools have different effective sizes (number of resources that
the user can concurrently use). We assume that effectively there are many
more unreliable than reliable machines (typical effective sizes are hundreds
of unreliable nodes and tens of reliable nodes), and thus we do not consider
using only the reliable resources. Resources are charged as used, per charging
period (one hour on EC2, one second on grids and self-owned machines).

We make no assumptions on task waiting time or on the unreliable sys-
tem’s scheduling policy, other than that both can be modeled statistically.
Since we allow for loose connectivity between the scheduler and the hosts [13],
it may be impossible to abort tasks, and the exact time of a task failure may
not be known. A task which did not return its result by its deadline is con-

24

sidered failed. We assume the user has an overlay middleware that replaces
malfunctioning hosts with new ones from the same pool. Our experiments
show that such middleware can maintain an approximately constant num-
ber of unreliable resources when requesting up to 200 machines from a larger
infrastructure.

3.4 The Scheduling Strategy Space

In this section we introduce our model for scheduling tasks with replication
in an environment with mixed reliability, cost, and speed. The model gener-
alizes state-of-the-art user strategies, e.g., of GridBoT users [125]. We focus
on optimizing the tail phase makespan and cost by controlling the tail phase
scheduling strategy, for three reasons. First, in naive BOINC executions [13],
the tail phase is an opportunity for improvement [124], as seen in Figure 3.1:
the task return rate in the tail phase is low, while many resources are idle.
Second, replication is inefficient during the throughput phase [50]. Third,
setting the decision point after the throughput phase lets us base the op-
timization on the highly-relevant statistical data (e.g., of task turnaround
times) collected during the throughput phase.

During the throughput phase we use a “no replication” strategy, with
a deadline of several times the average task CPU time on the unreliable re-
source (denoted by Ty, and estimated according to several random tasks).
This deadline length is a compromise between the time it takes to iden-
tify dysfunctional machines and the probability of task completion. A long
deadline allows results to be accepted after a long time, but leads to long
turnaround times. For the tail phase, we can consider strategies with dead-
lines set to the measured turnaround times. Deadlines much longer than T,
are not interesting, because strategies with such deadlines are inefficient.

When the tail phase starts, all unreliable resources are occupied by in-
stances of different tasks, and the queues are empty. From that point on,
additional instances are enqueued by a scheduling process: first to the unre-
liable pool, then to the reliable one, as illustrated in Figure 3.3. This schedul-
ing process, which we name NT DM, is controlled by four user parameters,
N, T, D and M,. Different strategies have different NT'D M, values:

N is the maximal number of instances sent for each task to the unreliable
system since the start of the tail phase. A last, (N 4 1) instance is sent

25

D Failure/

First N Tail Instances T Timeout
—»{ Unreliable queue }—»Unreliable Pool——»

g | Success

Instance N+1 in Tail SUCCESS

| Reliable Queue —» ReliablePool —»

Figure 3.3: NT DM, task instance flow during throughput phase and tail
phase. Reliable machines serve only instance N + 1 during the tail phase
(throughput phase instances are not counted). During the throughput
phase, T' = D, so there is no replication

to the reliable system without a deadline, to ensure task completion. A user
without access to a reliable environment is restricted to N = oo strategies.
Increasing N improves the chance that the reliable instance will not be
required, but increases the load on the unreliable pool. It also increases the
probability of receiving and paying for more than one result per task.

D is a deadline for an instance, measured from its submission to the sys-
tem. Setting a large value for D improves the instance’s chances to complete
on time, but increases the time that elapses before the user becomes aware
of failures. Short deadlines enable quick resubmission of failed tasks.

T is a timeout: the minimal waiting time before submitting another in-
stance of the same task. Rather than having all instances submitted at the
same time, each is submitted after a period T has passed from the previ-
ous instance submission, provided that no result has yet been returned. T’
restricts resource consumption.

M. is the ratio of the effective sizes of reliable and unreliable pools. It
provides a user-defined upper bound on the number of concurrently used
reliable resources. Small M, values create long queues for the reliable pool.
A long reliable queue may indirectly reduce costs by allowing unreliable
instances to return a result and cancel the reliable instance before it is sent.
We demonstrate M,.’s contribution to the cost reduction of efficient strategies
in Section 3.7.

The user’s main goal is to choose values for N, T', D, and M,., such that
the resulting makespan and cost optimize a specific utility function. How-

26

00 ! - 3 — :
<~ 1 2 » FPraret_o _ | Decision .
| — ontier M aki I
| Statistical Generation 'ng :
'| Characterization 4 |
R T T e e e Y------ !
| . . ! User
i | Unreliable Pool Reliable Pooal !
. | | ; Scheduler
: * | 5 :

Figure 3.4: Flow of the ExPERT stages, with user intervention points.
Numbered arrows indicate process steps.

ever, the user does not know the cost-makespan trade-off, or what parameter
values would lead to a specific makespan or cost. To help the user choose
these values, we introduce in the next section a framework for the selection
of an efficient replication strategy.

3.5 The ExPERT Framework

In this section we explain the design and use of the ExPERT scheduling frame-
work. Our main design goal is to restrict the NT DM, space to Pareto-
efficient strategies, from among which the user can then make an educated
choice. To achieve this goal, ExPERT defines a scheduling process, which in-
cludes building a Pareto frontier of NT' DM, strategies, out of which the best
strategy for the user is chosen.

The ExPERT Scheduling Process: The NT DM, task instance flow is
depicted in Figure 3.4. The user provides her parameters and, optionally, a
utility function. ExPERT then statistically characterizes the workload and the
unreliable system on the basis of historical data, analyzes a range of strate-
gies, generates the Pareto frontier, and presents the user with makespan- and
cost-efficient strategies. After either the user or EXPERT decides which strat-
egy in the frontier to use, EXPERT passes the N, T, D, M, input parameters
of the chosen strategy to the user’s scheduler, which then replicates tasks
and submits them to the two resource queues.

The ExPERT framework is extensible in three ways. First, in Step 2 it

27

Table 3.1: User-defined parameters

Item Definition
Tor Mean CPU time of a successful task
instance on an unreliable machine
T, Task CPU time on a reliable machine
Cur Cents-per-second cost of unreliable machine
C, Cents-per-second cost of reliable machine
Max Maximal ratio of reliable machines
to unreliable machines

allows for alternative methods of gathering and analyzing the system prop-
erties. Second, in Step 3 it allows for alternative algorithms for construction
of the Pareto frontier. Third, in Step 4 it allows the user to employ any
utility function which prefers lower makespans and costs: using the Pareto
frontier allows freedom of choice with regard to the utility function.

Traditionally, BoT's are executed through schedulers such as GridBoT [125],
BOINC or Condor using a pre-set strategy, defined when the BoT is submit-
ted. Though historical performance data has been used by others for resource
exclusion [77] and for resource allocation adaptation [104], EXxPERT is the first
to use it to optimize general makespan and cost preferences. In addition, once
the Pareto frontier is computed, it supplies the user with an understanding
of the trade-offs available in the system, to be utilized in the future, possibly
with different utility functions.

User Input: The user supplies ExPERT with data about mean CPU times
(denoted T}, T,;), runtime costs in cents per second (denoted C,., Cy,), and
the reliable resource pool’s effective size relative to the unreliable one (Ta-
ble 3.1). M™** the upper bound of M,, is derived from the unreliable pool’s
effective size, as well as from the number of self-owned machines, or from
a restriction on the number of concurrent on-demand cloud instances (e.g.,
at most 20 concurrent instances for Amazon EC2 first-time users). Runtime
costs might reflect monetary payments, energy waste, environmental dam-
age, or other costs. For example, a user might set unreliable costs as zero,
representing the grid as free of charge, or set it to account for power con-
sumption. ExPERT uses this data to estimate the BoT’s cost and makespan
under different strategies, when it searches the strategy space.

28

Statistical Characterization: ExPERT statistically characterizes the
workload and the unreliable system using F'(-), the Cumulative Distribution
Function (CDF) of result turnaround time. It also estimates the effective size
of the unreliable pool, denoted as fur, by running iterations of the ExPERT
estimator (described below) over the throughput phase until the estimated
result rate matches the real result rate. The estimated fur and F'(-) are used
to predict the makespan and cost of a given strategy and BoT. We describe
here the estimation of F'(-). The estimated fur and F(-) are later used in
step 3 to statistically predict the makespan and cost of applying a scheduling
strategy to the execution of a given BoT.

F(+) effectively models many environmental, workload, and user-dependent
factors. It is used to predict result turnaround time during the tail phase, so
it is best estimated in conditions that resemble those prevailing during this
phase. The throughput phase supplies us with such data, but it can also be
obtained from other sources. If the throughput phase is too short to collect
enough data before the tail phase starts, public grid traces can be combined
with statistical data about the workload to estimate the CDF.

The CDF is computed as follows:
F(t,t) = Fs(t)y(t). (3.1)

Here t denotes instance turnaround time, and ¢’ denotes instance sending
time. Fy(t) denotes the CDF of successful task instances (i.e., those which
returned results). It can be directly computed from the turnaround times of
results. (') denotes the unreliable pool’s reliability at time t': the probabil-
ity that an instance sent at time ¢’ to the unreliable pool returns a result
at all. y(¢') is computed for disjoint sets of consecutively sent instances as
the number of results received by the deadline, divided by the number of
instances.

Because F(-) depends on ¢’ through ~(¢), the CDF might change over
time, necessitating a prediction model. ExPERT can either compute ~(t') of-
fline or estimate it online. The accuracy of the two models is compared in
Section 3.7. In the offline model, v(¢') is fully known (it is computed after all
the results have returned). In the online model, v(¢') is predicted according
to information available at the decision making time T},;. Depending on
when the instance was sent, at time T;,;; we might have full knowledge, par-

29

tial knowledge, or no knowledge whether the instance will have returned a
result by the time its deadline arrives. The time-line of the instance sending
time t’ is divided into three epochs as follows.

1. Full Knowledge Epoch: the instance was sent at time t' such that
t' < Tyqi — D. Instances sent during this first epoch that have not yet
returned will not return anymore, so all the information about these
tasks is known at time T},;;, in which the online reliability is evaluated.
The online reliability model is identical to offline reliability during this
epoch.

2. Partial Knowledge Epoch: T, — D < t' < Tj4;. Instances sent dur-
ing this second epoch that have not yet returned may still return. We
use Equation 3.1 to approximate the probability that an instance sent
at time ¢’ will eventually finish. That is, we try to compute (') on
the basis of the observable task success rate (Fs(t)). According to our
model in Equation 3.1, F(t,t) is separable. Hence, instead of comput-
ing F(t) according to data of this second epoch to evaluate Fj,(t),
we use Fj, (t), that is, the CDF of successful instances during the first
epoch.

Let F(t,t') denote F(t,t') as was computed for instances sent at time
t'. With the information known at time T},;;, the CDF is fully known

(F(t,t') = F(t,t")) for small values of ¢t (¢t < Ty — t'). However, for

larger values of ¢, no information exists. As ¢’ approaches Ty, F/(Tiaii—
t',t") becomes less accurate, because it relies on less data.

We substitute the approximations Fi, (t) and F(t,t') in Equation 3.1
for the time ¢ for which we have the most data (t = Ty — t'):

N

F(T’tail - tlat/) —_ F(Ttail - t/at,)
Fs(Ttail - tl) Fsl (Ttail - t/) '

V(t) = (3.2)
Due to the diminishing accuracy of the computation of F(Tmu —t't,
Equation 3.2 may result in fluctuating, unreasonable values, which need
to be truncated. From below, we limit by the minimal historical value
during the first epoch. From above we only limit it by 1 because re-
source exclusion [77] (that is, the mechanism of avoiding faulty hosts)
might raise the reliability values above their maximal historical values.

30

3. Zero Knowledge Epoch: t' > T}, the instances have not yet been sent
at the decision making time, and no result has yet returned. We use
an average of the mean reliabilities during the Full Knowledge and
the Partial Knowledge Epochs, thus incorporating old accurate data
as well as updated, possibly inaccurate data. Our experiments indicate
that an average of equal weights produces a good prediction for (')
during this epoch.

Pareto Frontier Generation: ExPERT generates the Pareto frontier
using data from the previous steps in two moves. First it samples the strategy
space and analyzes the sampled strategies. Then it computes the Pareto
frontier of the sampled strategies, from which the best strategy can be chosen.
The sampling resolution is configurable, limited in range by the deadline used
in the throughput phase. We found that focusing the resolution in the lower
end of the range is more beneficial, as it accounts for the knee of the Pareto
frontier, which improves with resolution.

The ExzPERT Estimator estimates the mean makespan and cost of each
sampled strategy through simulation. The EzPERT FEstimator models fur
unreliable and [M, fur] reliable resources, each resource pool having a sep-
arate, infinite queue. For simplicity we assume the queues are First Come
First Served (FCFS): from each queue, tasks are submitted according to the
order in which they entered the queue, unless they are canceled before they
are submitted. If one instance of a task succeeds after another is enqueued
but before it is sent, the other instance is canceled. If the other instance was
already sent, it is not aborted. For each instance sent to the unreliable pool,
a random number x € [0, 1] is uniformly drawn. The instance turnaround
time t solves the equation F(t,¢') = x. If t > D, the instance is considered
timed-out.

At each time-step the ExzPERT FEstimator first checks each running in-
stance for success or timeout. Then, if a task has not yet returned a result,
time T has already passed since its last instance was sent, and no instance of
this task is currently enqueued, the Estimator enqueues one instance for this
task. Finally, instances are allocated to machines. ExPERT uses the average
cost and makespan of several such estimations as expectation values of the
real cost and makespan.

Once all the sampled strategies are analyzed, ExPERT produces the Pareto
frontier by eliminating dominated strategies from the set of sampled strate-

31

probability

O Il Il Il Il Il
0 1000 2000 3000 4000 5000 6000
Single result turnaround time [s]

Figure 3.5: CDF of single result turnaround time. Input: Experiment 11
(Table 3.5).

gies, such that only non-dominated points remain, as illustrated in Figure 3.2.
Each point on the Pareto frontier represents a Pareto-efficient strategy. Un-
der the rational assumption of monotonicity of the utility function, all strate-
gies that may be the best within the sampled space for any utility function
are included in the frontier. ExXPERT uses a hierarchical approach, which re-
sembles the s-Pareto frontier [96]: the strategies are first divided according
to their IV values, since different N values account for distinct separate con-
ceptual solutions. Then ExPERT merges the different frontiers. The user’s
utility function is not explicitly required for frontier generation—the user
may withhold information about his or her utility function, and only choose
a strategy from the Pareto frontier after it is presented. Furthermore, once
created, the same frontier can be used by different users with different utility
functions.

Decision Making: After ExPERT generates the Pareto frontier, ExPERT
chooses the best strategy for the user according to her utility function; oth-
erwise, the user programs any other algorithm to choose the best strategy
for her needs. We present an example of decision making for a scientific BoT,
with a task turnaround time CDF as given in Figure 3.5 and user supplied
parameters as listed in Table 3.2.

We begin by showcasing the difficulty of selecting an appropriate schedul-
ing strategy. Using an inefficient strategy (such as an NT DM, strategy that
is not on the Pareto frontier) might waste a lot of time and money. For our
example, Figure 3.6 displays only some of the sampled strategies and the
resulting Pareto frontier (the depiction of the explored strategy space was

32

51 + + N=0
—)3 N=1
X | B Lo +
3 4 O N=2
= 5 A N=3
G ol
O, L ¥ b
— /
= ol %% 2%
8 4 b £ 2 =
T A O A O A O A
0.5 1 1.5 2 2.5 3 3.5
Tail Makespan[s] x10*

Figure 3.6: Pareto frontier and sampled strategies. Input: Experiment 11
(Table 3.5).

diluted for clarity.) Here, using the Pareto frontier can save the user from

paying an inefficient cost of 4?2?]:, using N = 0 (no replication), instead of
an efficient cost of under 1£% (4 times better) when using N = 3. Further-

cent
task

poor makespan of over 25,000s (the top right-most hexagram symbol in Fig-

more, a user who chooses N = 1 and is willing to pay 2 may obtain a

ure 3.6). In contrast, ExPERT recommends a strategy based on using N = 3,
which leads to a makespan around 5,000s (5 times better) and a cost of
under 1?2?;
Figure 3.6).

(the triangle symbol at the “knee” of the continuous curve in

We next illustrate how ExPERT assists the user’s decision process. Fig-
ure 3.7 depicts the Pareto frontier in terms of cost and makespan. ExPERT
marks the frontier for several strategies, which are best for some simple user
preferences such as ‘minimize tail phase makespan’, ‘minimize cost’, ‘mini-
mize tail-phase-makespan X cost’, and 'work within a budget’ or 'finish in
time’. If the user supplies ExPERT with a different utility function, ExPERT
also finds the best strategy for it. A user who does not provide a utility
function can choose one of the Pareto-efficient strategies presented at this
stage. The Pareto frontier is discrete (we draw the connecting line for vi-

33

45 T T T
—+— Pareto Frontier

O Min Cost*Makespan
fffff Budget of 2.5 cent/task |

{> Fastest within budget

I Min cost * Makespan

—_

+

|
|
|
Fastest N [Deadline of 6300 s
3.5 ! O Cheapest within deadline |
| [> Cheapest
al | <] Fastest
i~ !
3 |
S |
S 25 e e —
< \
(] ‘
2, \
= 2t |]
S |
: h ithi li
O 150 Both | Cheapest within deadline |
Fastest within budget \
and ‘
|
d

N.\Ei
05 E
Cheapest/

0 Il Il Il Il Il Il
4500 5000 5500 6000 6500 7000 7500 8000
Tail Makespan[s]

Figure 3.7: Pareto frontier and examples of best points for various user
utility functions. Input: Experiment 11 (Table 3.5).

sual purposes only), so only the discrete points on it have attached input
parameters. For a higher-density frontier, that is, a frontier that renders the
connecting line in Figure 3.7, a higher-density sampling of the search space
is required. However, even a low sampling resolution closely approaches the
extreme strategies (the cheapest and the fastest).

The strategy is now chosen in terms of cost and makespan. To finalize
the process, ExPERT presents the user with the parameters N, T', D and M,
which define the chosen strategy. Those parameters are passed to the user’s
scheduler and are used to run the user’s tasks.

34

Table 3.2: Values for user-defined parameters

Item Value
Tor Mean CPU time of successful instances on
unreliable pool (2,066 seconds for Experiment 11)
T, For real /simulated experiment comparison:

mean CPU time over reliable instances.
Otherwise: Ty,.
T - i
Cur 5600 sccond — L0 xwr ~ 100OW

34 cent . 3
Cr 5600 secong: 2C2’s m1.large on-demand rate

3.6 The Experimental Setup

In this section we present our experimental setup. To evaluate ExPERT in
a variety of scenarios yet within our budget, we ran a series of real-world
experiments and augmented the results with simulated experiments. The
simulator was created by re-using a prototype implementation of the ExPERT
Estimator; our simulations can be seen therefore as emulations of the ExPERT
process. We validated the simulator’s accuracy by comparing simulation re-
sults with results obtained through real-world experiments performed on
different combinations of unreliable and reliable pools, including grids, self-
owned machines, and Amazon EC2. To validate the simulator, we used var-
ious BoTs which perform genetic linkage analysis, a statistical method used
by geneticists to determine the location of disease-related mutations on the
chromosome. The BoTs, which are a characteristic workload (real full appli-
cations) for the superlink-online system [126], are characterized in Table 3.3.
In pure simulation experiments we used the CDF shown in Figure 3.5.

Experimental Environments: The real-world experiments were con-
ducted using GridBoT [125], which provides a unified front-end to multiple
grids and clouds. GridBoT interprets a language for encoding scheduling
and replication strategies on the basis of run-time data, to simultaneously
execute the BoT's in multiple pools. GridBoT relies on BOINC, so it is based
on weak connectivity.

To implement the limit to the CPU time consumed by a task instance,
we used the BOINC parameter rsc_fpops_bound, which poses a limitation
on the number of flops a host may dedicate to any a task instance. Since

35

Table 3.3: Workloads with T, D strategy parameters and throughput phase
statistics. WL denotes Workload index. WM is an execution environment
from Table 3.4.

WL | #Tasks | T[s] | DIs] CPU time on WM]s]

Average Min. Max.
WL1 820 2,500 | 4,000 1,597 1,019 | 3,558
WL2 820 1,700 | 4,000 1,597 1,019 | 3,558
WL3 | 3276 | 5,000 | 8,000 1,911 1,484 | 6,435
WL4 | 3276 | 3,000 | 5,000 | 2,232 | 1,643 | 4,517
WL5 | 615 | 4,000 | 6,000 878 1,571 | 4,947
WL6 615 4,000 | 4,000 729 1,612 | 3,534
WL7 | 615 | 2,500 | 4,000 987 1,542 | 3,250

this parameter only approximates the limit, we manually verified that task
instances never continued beyond D.

The simulation-based experiments used the same discrete event-based
EzPERT FEstimatorwe developed for building the Pareto frontier. Although we
considered using a grid simulator [28,30,67], ultimately we decided to build
our own simulation environment. Our simulations are specifically tailored
for running ExPERT and have a simple, trace-based setup. More importantly,
as far as we know, no other simulator has been validated for the scheduling
strategies and environments investigated in this work. For comparison, we
augmented the NT DM, strategies already implemented in the FEstimator
with several static strategies described below.

The user-specified parameters used in our experiments are summarized
in Table 3.2. To estimate C,, we used the characteristic power difference
between an active and idle state according to AMD’s ACP metric [11]. We
multiplied those power differences for Opteron processors [11] by two, to
allow for cooling system power, reaching a range of 52W-157W; hence we
use 100W here.

The resource pools are detailed in Table 3.4. Each experiment used one
unreliable resource combination (one row) and at most one reliable resource.
Experiments 1-6 used old resource exclusion data, thus choosing more reli-
able machines from the unreliable pools. In experiments 7-13 this data was
deleted at the beginning of each experiment, thus allowing any machine in

36

Table 3.4: Real resource pools used in our experiments

Reliable Properties
Tech 20 self-owned CPUs in the Technion
EC2 20 m1.large Amazon EC2 cloud instances
Unreliable Properties

WM UW-Madison Condor pool. Utilizes preemption.
http://wuw.cs.wisc.edu/condor/uwcs

0SG Open Science Grid. Does not preempt.
http://www.opensciencegrid.org
OSG+WM Combined pool, half fur from each
WM-+EC2 Combined pool, 20 EC2 4+ 200 WM
WM+Tech Combined pool, 20 Tech + 200 WM

the unreliable pool to serve the BoT.

Static Scheduling Strategies: Without a tool such as ExPERT, users
(e.g., GridBoT users) have resorted to static strategies. A static strategy is
pre-set before the BoT starts, and does not require further computations
during the BoT’s run-time. Unless otherwise stated, during the throughput
phase these strategies are “no replication” (N = oo, T = D = 4T,,) and
the reliable pool is idle. Although some of these strategies are NT DM,
strategies, they are not necessarily Pareto-efficient. We compare them to
Pareto efficient strategies found by ExPERT in the next section. The static
strategies are:

AR: All to Reliable: use only reliable machines for the duration of the
BoT. This is a fast strategy when there are many fast reliable machines and
the reliability of the unreliable machines is low.

TRR: all Tail Replicated to Reliable: at Ty, replicate all remaining tasks
to the reliable pool. This is an NT DM, strategy (N = 0,7 = 0,Mr =
Mmary,

TR: all Tail to Reliable: at Tiy;;, enqueue every timed out tail task to the
reliable pool. This is an NT DM, strategy (N = 0,7 = D, Mr = M*").

AUR: All to UnReliable, no replication: use the default throughput phase
strategy during the tail phase. This is the cheapest option for a cheap unre-
liable system. This is an NT DM, strategy (N = oo,T = D).

B=17.5: Budget of $7.5 for a BoT of 150 tasks (% fg?,i) replicate all re-

37

maining tasks on the reliable pool once the estimated cost of the replication
is within the remaining budget. Until then, use the default throughput phase
strategy.

CNoo: Combine resources, no replication: deploy tasks from the unreli-
able queue on the reliable pool if the unreliable pool is fully utilized. This is
a common way of using the cloud, supplementing self-owned machines with
cloud machines when the regular machines are busy.

CN1T0: Combine resources, replicate at tail with N = 1, T = 0: utilize
all resources only during the throughput phase. At Ti,, replicate: for each
remaining task, enqueue a reliable instance.

3.7 The Experimental Results

We begin by evaluating NT' DM, Pareto frontiers by comparing them to the
static strategies introduced in Section 3.6. We proceed to demonstrate the
importance of M, as a strategy parameter in Section 3.7. We then validate
the EzPERT FEstimator logic in Section 3.7 and discuss the time it takes to
run ExPERT in Section 3.7.

ExPERT vs. Static Scheduling Strategies: To evaluate the benefits of
using NT DM, Pareto-efficient strategies, we compare them with the seven
static scheduling strategies. The comparison is performed for a BoT of 150
tasks, with 50 machines in the unreliable resource pool. The Pareto frontier
is obtained by sampling the strategy space in the range N =0...3, M, =
0.02...M"* and 0 < T < D < 4T,,. T, D were evenly sampled within
their range at 5 different values each. M, was sampled by at most 7 values,
listed in Figure 3.9.

We first compare the makespan and cost of the static strategies to the
Pareto frontier on a system where M"** = 0.1, and depict the results in
Figure 3.8(a). The Pareto frontier found by ExPERT dominates all the
tested static strategies except AUR,; that is, for any utility function,
for each tested static strategy except AUR, ExPERT recommends at least one
NTDM, strategy that improves both metrics. For example, ExPERT finds
several strategies that dominate the commonly-used CNoo strategy. One
such strategy is:

EzPERT recommended (N = 3,7 = T,,,D = 2T,,,M, = 0.02): send
N = 3 instances to the unreliable pool during the tail phase, with timeout set

38

e e Pareto frontier

4t > o AR
= O K TRR
(4]
£ 3r O O TR
- > <] AUR
ﬁ ol [] B=5centitask
T > CNeo
3 1k Yy CTON1

ExPERT) =

Reccomended <
0 5] 1 1 1 1 1 1 1 1 1
0 0.5 1 15 2 2.5 3 3.5 4 4.5
makespan [s] x10°

(a) Performance of strategies on the Pareto frontier vs. that of static strategies,
for M"*® = 0.1. Strategy AR at (makespan around 70,000s, cost=22 ;’;Z;) is not
shown.

AR
I RR
TR
B AUR
[B=5 cent/task
[cNe

[]cToNt
[]EXPERT Rec.

0.5

BoTmakespan * cost/BoTtask [cent*s/task]

0.1 0.5

. 0.3 max
#reliable/#unreliable (Mr)
(b) Makespan-cost product for static and EzPERT recommended strategies, for

M = 0.1,0.3,0.5. Bars for strategy AR are truncated; their height appears
beside them. Smaller values are better.

Figure 3.8: Static strategies compared to Pareto-efficient NT DM,
strategies. Input: Experiment 11.

39

to occur after twice the average task time (D = 2T},,). Send each subsequent
instance after the average task time (7" = T},) from the sending of the prior
instance had passed. Use only one (fur = 50, 50 x M, = 1) reliable machine
at a time.

This strategy, which is located in Figure 3.8(a) at the “knee” of the

cent
task’

ting 72% of CNoo’s cost and 33% of its makespan. This strategy does

Pareto frontier, yields a makespan of 15,640s for the cost of 0.78 cut-
not dominate AUR, by definition the cheapest strategy. Nonetheless, sev-
eral strategies found by EXPERT on the Pareto frontier lead to much better
makespan than AUR, with only a small increase in cost.

The dominance of the NT DM, Pareto frontier demonstrates the power
of Pareto-efficient scheduling over static strategies. The frontier’s dominance
is not a direct consequence of the way it is built, which only guarantees that
it will dominate the NT'D M,. strategies in the sampled space. The fact that
the NT DM, Pareto frontier dominates the static strategies implies
that NT DM, is a good scheduling model: the efficient strategies the
user looks for can be expressed as points in the sampled NT DM,
space.

Next, we focus on the performance of the strategies in terms of a specific
utility function: minimize tail-phase-makespan x cost per task. We compare
the utility obtained by the user when the scheduling strategy is EzPERT
recommended or one of the seven static scheduling strategies. Figure 3.8(b)
depicts the results of this comparison. ExPERT recommended is 25% better
than the second-best performer, AUR, 72%-78% better than the third-best
performer, and several orders of magnitude better than the worst performer,
AR. We conclude that EzPERT recommended delivers significantly better
utility than all the tested static strategies and outperforms (dominates) all
these strategies except AUR.

Each static strategy might be tailored for a special scenario and a utility
function. However, as Figure 3.8(b) demonstrates, using ExPERT to search
the strategy space for that special scenario will provide the user with the
best strategy in the search space, for a small computational cost (see below).

Impact of M, ExPERT’s Performance: M, provides a bound on the
number of concurrently used reliable resources (see Section 3.4). We now
demonstrate the benefit of elasticity, justifying the model decision which
allows M, to be a scheduling strategy parameter rather than a system con-

40

Table 3.5: Experimental parameters. W L denotes workload according to
Table 3.3. N is the NT DM, parameter. fur is an estimate for the effective
size of the unreliable pool. ur and r denote choice of pools according to
Table 3.4. The strategy in Experiment 5 is CNoo: Combine resources, no
replication (which is not an NT DM, strategy).

Experiment Parameters

No. | WL | N fur ur T
1 WL1| 0 202 WM Tech
2 WL1 | 2 199 WM Tech

3 WL6 | oo | 200420 | WM+Tech -
4 WL3 | 0 206 WM Tech

) WL6 | oo | 200+20 | WM+EC2 -

6 WL5 | oo 201 WM -
7 | WL1| O 208 WM Tech
8 WL2 | 1 208 WM Tech
9 WL1| 0 251 OSG+WM | Tech
10 || WL7 | O 208 WM EC2
11 | WL1 | 0 200 0OSG Tech
12 || WL1 | O 200 WM Tech
13 || WL4 | O 204 WM Tech

stant. We consider M, = 0.02...0.50, which means that reliable resources
are less than 50% of the resources available to the user.

First we demonstrate why users need to be able to set M, as a parameter
of their scheduling strategy. To this end, we compare the Pareto frontiers
created by fixing M,.; we depict in Figure 3.9 seven such frontiers. As shown
by the figure, high M, values allow a wide range of makespan values overall,
but low M, values can only lead to relatively longer makespans. For example,
the Pareto frontier for M, = 0.02 starts at a tail makespan of over 5,500s,
which is 25% larger than the makespans achievable when M, > 0.30. We
also observe that, for the same achieved makespan, lower M, values lead in
general to lower cost. We conclude that to find Pareto-efficient NT DM,
strategies, M, should not be fixed in advance, but set in accordance
with the desired makespan.

We investigate next the impact of M, in the execution of the BoT on the
resources provided by the reliable pool. For each Pareto-efficient strategy

41

Table 3.6: Experimental results. v denotes the average reliability of the
unreliable pool. RI denotes the number of task instances sent to the
reliable pool. TM S and C' denote tail phase makespan and cost per task.
ATMS and AC denote deviation of simulated values from real ones.
Averages are computed over the absolute values of the results.

Measured in Real Experiment | Simulated Experiment Deviation

Offline [%)] Online [%)]

No. | v | RI|TMSs|Clg] | STMS 0| smus e
1 0.995 | 50 6,908 1.60 8 3 35 33
2 0983 | O 3,704 39 21 -4 8 -4
3 0981 O 6,005 41 1 -4 4 -4
4 0.974 | 49 | 10,487 1.10 2 2 -56 -32
5 0.970 | 41 6,113 1.48 37 -2 29 -2
6 0942 | 0 6,394 0.42 3 -4 -40 -4
7 0.864 | 77 | 10,130 2.38 3 2 32 26
8 0.857 | 16 4,162 0.88 19 15 -37 -10
9 0.853 | 108 | 14,029 3.28 7 0 -1 -4
10 0.844 | 118 | 11,761 3.67 -14 -35 -7 -28
11 0.827 | 89 | 11,656 2.86 8 1 -7 -7
12 0.788 | 107 | 12,869 3.09 -9 -13 -2 -5
13 0.746 | 100 | 20,239 1.54 -3 -7 -7 -10
| Avg. [0894] 58 [9574 | 178 [10 [7 | 20 13

operating in this environment, we compare three operational metrics: the
strategy parameter M,., the maximal number of reliable resources used during
the BoT’s run (denoted used M,.), and the maximal size of the reliable queue
built during the run. Figure 3.10 depicts the results of this comparison. We
find that for most Pareto-efficient strategies, the number of used resources
from the reliable pool, used M,, is equal to the number of resources set
through the strategy parameter, M,. This is because, during the BoT’s tail
phase, tasks sometimes wait in the queue to the reliable pool, as seen in
Figure 3.10: the maximal length of the reliable queue is almost never zero;
that is, the queue is almost always used. The right-most point on the M,
and used M, curves, for which the values of M, and used M, are different,
is the exception. We explain this by an intrinsic load-balancing property of
the NDT M, systems: when the reliable pool queue is long, slow unreliable

42

5l — — _All'M_values combined
O M =0.02
45¢ 9@%?7_: . [M=006
al N —<M=0.10
N \\ — > M=020
% 35f N - M =0.30
= A (- M=0.40
8 3 ™ ‘\\\ L M-050
5 N M
& 25F !
E (
B2 |

1F (\’) \

0.5F

5000 5500 6000 6500 7000 7500
Tail Makespan [s]

Figure 3.9: Pareto frontiers obtained for various M, values. The topmost
efficient point of each Pareto frontier is highlighted. Pareto frontiers of high
M, values have a wider makespan range. Low M,. values yield lower costs.

instances return results before the reliable instance is sent, which leads to
the reliable instance being canceled and its cost being spared.

Simulator Validation: We conducted 13 large-scale experiments to
validate the simulator and the ExzPERT Estimator. In each experiment, we
applied a single strategy to specific workload and resource pools. Since the
simulations include a random component, we ensured statistical confidence
by comparing the performance metrics (tail phase makespan, cost per task)
of each real experiment with mean values of 10 simulated experiments. We
compared real and simulated performance metrics for both the offline and
the online models (defined in Section 3.5). The experiments are listed by
decreasing order of average reliability in Tables 3.5 and 3.6.

On average, performance metrics of the offline simulations, which use full
knowledge of the unreliable pool’s reliability v(¢'), deviate from real experi-
mental values by 7% and 10% for cost and tail phase makespan, respectively.
The on-line simulations, which extrapolate v(¢') during the tail phase, devi-

43

0.7 ‘ ‘
.I. —k— used M,
1 = wf= = max reliable queue
0.6 = = Mr |
’
-
051 E-]

<
IS
T

o
w
T

o
)
T

©
o
T

r
C IR T
+¢

M_; Queue Length as Fraction of Tail Tasks

6000 6500 7000 8000 8500
Tail Makespan [s]

0 . .
4500 5000 5500

Figure 3.10: Reliable pool use by efficient strategies.

ated from real experimental values by twice as much.

We identify four main causes for these deviations. First, the simulator
provides expectation values of performance metrics. In contrast, a real ex-
periment is a single, unreproducible sample. When a large number of tasks
are replicated during the tail phase, the performance metrics tend to be close
to the mean values of the simulated experiments. When the opposite occurs,
for example in Experiment 2, where only four very long instances were sent
after T4, the makespan observed in the real environment is further from the
offline simulation. Second, the simulator assumes F(t) does not depend on ¢/
and attributes all CDF changes to v(¢'). However, in real experiments Fj(t)
does depend on t', due to resource exclusion [77] policies and a varying task
length distribution. Third, ExXPERT assumes it is never informed of failures
before the deadline D. In real experiments, some machines do inform about
failures and are replaced. Fourth, in real experiments, the effective size of
the unreliable pool is variable and hard to measure. Hence, T3, is detected
when there are more free hosts than remaining tasks. The tasks remaining
at this time are denoted tail tasks. This may be a transient state, before the

44

actual start of the tail phase. In simulated experiments, the number of ma-
chines is fixed. T}, is detected when the number of remaining tasks equals
the number of tail tasks in the real experiment.

ExPERT Runtime The computational cost of running our ExPERT pro-
totype, in the resolution used throughout this paper, is several minutes to
sample the strategy space and analyze it, on an Intel(R) Core(TM)2 Duo
CPU P8400 @ 2.26GHz. The space sampling is composed of dozens of single
strategy simulations, each lasting several seconds. We consider a runtime in
the order of minutes, appropriate for BoTs of hundreds of tasks that are
the focus of this work. ExPERT’s runtime may be further shortened at the
expense of accuracy, by reducing the number of random repetitions from
over 10 to just 1. Similarly, flexibility may be traded with time by changing
the resolution in which the search space is sampled. Gradually building the
Pareto frontier using evolutionary multi-objective optimization algorithms
can also reduce ExPERT’s runtime.

3.8 Conclusion

We addressed one of the main problems facing scientists who rely on Bags-of-
Tasks (BoTs) in mixtures of computational environments such as grids and
clouds: the lack of tools for selecting Pareto-efficient scheduling strategies for
general user-defined utility functions. For any user-provided utility function,
ExPERT finds the best strategy in a large, sampled strategy space. EXPERT
can achieve a 72% cost reduction and a 33% shorter makespan compared
with commonly-used static scheduling strategies. For a utility function of
makespan x cost, ExXPERT provided a strategy which was 25% better than
the second-best, and 72-78% better than the third best strategy. These im-
provements stem from ExPERT’s ability to explore a large strategy space
under minimal user guidance, and to automatically adapt to the varying
reliability, cost, and speed of resources. They also show that the NT DM,
strategy space is large enough to provide considerable flexibility in both
makespan and cost. ExXPERT’s predictive accuracy has been verified through
experiments on real grids and a real cloud. The Pareto frontier created by
ExPERT provides users with an understanding of the cost-makespan trade-offs
of executing their BoTs.

45

Chapter 4

Deconstructing Amazon EC2
Spot Instance Pricing

4.1 abstract

Cloud providers possessing large quantities of spare capacity must either
incentivize clients to purchase it or suffer losses. Amazon is the first cloud
provider to address this challenge, by allowing clients to bid on spare capacity
and by granting resources to bidders while their bids exceed a periodically
changing spot price. Amazon publicizes the spot price but does not disclose
how it is determined.

By analyzing the spot price histories of Amazon’s EC2 cloud, we reverse
engineer how prices are set and construct a model that generates prices
consistent with existing price traces. Our findings suggest that usually prices
are not market-driven, as sometimes previously assumed. Rather, they are
likely to be generated most of the time at random from within a tight price
range via a dynamic hidden reserve price mechanism. Our model could help
clients make informed bids, cloud providers design profitable systems, and
researchers design pricing algorithms.

4.2 Introduction

Unsold cloud capacity is wasted capacity, so cloud providers would naturally
like to sell it. They would especially like to sell the capacity of machines which

46

cannot be turned off and have higher overhead expenses. Clients might be
enticed to purchase this capacity if they are provided with enough incentive,
notably, a cheaper price. In late 2009, Amazon was the first cloud provider
to attempt to provide such an incentive by announcing its spot instances
pricing system. “Spot Instances |[...] allow customers to bid on unused Ama-
zon EC2 capacity and run those instances for as long as their bid exceeds
the current Spot Price. The Spot Price changes periodically based on supply
and demand, and customers whose bids exceeds it gain access to the avail-
able Spot Instances” [9]. With this system, Amazon motivates purchasing
cheaper capacity while ensuring it can continuously act in its best interest
by maintaining control over the spot price. Section 4.3 summarizes the
publicly available information regarding Amazon’s pricing system.

Amazon does not disclose its underlying pricing policies. Despite much
interest from outside Amazon [34,69,95,117,148], its spot pricing scheme
has not, until now, been deciphered. The only information Amazon does
reveal is its temporal spot prices, which must be publicized to make the pric-
ing system work. While Amazon provides only its most recent price history,
interested parties record and accumulate all the data ever published by Ama-
zon, making it available on the Web [88,136]. We leverage the resulting trace
files for this study. The trace files, along with the methodology we employ
to use them, are described in Section 4.4.

Knowing how a leading cloud provider like Amazon prices its unused
capacity is of potential interest to both cloud providers and cloud clients.
Understanding the considerations, policies, and mechanisms involved may
allow other providers to better compete and to utilize their own unused
capacity more effectively. Clients can likewise exploit this knowledge to op-
timize their bids, to predict how long their spot instances would be able to
run, and to reason about when to purchase cheaper or costlier capacity.

Motivated by these benefits, we attempt in Sections 4.5—4.6 to uncover
how Amazon prices its unused EC2 capacity. We construct a spare capac-
ity pricing model and present evidence suggesting that prices are typically
not determined according to Amazon’s public definition of the spot pricing
system as quoted above. Rather, the evidence suggests that spot prices are
usually drawn from a tight, fixed range of prices, reflecting a random reserve
price that is not driven by supply and demand. (A reserve price is a hidden
price below which bids are ignored.) Consequently, published spot prices re-

47

veal little about actual, real-life client bids; studies that assume otherwise
(in particular [32,157]) are, in our view, misguided.We speculate that Ama-
zon utilizes such a price range because its spare capacity usually exceeds the
demand.

In Section 4.7 we put our model to the test by conducting pricing
simulations (based on cloud and grid workloads) and by showing their results
to be consistent with EC2 price traces. We then discuss the possible benefits
of using dynamic reserve price systems (such as the one we believe is used
by Amazon) in Section 4.8. Finally, we offer some concluding remarks in
Section 4.10.

4.3 Pricing Cloud Instances

Amazon’s EC2 clients rent virtual machines called instances, such that each
instance has a type describing its computational resources as follows: m1.small,
m1l.large and ml.xlarge denote, respectively, small, large, and extra-large “-
standard” instances; m2.xlarge, m2.2xlarge, and m2.4xlarge denote, respec-
tively, extra-large, double extra-large, and quadruple extra-large “high mem-
ory” instances; and cl.medium and cl.xlarge denote, respectively, medium
and extra-large “high CPU” instances.

An instance is rented within a geographical region. We use data from four
EC2 regions: us-east, us-west, eu-west and ap-southeast, which correspond to
Amazon’s data centers in Virginia, California, Ireland, and Singapore.

Amazon offers three purchasing models, all requiring a fee from a few
cents to a few dollars, per hour, per running instance. The models provide
different assurances regarding when instances can be launched and termi-
nated. Paying a yearly fee (of hundreds to thousands of dollars) buys clients
the ability to launch one reserved instance whenever they wish. Clients may
instead choose to forgo the yearly fee and attempt to purchase an on-demand
instance when they need it, at a higher hourly fee and with no guarantee that
launching will be possible at any given time. Both reserved and on-demand
instances remain active until terminated by the client.

The third, cheapest purchasing model provides no guarantee regarding
either launch or termination time. When placing a request for a spot instance,
clients bid the maximum hourly price they are willing to pay for running
it (called declared price or bid). The request is granted if the bid is higher

48

than the spot price; otherwise it waits. Periodically, Amazon publishes a new
spot price and launches all waiting instance requests with a maximum price
exceeding this value; the instances will run until clients terminate them or the
spot price increases above their maximum price. All running spot instances
incur a uniform hourly charge, which is the current spot price. The charge is
in full hours, unless the instance was terminated due to a spot price change,
in which case the last fraction of an hour is free of charge.

In this work, we assume that instances with bids equal to the spot price
are treated similarly to instances with bids higher than the spot price.

4.4 Methodology

Trace Files We analyze 64 (=8 x 4 x 2) spot price trace files associated
with the 8 aforementioned instance types, the 4 aforementioned regions, and
2 operating systems (Linux and Windows). The traces were collected by
Lossen [88] and Vermeersch [136]. They start as early as 30 November 2009
(traces for region ap-southeast are only available from the end of April 2010).
In this paper, unless otherwise stated, we use data accumulated until 13 July
2010.

Availability We define the availability of a declared price as the fraction
of the time in which the spot price was equal to or lower than that declared
price. Formally, a persistent request is a series of requests for an instance
that is immediately re-requested every time it is terminated due to the spot
price rising above its bid. Given a declared price D, we define D’s availability
to be the time fraction in which a persistently requested instance would run
if D is its declared price. Formally, let H be a spot price trace file, and let T
and T¢ be the beginning and end of a time interval within H. The availability
of D within H during [T}, T¢] is:

TH (D
availabilityH(D) |[Tb,Te} - jl:—m(T)
e — 4b

, where TH, (D) denotes the time between T}, and T, during which the spot
price was lower than or equal to D. The availability of price D reflects the
probability that spot instances with this bid would be immediately launched
when requested at some uniformly random time within [T, T¢].

49

4.5 Evidence for Artificial Pricing Intervention

4.5.1 Market-Driven Auctions

Amazon’s description of “How Spot Instances Work” [9] gives the impression
that spot prices are set through a uniform price, sealed-bid, market-driven
auction. “Uniform price” means all bidders pay the same price. “Sealed-bid”
means bids are unknown to other bidders. “Market-driven” means the spot
price is set according to the clients’ bids. Many auctions fit this description.
One example of such an auction is an (N + 1)!* price auction of multiple
goods, with retroactive supply limitation (after clients bid). Of course, Ama-
zon could be using some other market-driven mechanism consistent with
their description.

In an (N + 1) price auction of multiple goods, each client bids for a
single good (i.e., a spot instance). The provider sorts the bids and chooses
the top N bidders. The provider is free to set the number of sold goods N,
as long as N does not exceed the available capacity. The provider may set
N up-front as the available capacity, but it may also retroactively further
restrict NV after receiving the bids, to maximize revenue. The provider sets
the uniform price to the price declared by the highest bidder who did not
win the auction (bidder number N + 1) and publishes it. The top N winning
bidders pay the published price and their instances start running. In this
case, the published price is a price bid by an actual client.

The provider may also decide to ignore bids below a hidden reserve price
or below a publicly known minimal price, to prevent the goods from being
sold cheaply, or to give the impression of increased demand.

We conjecture that usually, contrary to impressions conveyed by Ama-
zon [9] and assumptions made by researchers [32,157], the spot price is set
according to a constantly changing reserve price, disregarding client bids. In
other words, most of the time the spot price is not market-driven but is set
by Amazon according to an undisclosed algorithm.

4.5.2 Evidence: Availability as a Function of Price

In support of this conjecture, we analyze the relationship between an in-
stance’s declared price (how much a client would be willing to pay for it)
and the resulting availability between 20 January 2010 and 13 July 2010.

50

-
T
i
D
P
D

Y
D

us-east m1l instances

0.8 ©
> :: 'g:__‘e”?nzt O us-east m2.xlarge instance
% 06 I Price (C) O us-east m2 2xlarge and 4xlarge
«© F, O us-eastcl instances
§ 0.4 ; + other regions m1l instances
© I Eloor + other regions m2.xlarge instances
021 T Price (F) + other regions m2 2xlarge and 4xlarge instances
i + other regions c1 instances

E U | | |
0.5 1 15 2 25

declared price [$/hour]

o
T

Figure 4.1: Availability of Windows-running spot instance types as a
function of their declared price. The legend is multiplexed: us-west, eu-west,
ap-southeast all appear in the legend as “other regions”. ml.small, ml.large

and ml.xlarge all appear as ml. cl.medium and cl.xlarge appear as cl.

Fig. 4.1 shows the availability of different spot instance types as a func-
tion of declared price (price-availability graphs), for all examined Windows
spot instance types in all regions. Results for instances running Linux (not
shown) are qualitatively similar. The prices of different resources are usually
in different ranges (e.g., us-east.cl.medium’s usual price range is a third of
us-east.cl.xlarge’s), but they all share the same functional shape: a sharp lin-
ear increase in availability, during which the price resolution is 0.1 cent. The
increase may last until an availability of 1.0 is reached, or end with a knee
at a high availability (usually above 0.95). A knee is a sharp change in the
graph’s slope; it is usually accompanied by a sharp decrease in the graph’s
resolution. Above the knee, the availability grows with declared price, but
at a slower, varying rate.

Fig. 4.2 shows normalized price-availability graphs for Linux: each spot
price is divided by the price of a similar on-demand instance. We see that
Linux types can be classified by region. Each of the two region classes has
a distinct normalized price range in which the availability’s dependency on
the price is linear. One class contains us-east, and the other class contains
the other regions.

Fig. 4.3 shows the data presented in Fig. 4.1 as normalized price-availability
graphs. As in Fig. 4.2, different types can be classified by region: us-east or

o1

[N
T

us—east ml instances

o
©
T

us—east m2.xlarge instance
us—east m2 2xlarge and 4xlarge .

o
o
T

us—east c1 instances

availability

other regions m1 instances

o
~
T

other regions m2.xlarge instances
other regions m2 2xlarge and 4xlarge instances

o
N
T

+ + + + O O O O

other regions c1 instances
& I I I I I I
0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

declared price as fraction of on-demand price

Figure 4.2: Availability of Linux-running spot instance types as a function
of their normalized declared price. The declared price is divided by the
price of a similar on-demand instance. The legend is multiplexed as in

Fig. 4.1. All 32 curves are shown in full, but most of them overlap.

all other regions. Not as in Fig. 4.2, different types have different normalized
prices within a class, and the relative price difference between any type pair
is the same in each class. The ml.small type, indicated in Fig. 4.3 by an
arrow, has a particularly low knee, with an availability of 0.45. The nor-
malized ranges of the us-east.windows.cl instances, whose absolute prices so
differed in Fig. 4.1, are now identical. Figs. 4.1-4.3 show that availability
strongly depends on declared price for all regions and all instance types, and
that this dependency has a typical recurring shape, which can be explained
by assuming that Amazon uses the same mechanism to set the price in dif-
ferent regions. The particular shape of the dependency could be explained
in one of two ways: either Amazon’s spot prices reflect real client bids and
the shaped dependency occurs naturally, or the spot prices are the result of
a dynamic hidden reserve price algorithm, of which the shaped dependency
is an artifact.

Let us first consider the assumption that the shaped dependency occurs
naturally due to real client bids. The differences between absolute price
ranges of the same type in different regions (Fig. 4.1) show that different
regions experience different supply and demand conditions. This means that
uncoordinated client bids for different types and regions would have to natu-
rally and independently create all of the following macro-economic phenom-

92

[N

&
d

o
©

> O us—east ml instances

= 06 O us—east m2.xlarge instance

g O us—east m2 2xlarge and 4xlarge .
§ 0.4 us—east cl instances

© other regions m1 instances

other regions m2.xlarge instances

o
N

us—east ml.small
other regions m2 2xlarge and 4xlarge instances

+ 4+ + + 0

g)) other regions c1 instances
0.4 0.5 0.6 0.7 0.8 0.9
declared price as fraction of on—-demand price

Figure 4.3: Availability of Windows-running spot instance types as a
function of their normalized declared price. The declared price is divided
by the price of a similar on-demand instance. The legend is multiplexed as
in Fig. 4.1. All the data is shown in full, but many of the curves overlap.
us-east.windows.m1l.small is indicated by an arrow.

ena: (1) normalized prices turning out identical for various Linux types but
different for Windows types; (2) a rigid linear connection between availabil-
ity and price that turns out to be identical for different types and regions;
(3) a distinct region having a normalized price range different than all the
rest (which turn out to have identical ranges); and (4) normalized prices for
Windows instances which differ from one another by identical amounts in
each of the two region classes, creating the same pattern for both.

If real client bids shape these dependencies, then real clients bid below
the knee. If that is indeed the case, then many spot instance clients present
irrational micro-economic behavior. As many researchers working from client
perspectives have found [34,95,117,148], bidding below the knee is not cost-
effective because it will subject the instance to frequent unavailability events.
Slightly raising the bid, however, will result in the instance being almost
completely protected. Bidding below the knee is not only irrational in light
of low availability and a long waiting time for the price to drop below the bid,
but also in light of the short continuous intervals in which the low prices are
valid, as noted especially by Chohan et al. [34]. Such short intervals might
prohibit the successful completion of a task, forcing the client to repeat it
(and possibly pay for some of the useless compute time).

53

For the sake of argument, let us also consider the possibility that caus-
ing the macro-economic phenomena described above is the declared goal of
a conspiring group of clients. They have already reverse-engineered Ama-
zon’s algorithm and submit coordinated bids that cause the aforementioned
phenomena. Since the phenomena we describe can be seen in all 64 ana-
lyzed traces, these clients would have to consume a sizable share of the spot
instance supply in all 64 resources, bidding low bids (which would then even-
tually become the spot price). This would systematically limit the supply
available to the many different legitimate clients known to use EC2 spot in-
stances. If the legitimate clients then bid higher than the spot price (which
is usually below the knee), the spot price would rise, terminating the conspir-
ing clients’ instances. From this point on, the conspiring clients’ effect on the
spot price would be limited. Furthermore, customers must have Amazon’s
approval for the purchase of spot instances beyond the first one hundred.
Hence, we consider this explanation highly unlikely.

Our hypothesis: We consider it unlikely that all four phenomena could
have resulted from Amazon setting the price solely on the basis of client
bids. We therefore lean towards the hypothesis that Amazon uses a dynamic
algorithm, independent of client bids, to set a reserve price for the auction,
that the auction’s result is usually identical to the reserve price, and that the
prices Amazon announces are therefore usually not market-driven. Both the
simulation results presented in Section 4.7 and Occam’s razor—preferring
the simplest explanation—support this hypothesis.

If our hypothesis is correct, then all four phenomena listed above are
easily explained by a dynamic reserve price algorithm which gets as input
prices normalized by respective on-demand prices. This input is different
for the us-east region, for different sets of types, and for different operating

systems.

4.5.3 Dynamic Random Reserve Price

First we will characterize the requirements for a dynamic reserve price al-
gorithm that will be consistent with the published EC2 price traces. Then
we will construct such an algorithm, and propose it as a candidate for the
algorithm behind the EC2 pricing.

We contend that the dynamic reserve price algorithm gets as input a floor

o4

price F' and a ceiling price C for each spot instance type, with the floor and
ceiling prices expressed as fractions of the on-demand price. The floor price
is the minimal price, exemplified in Fig. 4.1 for the us-east.m2.2xlarge and
us-east.m2.4xlarge types. The ceiling price is the price corresponding to the
knee in the graph (shown in the same figure), or the maximal price if no knee
exists. We refer to this price range, in which availability is a linear function
of the price, as the pricing band. The algorithm dynamically changes the
reserve price such that there is a linear relation between availability and
prices in the floor—ceiling range. It guarantees that the reserve price never
drops below the floor, which reflects Amazon’s minimal-reserve price for spot
instances, nor rises above the ceiling.

We deconstruct the reserve price algorithm using traces from April-July
2010, when the spot price in eight ap-southeast.windows instance types almost
always stayed within the artificial band. We matched the price changes in
those traces (denoted by A) with an AR(1) (auto-regressive) process. We
found a good match (i.e., negligible coefficients of higher orders a; for ¢ > 1)
to the following process:

Ai = —a1A¢_1 + 6(0’), (41)

where a; = 0.7 and €(0) is white noise with a standard deviation o. Let F,C
denote the floor and ceiling of the artificial band, respectively. We matched
o with a value of 0.39(C — F'). These parameters fit all the analyzed types
well, except for ml.small, which matched different values (a; = 0.5,0 =
0.5(C—F)). The standard deviations are given in Fig. 4.4. This close fit—the
same parameters characterizing the randomness of several different traces—
is consistent with our hypothesis that the prices are usually set by an artificial
algorithm. The reason for m1l.small’s deviation is yet to be found.

On the basis of this analysis, we construct the AR(1) reserve price algo-
rithm: The process is initialized with a reserve price of Py = F and a price
change of Ag = 0.1(F—C). The following prices are defined as P, = P,_1+A;,
where A; = —0.7- A;—1 +€(0.39 - (C — F)). The process is truncated to the
[F, C] range by regenerating the white noise component while P; is outside
the [F, C] range or identical to P;_;. All prices are rounded to one-tenth of
a cent, as done by Amazon during 2010.

To evaluate whether the trace produced by the truncated AR(1) process

95

0.08
o
()
L2 @B 006F
e o y = 0.39* - 0.00026
o
QL O o004t .
c Qo
i
_i ¥ 0.02f B
<
g - % ap-southeast-1
.,% o 0 ——— linear H
e O ap-southeast-1.windows.m21.small
_0.02 Il Il Il Il Il Il Il
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

band width [$]

Figure 4.4: Standard deviation of the white noise of the matched AR(1)
process as a function of artificial price-band width

-40
O

_50 -
o E)\ ®) a®
nao +
o g -60r + 29 : O
- @ + il N s +
QY _pb o+ L [%b?o ofF o
T35 + 5 Loy O e
n S 1980 S 4 T
S 8 OF + 0. .. 4089
Q0 60 @ a +
@) Z _901 S & O PSD estimatate of EC2 ap-southeast trace

}Q) n + PSD estimatate of AR(1) process
-100 :

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized frequency (x mtrad/sample)

Figure 4.5: Power spectral density (periodogram) estimate of an EC2 price
trace, and our derived AR(1) price trace

matches the original EC2 trace, we compare their periodograms (normalized
Fourier transforms) in Fig. 4.5. The periodogram comparison verifies that we
captured the original signal’s frequencies correctly, and not just the average

o6

time in each price. The match shows that our reverse-engineered reserve
price algorithm is consistent with Amazon’s.

The consistency of an AR(1) process with the EC2 traces does not indi-
cate the dynamics which create it. If this consistency can be explained mostly
by natural fluctuations, then we would expect to see at least a weekly cy-
cle. A daily cycle is unlikely, since clients all over the world use the same
machines.

To search for a weekly cycle, we analyzed the utilization of memory in
three IaaS pay-as-you-go cloud traces (described in detail in Section 4.7.2)
and the price in the ap-southeast.linux traces. We computed each day’s mean
value (price or utilization for spot trace or cloud, respectively), taking into
consideration the duration for which the value was valid. Each day’s mean
value was normalized by the mean value over the week to which it belongs.
This local normalization is especially important when computing mean uti-
lization, since over the years of the trace, both the capacity and the utilization
increased. The autocorrelation of cloud utilization for three cloud workloads
is depicted in Fig. 4.6(a). All three clouds have a significant weekly cycle,
sometimes with a pattern lasting for several weeks. The weekly cycle is ex-
pressed by strong, positive autocorrelation coefficients for lags of 7, 14, 21
and even 28 days. In addition, there is strong positive autocorrelation with
the previous day, meaning today’s utilization is a good prediction for to-
morrow. The confidence bounds are low (0.081, 0.084, 0.068) and slightly
different from one.

Knowing autocorrelation can be expected in a cloud, let us turn to ana-
lyze the spot price autocorrelation that is depicted in Fig. 4.6(b). The confi-
dence bounds are larger than in the cloud load graphs, and are identical to
the fifth digit (0.2097). None of the eight price traces has any weekly cycle
or any significant long range correlation. This finding agrees with Wee [148],
who shows that none of the 64 EC2 traces we used exhibit notable weekly or
daily patterns. Moreover, the one-day autocorrelation coefficients are nega-
tive for all the traces, meaning today’s price is a bad prediction for tomorrow.
Thus, the process generating the traces cannot be explained mostly by nat-
ural fluctuations.

Let us consider the hypothesis that natural dynamics account for a small
part of the trace: usually the spot price is the dynamic reserve price, but
sometimes the spot price rises above the reserve price due to market consid-

o7

erations. This would mean that usually the price traces reflect the reserve
price only, but sometimes the prices are bids declared by real clients. This
scenario is unlikely because, as discussed earlier, bidding inside the band is
not cost-effective. Nonetheless, we check this hypothesis by analyzing mean
trace prices, with the alternate hypothesis that natural dynamics account
for no part of the trace. If the alternate hypothesis is true, the mean trace
price should be the mean of the truncated AR(1) process, which is a sym-
metric process: the middle of the band. If natural dynamics sometimes raise
the price above the reserve price, the mean price should be higher than the
middle of the band. However, for the 8 ap-southeast.windows traces we tested
here, the mean price was lower than the middle of the band by up to 2%.

We conclude that the impact of natural dynamics on the price traces in
the band range is statistically insignificant. The spot price within the band
is almost always determined solely by the AR(1) process, i.e., is equal to
the reserve price. Since we assume prices above the band usually result from
natural dynamics, we need to estimate how frequently the prices are above
the band. On average, over the 64 traces we analyzed, prices were above the
band 2% of the time. We conclude that during the other 98% of the time,
prices are mainly determined by an artificial AR(1) reserve price algorithm
and hardly ever represent real client bids.

4.6 Pricing Epochs

To statistically analyze spot price histories, it would be erroneous to assume
that the same pricing model applies to all the data in the history trace.
Rather, each trace is divided to contiguous epochs associated with different
pricing policies. We show here that our main traces are divided into three
epochs as depicted in Fig. 4.7. Since the pricing mechanism changes notably
and qualitatively between epochs, data regarding these epochs should be
separated if an associated statistical analysis is to be sound. Accordingly,
for the purpose of evaluating the effectiveness of client algorithms, strategies,
and predictions, the data from a (single) epoch of interest should be used.
The first epoch starts, according to our analysis, as early as 30 November
2009 and ends on 14 December 2009, the date on which Amazon announced
the availability of spot instances. During this time, instances were unknown
to the general public. Hence, the population which undertook any bidding

o8

during the first epoch was smaller than the general public, of nearly constant
size, and possibly had additional information regarding the internals of the
pricing mechanism at that time.

The second epoch begins with the public announcement on 14 Decem-
ber 2009. It ends with a pricing mechanism change around 8 January 2010,
when minimal spot prices abruptly change in most instances (usually de-
crease, though Fig. 4.7 demonstrates an increase). It is characterized by
long intervals of constant low prices.

The third epoch begins on 20 January 2010. Instance types and regions
began to change minimal price around January 8th, but we define the begin-
ning of the epoch as the date in which the last one (eu-west.linux.m2.2xlarge)
reached a new minimal price. Due to (1) the gradual move to the new min-
imal values and to (2) a bug in the pricing mechanism that was fixed in
mid-January 2010 [10], we choose to disregard data from the transition pe-
riod between the second and third epochs.

Additional epoch-defining dates are dates when the price-change timing
algorithm was changed, e.g., 20 July 2010 and 9 February 2011 for the us-east
region (see Section 4.7).

These abrupt time-correlated changes in many regions and instance types
further support our hypothesis, since prices are likely to undergo abrupt
changes at exactly the same time either when the market is efficient (which
is not the case here, since absolute prices in Fig. 4.1 are not leveled) or when
the prices are artificial.

4.7 Spot Price Simulation

To get a better feel for the validity of our hypothesis, we simulated two spot
pricing systems, representing the dynamic hidden reserve price hypothesis
and the alternate hypothesis of a constant reserve price. Both systems are
based on a sealed-bid (N 4 1) price auction with a reserve price with
retroactive supply limitation, as described in Section 4.5.1. The simulator
structure is described in Section 4.7.1.

In both systems we set the on-demand price to 1. In the constant reserve
price system we set the reserve price to 0.4. In the AR(1) reserve price
system we set the reserve prices according to the reserve price algorithm
defined in Section 4.5.3, with a band of [0.4,0.45]. To run the simulation, we

99

need to know not only what the new reserve price should be, but also when
it should be changed. To this end, we deconstructed the price change timing,
as explained in Section 4.7.4.

To fully model a spot pricing system, three input data sets or models are
required: for available machine supply, for instance demand, and for client
bids. We modeled the machine supply as a fixed-size, because spot instances
are a good practice for a quick-launch buffer: those machines which need
to be kept running, in case an on-demand or reserved instance is requested.
We do not expect spot-instance machine supply to represent the full vari-
ation of on-demand and reserved instance demand. We used real grid and
cloud traces for instance demand (Section 4.7.2), and three client bid models
(Section 4.7.3). The simulation results are presented in Section 4.7.5.

4.7.1 Simulator Event-Driven Loop

We created a trace-based event-driven simulator, where events are: (1) in-
stance submission and termination and (2) price changes (due to a scheduled
change or to a waiting instance with a bid higher than the spot price). We
ran the grid trace-driven simulation on 70 CPUs, according to the number of
CPUS in the trace. Since CPU was over-committed on the cloud traces but
physical memory was not, we defined each cloud’s capacity as the maximal
amount of memory concurrently used in its trace. We ended the simulation
when the last input-trace job had been submitted.

4.7.2 Workload Modeling

We fed the simulation with tasks with run-times in the range of 10 minutes to
24 hours, taken from several large system traces. According to Iosup et al. [5],
a typical EC2 instance overhead is two minutes. We deem clients unlikely to
wait two minutes and pay for a full hour for an activity which lasts only a
few minutes, so we only used tasks longer than 10 minutes. We assume spot
instances are usually used for relatively short-running instances, with longer
running instances more likely to be deployed on more stable offerings such
as on-demand and reserved instances. Thus we omitted tasks longer than 24
hours. We discuss the task length cut-off point in Section 4.7.5.

We used traces from one grid and three clouds. In the simulation, each
task was interpreted as a single instance, submitted at the same time and

60

requiring the same run-time as in the original trace to complete. The grid
trace is 20K tasks from the LPC-EGEE workload!. LPC-EGEE is charac-
terized by tasks which are small in comparison to the capacity of the cluster,
allowing for elasticity.

We also used traces of three pay-as-you-go IaaS clouds?. These clouds
were partitions of IBM’s RC2 cloud [116]. The partitions used different un-
derlying physical resources and hypervisors, and it was up to the user to
choose the partition. The traces were taken from 2 April 2009 to 22 August
2011 (2.5 years). During this time, the capacity of the partitions changed
with demand, reaching concurrent use of thousands of CPUs (6522, 1420,
and 845 for clouds 1, 2, and 3, respectively) and thousands of gigabytes of
memory (10175, 1996, and 2386 for the respective clouds). Clients of these
clouds were charged 2-3 cents per hour per GB for running instances. In
addition, creating an instance for the first time cost 20 cents.

The workloads of these clouds are characterized by significantly longer
runtimes than grid jobs: only half the cloud instances take less than 24
hours, while 98% of the tasks last less than a day on grids (LPC-EGEE,
GRID5000?) and parallel systems (LANL CM-5%, SDSC-Paragon®) that we
evaluated, as seen in Fig. 4.8. Many cloud instances last months and even
years. Furthermore, the clouds exhibit longer and stronger inter-arrival time
correlation than typical grids, as seen in Fig. 4.9. The autocorrelations of
their inter-arrival times is even larger than those of parallel systems, even
though both system types are only accessible to a limited set of clients.

4.7.3 Customer Bid Modeling

Due to the lack of information on the distribution of real client bids (since
we argue that Amazon’s price traces supply little information of this type),
we compare several bidding models, and verify that the qualitative results

! Graciously provided by Emanuel Medernach [99], via the Parallel workload archive [48],
file LPC-EGEE-2004-1.2-cln.swf.

2@raciously provided by Mariusz Sabath.

3Graciously provided by Franck Cappello, via the Grid Workloads Archive [65], file
grid5000_clean_trace.swf.

4Graciously provided by Curt Canada, via the Parallel workload archive, file LANL-
CM5-1994-3.1-cln.swi.

5QGraciously provided by Reagan Moore and Allen Downey, via the Parallel workload
archive, file SDSC-Par-1995-2.1-cln.swf.

61

are insensitive to the bid modeling. All the distributions were adjusted to
uniform minimal and on-demand prices.

The first model is a Pareto distribution (a widely applicable economic
distribution [83,130]) with a minimal value of 0.4, and a Pareto index of
2, a reasonable value for income distribution [130]. The second model is
the normal distribution A(0.7,0.3%), truncated at 0.4. The third is a linear
mapping from runtimes to (0.4, 1], which reflects client aversion to having
long-running instances terminated.

4.7.4 Price Change Timing

Price changes in the simulation are triggered according to the cumulative
distribution function (CDF) of intervals between them, collected during
January—July 2010, and given in Fig. 4.10 (solid line). This period was char-
acterized by quiet times—prices never changed before 60 minutes or between
90 and 120 minutes since the previous price change. It is interesting to note
that such quiet times can be monetized by clients to gain free computation
power with a probability of about 25%, by submitting an instance with a
bid of the current spot price 31 minutes after a price change. The instance
would then have a 50% possibility of undergoing another price change within
30-60 minutes. If that change is a price increase, the instance would be termi-
nated, and the client would gain, on average, 45 minutes of free computation.
Clients do not exploit this loophole in our simulation.

Fig. 4.10 also presents the evolution of the timing of price changes for
the us-east region. The next algorithm (in place from July 2010 until 8
Feb 2011) allowed for a quiet hour after a price change. The following one
(starting 9 Feb 2011) matches an exponential distribution with a 1.5 hour
rate parameter, with five quiet minutes. This almost memory-less algorithm
prevents abuse of the timing algorithm. A similar evolution of the algorithm
took place in other regions on different dates. On Linux instances in regions
other than us-east, an interim algorithm was used between the second and
third algorithms, such that the quiet hour was abolished before the transfer
to the algorithm of 2011.

62

4.7.5 Simulation Results

Simulation results in terms of price-availability graphs are presented in
Fig. 4.7.5-4.7.5, for different input traces, bid models and price setting mech-
anisms. The functions of simulations with the AR(1) reserve price feature a
linear segment and a knee in high availability, as do the availability functions
of EC2 during the third epoch, which are shown in Figs. 4.1, 4.2, and 4.3.
The constant reserve price functions do not exhibit this behavior. Rather,
they are jittery, like the high price regime of the us-east.windows.ml.small
graph in Fig. 4.3, and the second epoch graph in Fig. 4.15. These results are
not sensitive to our of choices of bidding model and workload.

Furthermore, the availability of the reserve price in the constant reserve
price simulations is high (0.2-0.9), as it is in the second epoch (0.63 in
Fig. 4.15). In contrast, the availability of the minimal price in the AR(1)
reserve price simulations and in the third epoch tends to zero as the number
of discrete prices within the band grows.

These macro-economic qualitative differences can be better understood
by focusing on three classes of availability graphs that resemble one another
and do not present straight lines: (1) the constant minimal reserve price
simulations, (2) the second epoch, and (3) the high regime of the third epoch
(in particular us-east.windows.ml.small). Since the graphs of the first class
reflect client bids, the qualitative resemblance suggests that the last two
also reflect client bids: during the second epoch, a constant reserve price
algorithm is used, and the demand for us-east.windows.m1.small exceeds the
supply so much that excess demand is no longer masked by the dynamic
reserve price.

To investigate the effect of truncating long running instances from the
traces (mainly from the cloud traces), we ran the AR(1) simulations with
different maximal run-time truncations (1 day, 2 days and 100 days). As
can be seen from the price-availability graphs (Fig. 4.16), raising the upper
truncation point of the trace lowers the availability at the knee. The trunca-
tion does not affect the important features discussed earlier (the straight line
and the existence of the knee). From the EC2 traces we learn that the knee
is usually high (above 0.9, with the exception of some ml.small instances).
Thus we conclude that the workload of Amazon’s EC2 spot instances is con-
sistent with relatively short instances, and that our choice of truncating the

63

traces at 24 hours is reasonable.

We consider these simulation results a constructive indication that most
prices in the EC2 traces during the third epoch are set using an AR(1)
reserve price, which is not market driven. The simulation results also suggest
that Amazon set prices via a market-driven auction with a constant reserve
price during the second epoch (December, 2009 until January, 2010), and
that prices above the band are market-driven. (In the traces we studied,
prices are above the band only 2% of the time on average.)

4.8 Dynamic Reserve Price Benefits

The dynamic AR(1) reserve price mechanism has several long-term, wide-
range benefits that may justify its use. Like a constant minimal or reserve
price, it guarantees that on-demand instances are not completely cannibal-
ized by spot instances. Yet it also allows the provider to sell instances on
machines which would otherwise run idle, to provide elasticity for the fixed
price instances. Spot instances, which can be quickly evacuated, still reduce
the costs associated with idle servers, with no real harm to the main offering
of on-demand instances.

Using a hidden reserve price allows the provider to change the reserve
price with no obligation to inform the clients, an obligation which cannot be
avoided when using a minimal price. A dynamic reserve price is better than
a constant minimal price, because it maintains an impression of constant
change, thus preventing clients from becoming complacent. It forces them
to either bid higher than the band or tolerate sudden unavailability. It also
serves to occasionally clear queues of low bids within the band, a purpose
that is not served by a constant reserve price that is equal to the ceiling
price. Furthermore, Vincent [139] argues that in common value English and
second price auctions, a random reserve price encourages participation, and
thus the exchange of more information about the value of the goods.

A random reserve price might also serve other goals, if the public is
unaware of its use. By creating an impression of false activity (demand and
supply changes), the random reserve price can mask times of low demand
and price inactivity, thus possibly driving up the provider’s stock. A large
enough band covering the spectrum of probable prices could also mask high
demand and low supply, and thus help to maintain the illusion of an infinitely

64

elastic cloud. However, if the artificial band is relatively small, as in the case
of Amazon EC2 spot prices, the provider’s use of an AR(1) process for setting
the price within the band is a strong indication of low demand.

4.9 Reexamination of Prior Work

We will now review the literature on pay-as-you-go laaS cloud workload
traces (and spot prices in particular), reexamining past conclusions in light
of our results. We will also review literature on computation markets and
on reserve prices, examining the implications of these works on our results.

Using Spot Price Traces for Client Strategy Evaluation Most stud-
ies that use price traces use them to evaluate client strategies. The relevance
of such work to future deployment of instances needs to be re-evaluated when
the nature of the traces changes (i.e., when a new epoch starts). Andrzejak,
Kondo and Yi [15,154] used data from the transition period between the
second and third epoch for their evaluation. They focused on eu-west, which
suffered most from this transition. In their work on migration [153], the same
authors interchangeably used data from before and after the change in the
price change algorithm on July 25, 2010, as did Voorsluys et al. [141], who
analyzed the performance of their spot instance broker using traces from
March 2010 to February 2011.

In their simulations, Mattess, Vecchiola, and Buyya [95] evaluated client
strategies using an EC2 spot instance trace of the third epoch only, attribut-
ing the different trace behavior prior to January 18th, 2010 to Christmas
and to the recent introduction of spot instances. Chohan et al. [34] analyzed
price histories from the third epoch only, because of the pricing bug that was
fixed in mid-January 2010 [10]. The bug allowed instances with prices higher
than the regional spot price to be terminated due to congestion in their avail-
ability zone (which is a part of the region), while keeping the regional price
low. The authors attributed the qualitative change of prices between the
second and third epoch to the bug fix. However, this bug fix is unlikely to
have caused the qualitative price changes we observe during January 2010,
namely, the appearance of the pricing band.

Brebner and Liu [26] represented the cost of spot instances as a constant,
which equals the average of several months of the price trace, but did not

65

state the duration or length of the history they used. It is thus impossible
to determine which epochs they used, and what the given average values
represent.

Zhao et al. [159] and Mazzucco and Dumas [97] assumed spot instance
prices are market-driven, and modeled some of them to be used as a client
decision aid. These models are no longer relevant once a drastic policy change
is made.

Using Spot Price Traces to Learn about the Market Zhang et
al. [157] assumed Amazon uses a market-driven auction, which led them
to conclude that spot price histories reflect actual client bids. On this ba-
sis they sought resource allocations to instance types which optimized the
provider’s revenue. Chen et al. [32], who tested provider scheduling algo-
rithms, likewise assumed EC2 price traces represent market clearing prices.
We consider these assumptions doubtful, in light of our findings that 98% of
the time, on average, EC2 price traces are the reserve prices, and as such do
not provide a lot of information about real client bids, nor are necessarily
clearing prices.

Free Spot and Futures Markets Amazon’s spot instances are not a free
market. Price traces of free spot and future markets [105,134] differ from
EC2 spot price traces: they do not have a hard minimal price and are not
anchored in the bottom of the price range. Rahman, Lu and Gupta [110]
evaluated free spot market options using EC2 traces, and noted that the
“data does not show enough fluctuations as expected in a free market.”

4.10 Conclusions

Amazon EC2 spot price traces provide more information about Amazon than
about its clients. We have shown that during the examined period Amazon
probably set spot prices using a random AR(1) (hidden) reserve price. This
price might have been the basis of a market-driven mechanism, in which
high prices might have reflected market changes, but most low prices, within
a band of prices, were usually indicative only of the dynamic reserve price.

Understanding how Amazon prices its spare capacity is useful for clients,
who can decide how much to bid for instances; for providers, who can learn

66

how to build more profitable systems; and for researchers, who can differ-
entiate between prices set by an artificial process and prices likely to have
been set by real client bids. We have shown that many price trace charac-
teristics (e.g., minimal value, band width, change timing) are artificial and
might change according to Amazon’s decisions. Thus, researchers should be
aware of the epochs present in their traces when using those traces to model
future price behavior or to evaluate client algorithm performance. We have
shown that indiscriminately using Amazon’s current traces to model client
behavior is unfounded on average 98% of the time for the examined period.

4.11 Epilogue

Amazon’s EC2 spot instance pricing mechanism underwent a radical change
between the first submission of this paper and its first acceptance. Several
days after its acceptance, the spot instance prices underwent another extreme
change, and the pricing band disappeared from the traces altogether. For ex-
ample, in the trace shown in Fig. 4.17, the spot price is constant throughout
October 2011, except for a single change in the minimal price. While these
radical qualitative changes are further evidence of the former prices being
artificially set, the October prices are consistent with a constant minimal
price auction, and are no longer consistent with an AR(1) hidden reserve

price.

67

Sample autocorrelation function
of normalized daily mean load

1

1@

0.8

0.6 1

5 10 115 20
Lag (days)

(a) Memory utilization of three clouds

25

30

—&— m1.small

$— mi.large
—<— m1.xlarge
—+— m2.xlarge
—*— m2.2xlarge
—H— m2.4xlarge
—— c1.medium
—&— cl.xlarge

Sample autocorrelation function
of normalized daily mean price

Lag (days)

(b) Price of eight ap-southeast.linux types

Figure 4.6: Autocorrelation of mean daily values (memory utilization or

prices), with respective approxima

confidence bounds are displayed as

horizontal lines in the same colors as the autocorrelation curves. The daily
values are normalized by their week’s mean value.

< 3 ;ran—l 3rd

Q 1| st 2nd

5} epoch

=

o

—

o

o

2]

o

é < ><

o) high

c) I)) low prices ‘ Iow and hlgh prices prices
Dec Jan Feb Mar May Jun Jul

date (Dec 2009 - Jul 2010)

Figure 4.7: Price history for us-east.windows.m1.small. Three time epochs
are shown, with a transition period between the second and third epochs.
The spot price is presented as a fraction of the on-demand price for the
same instance.

69

0.9

0.8

probability
28

o
w

0.2

0.1

Figure 4.8: CDF of instance or task runtimes on clouds, parallel systems

I-"‘-I-‘-‘-I'

s'm
¢ I‘I\“-‘-‘-‘-‘"

"' gmism T

L4 ‘..\.

= = mcloud 1

I'm ™ cloud 2

= cloud 3

i LPC-EGEE-2004
GRID5000

== SDSC-Paragon b
= = = LANL-CM5

1 2 3 4 5 6 7 8 9
runtime [days]

10

and grids

70

e = = =cloud 3 =

0.35
cloud 2
0.3 cloud 1 7
o2 W e LPC-EGEE |
L - = = GRID5000
5 02r + SDSC-Paragon
'g 0.15- f O LANL-CM5
3
= 01f
o)
© o005
0 | -
-0.05
=01k

Figure 4.9: Task/instance inter-arrival time autocorrelation on clouds,
parallel systems (LANL CM-5, SDSC), and grids (LPC-EGEE, GRID5000).

1 F
0.8t
>
= :
= 0.6 1
o) ~
o] 1
Q 1
g_ 0.4t v Jan 2010 - Jul 2010 i
- I [Jul 2010 - Feb 2011
02t L1 = = =Feb 2011 - April 2011 (present day) | -
/)
I'4
0 L2 | | ! 1 I - L :
0 1 5 3 4 5 6 7 8 9

step length: time between price changes [h]

Figure 4.10: CDF of time interval between price changes for different
versions of the price change scheduling algorithm. Input:
us-east.linux.m1.small.

71

0.9

o
@

I
3

o
)

availability fraction

o4 — — — Const. reserve price, Pareto dist.

03l — + — AR(1) band of reserve price, Pareto dist. i
= = = Const. reserve price, Linear by task length dist.

0ol = ===+ AR(1) reserve price, Linear by task length dist. i
— Const. reserve price, Normal dist.

01l —+— AR(1) band of reserve price, Normal dist. |

0 Il Il Il Il Il Il Il Il Il Il
04 045 05 055 06 065 07 075 08 08 09
declared price as fraction of on—-demand price

Figure 4.11: Simulation results for various bidding models, with constant
and AR(1) reserve price, on the basis of a grid trace (LPC-EGEE)

72

— — — Const. reserve price, Pareto dist.

ool —*~ AR(1) band of reserve price, Pareto dist. /=
= = =« Const. reserve price, Linear by task length dist. /
0.8 ===+ AR(1) band of reserve price, Linear by task length dist. 4.:"

—— Const. reserve price, Normal dist.
—+— AR(1) band of reserve price, Normal dist.

e
~

o
)

availability fraction
5 &

o
w

o
o

0.1

0 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
declared price as fraction of on—-demand price

Figure 4.12: Simulation results for various bidding models, with constant
and AR(1) reserve price, on the basis of a trace of cloud 1

73

0.9

o
d
T

o
]
T

o
(=2
T

— — —Const. reserve price, Pareto dist. B

availability fraction
2 &

— -+ —AR(1) band of reserve price, Pareto dist.
= = = =Const. reserve price, Linear by task length dist.

0.3F 4
- =—==AR(1) band of reserve price, Linear by task length dist.
Const. reserve price, Normal dist.
02r —+—AR(1) band of reserve price, Normal dist.]
0.1 4

! ! !

0 1 1 1 1 1 1 1
0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
declared price as fraction of on—demand price

Figure 4.13: Simulation results for various bidding models, with constant
and AR(1) reserve price, on the basis of a trace of cloud 2

74

o
)

Const. reserve price, Pareto dist. g

AR(1) reserve price, Pareto dist.
Const. reserve price, Linear by task length dist. E

o
~
T

AR(1) reserve price, Linear by task length dist.

availability fraction

03t Const. reserve price, Normal dist. i
AR(1) reserve price, Normal dist.

0.2 B

0.1} B

0 Il Il Il Il Il
04 045 05 055 06 065 07 075 08 085 09
declared price as fraction of on—demand price

Figure 4.14: Simulation results for various bidding models, with constant
and AR(1) reserve price, on the basis of a trace of cloud 3

75

o
© ©
© «a

T

0.85|

0.75|

o
d
T

0.65

availability fraction
o
o]

041 042 043 044 045 046 047 048 049 0.5 0.51
declared price as fraction of on—-demand price

Figure 4.15: Availability as a function of the declared price during the
second epoch for us-west.linux.m1.xlarge.

0.8

0.7

0.6

0.4 —+— - Pareto dist., up to 100 days

*— Normal dist., up to 100 days

0.3

availability fraction
o
(5]

—A~— - Pareto dist., up to 2 days
—&— Normal dist., up to 2 days n
— - — - Pareto dist., up to 1 day

0.2

0.1

Normal dist., up to 1 day
1 1 1 1 1 1 T T T T

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
declared price [fraction of on demand price]

Figure 4.16: Impact of running time truncation of the cloud 2 trace on
price-availability graphs for simulations with Pareto and normally
distributed bids and AR(1) reserve price

76

I I
us-east-1.suse.m1.large

Paper rejected,
Tech report published,
Tweeted and re-Tweeted

End of data to thaousands of people i

0.9 used for the paper

First paper
0.8 submitted b
Paper accepted

Spot instance price (normalized)

Time (Months of 2011)

Figure 4.17: The history of this paper and the price trace of suse.ml.large
on us-east during 2011

7

Chapter 5

The Resource-as-a-Service
(RaaS) Cloud

5.1 abstract

Infrastructure-as-a-Service (IaaS) cloud providers typically sell virtual ma-
chines that bundle a fixed amount of resources, such as the core count, the
memory size, and the I/O bandwidth. The resource bundles are usually un-
changing throughout the lifetime of the virtual machines. We foresee that
this type of rigid resource allocation will change in the near future. Instead
of fixed bundles, cloud providers will increasingly sell resources individually,
reprice them, and adjust their quantity every few seconds in accordance with
market-driven supply-and-demand conditions; virtual machines will accord-
ingly purchase and utilize the changing resources dynamically, while they
are running. We term this nascent economic model of cloud computing the
Resource-as-a-Service (RaaS) cloud, and we contend that its rise is the likely
culmination of recent trends in the construction of IaaS clouds and of the

economic forces operating on cloud providers and clients.

“When the quantity of any commodity which is brought to mar-
ket falls short of the effectual demand, [...] some [...] will be
willing to give more.” (Adam Smith,
An Inquiry into the Nature and Causes of the Wealth of Nations)

78

5.2 Introduction

Cloud computing is taking the computer world by storm. Today, Infrastructure-
as-a-Service (IaaS) clouds, such as Amazon EC2, allow anyone with a credit
card to tap into a seemingly unlimited fountain of computing resources by
renting virtual machines for several cents or dollars per hour. According to
a Forrester Research report [114], the yearly cloud computing market is ex-
pected to top $241 billion in 2020, compared to $40.7 billion in 2010, a sixfold
increase. What will these 2020 clouds look like? Given the current pace of
innovation in cloud computing and in other utilities such as smart grids and
wireless spectra, substantial shifts are bound to occur in how providers de-
sign, operate, and sell cloud computing resources, and in how clients purchase
and use those resources.

IaaS cloud providers sell fixed bundles of CPU, memory, and I/O re-
sources packaged as server-equivalent virtual machines. We foresee that, in-
stead, providers will continuously reprice and adjust the quantity of the in-
dividual resources with a time granularity as fine as seconds; the software
stack within the virtual machines will accordingly evolve to productively op-
erate in this dynamic, ever-changing environment. We call this new model of
cloud computing the Resource-as-a-Service (RaaS) cloud. In a RaaS cloud,
provider-governed economic mechanisms will control clients’ access to re-
sources. Hence, clients will deploy economic agents that will continuously
buy and sell computing resources in accordance with the provider’s current
supplies and other clients’ current demands.

We identify four existing trends in the operation of IaaS cloud comput-
ing platforms, that underlie the transition we foresee: the shrinking duration
of rental, billing, and pricing periods (Section 5.3.1), the increasingly fine-
grained resources offered for sale (Section 5.3.2), the increasingly market-
driven pricing of resources (Section 5.3.3), and the provisioning of useful
service level agreements (SLAs) (Section 5.3.4). We believe the economic
forces operating on both providers and clients (Section 5.4) will continue
pushing these trends forward. Eventually, as the trends near their culmi-
nation, these forces will unify today’s IaaS cloud computing models into a
single economic model of cloud computing. We call this unified model the
Raa$S model of cloud computing (Section 5.5). We conclude by outlining the
challenges and opportunities the RaaS cloud presents (Section 5.6).

79

5.3 Recent IaaS Trends

5.3.1 Duration of Rent and Pricing

Before cloud computing, the average useful lifetime of a purchased server was
approximately three years. With the advent of Web hosting, clients could
rent a server on a monthly basis. With the introduction of on-demand EC2
instances in 2006, Amazon radically changed the time granularity of server
rental, making it possible to rent a server equivalent for as little as one hour.
This move was good for the provider, because, by incentivizing the clients
to shut down unneeded instances, it allowed for better time-sharing of the
hardware. It also benefited the clients, who no longer needed to pay for wall
clock time they did not use, but only for instance time that they did use.

This trend—of renting server-equivalents for increasingly shorter time
durations—is driven by economic forces that keep pushing clients to im-
prove efficiency and minimize waste: if a partial instance-hour is billed as
a full hour, you might waste up to an hour over the lifetime of every vir-
tual machine (a per-machine penalty). If a partial instance-second is billed
as a full second, then you will only waste up to a second over the lifetime
of every virtual machine. Thus, shorter durations of rent and shorter billing
units reduce client overhead and open the cloud for business for shorter work-
loads. Notably, low overheads encourage horizontal elasticity— changing the
number of concurrent virtual machines—and draw clients who require this
functionality to the cloud.

The trend towards shorter times is also gaining ground with regard to
pricing periods. Amazon spot-instances, announced in 2009, may be repriced
as often as every five minutes [2], although they bill by the price at the
beginning of the hour. CloudSigma, announced in 2010, reprices its resources
exactly every five minutes.!

New providers charge by even finer time granularity: Gridspot? and
ProfitBricks,® both launched in July 2012, charge by three-minute and one-
minute chunks, respectively. Google App Engine’s new policy is to bill in-
stances by the minute, with a minimum charge of 15 minutes,* and as of
May 2013 Google Compute Engine charges by the minute with a minimum
of ten minutes instead of by hours.?

We draw an analogy between cloud providers and phone companies,
which have progressed over the years from billing landlines per several min-

80

utes to billing cell phones by the minute, and then, due to customer pressure
or court orders, to billing per several seconds and even per second. Similarly,
car rental (by the day) is also giving way to car sharing (by the hour), and it is
recommended that wireless spectrum sharing have a shorter period base [47].

We expect this trend of shortening times to continue such that eventu-
ally, cloud providers will reprice computing resources every few seconds and
charge for them by the second. Providers might compensate themselves for
overheads by charging a minimal amount or using progressive prices (higher
unit-prices for shorter rental times). Such durations are consistent with peak
demands that can change over seconds when a site is “slashdotted” (linked
from a high-profile Web site).

5.3.2 Resource Granularity

In most IaaS clouds, clients rent a fixed bundle of compute, memory, and
I1/O resources. Amazon and Rackspace” call these bundles “instance types,”
GoGrid® calls them “server sizes,” and Google Compute Engine? calls them
“machine types.” Selling resources this way provides clients with a familiar
abstraction of a server-equivalent. This abstraction is starting to unravel,
and in its place we see the beginnings of a new trend towards finer and finer
resource granularity. In August 2012,'% Amazon began allowing clients to dy-
namically change the available I/O resources for already-running instances.'!
Google App Engine charges 1/O operations by the million and offers pro-
gressive network prices, which are rounded down to small base units before
charging (1 byte, 1 email, 1 instance-hour).!'? CloudSigma (2010), Gridspot
(2012), and ProfitBricks (2012) offer clients the ability to compose a flexible
bundle from varying amounts of resources, similar to building a custom-made
server out of different mixtures of resources such as CPUs, memory, and I/O
devices.

Renting a fixed combination of cloud resources cannot and does not re-
flect the interests of clients. First, as server size is likely to continue to
increase—hundreds of cores and hundreds of gigabytes of memory per server
in a few years—an entire server-equivalent may be too large for some cus-
tomer needs. Second, selling a fixed combination of resources is only efficient
when the load customers need to handle is both known in advance and
constant. As neither condition is likely, the ability to dynamically mix-and-

81

match different amounts of compute, memory, and I/O resources benefits
the clients.

We expect this trend towards finer resource granularity to continue, such
that all of the major resources (compute, memory, and I/0O) will be rented
and charged for in dynamically changing amounts and not in fixed bundles:
clients will buy seed virtual machines with some initial amount of resources,
and then supplement these initial allocations with additional resources as
needed.

Studying these trends, we extrapolate that, in the near future, resources
will be rented separately with fine resource granularity for short durations.
As rental durations grow shorter, we expect efficient clients to automate the
process by deploying an economic agent (described in Section 5.5), which
will make decisions in accordance with the current prices of those resources,
the changing load the machine should handle, and the client’s subjective
valuation of those different resources at different points in time. Such agents
are also considered a necessary development in smart grids [112] and wire-
less spectrum [161] resource allocation. Two elements are likely to ease the
adoption of economic agents: client size (larger clients are more likely to
invest in systematic savings, which accumulate for them to large numbers),
and the availability of agents that are off-the-shelf and customizable (e.g.,
open source).

5.3.3 Market-Driven Resource Pricing

Virtualization and machine consolidation are beneficial when at least some
resources are shared (e.g., heat sink, bus, last-level cache), and others are
time shared (e.g., when a fraction of a CPU is rented, or physical memory
is overcommited). However, the performance of a given virtual machine can
vary wildly at different times due to interference and bottlenecks caused by
other virtual machines that share resources whose use is not measured and al-
located [56,102,135]. For example, Google App Engine’s preliminary model,
charging for CPU time only and not for memory, made the scaling of appli-
cations that use a lot of memory and little CPU time “cost-prohibitive to
Google,” 3 because consolidation of such applications was hindered by mem-
ory bottlenecks. Hence, in 2011, Google App Engine was driven to charge
for memory (by introducing memory-varied bundles), which became, as a

82

result, a measured and allocated resource.

Moreover, interference and bottlenecks depend on the activity of all the
virtual machines involved, and are not easily quantified in a live environment
in which the guest can only monitor its own activity. Even after the guest
benchmarks its performance as a function of the resource bundle it rented,
neighbors sharing those same resources might still cause that performance
to vary [135]. Thus, there is a discrepancy between what providers provide
and what clients would actually like: in practice, what clients care about is
their virtual machines’ subjective performance.

To bridge this gap, researchers have proposed to sell client performance
instead of consumed resources [20,60,102,107]. This approach is only appli-
cable where performance is well defined, and where the client applications
are fully visible to the provider (as is the case in Software-as-a-Service (SaaS)
and Platform-as-a-Service (PaaS) clouds), or the client virtual machines fully
cooperate with the provider, as may be the case in private [aaS clouds. How-
ever, laaS cloud providers and clients are separate economic entities. In gen-
eral, they do not trust each other, and do not cooperate without good reason.
Hence, guaranteeing client performance levels is not applicable to a public
TaaS cloud, where allocated resources affect the performance of different ap-
plications differently, where the very definition of performance is subjective,
where client virtual machines are opaque, and where the provider cannot
rely on clients to tell the truth with regard to their desired and achieved
performance. If the provider guarantees a certain performance level, it is in
the client’s interest to claim the performance is still too low, so that the
provider will add resources.

We believe that public clouds will have to forsake the approach of charg-
ing users a predefined sum for resource bundles of unknown performance. For
high-paying clients, providers can raise prices and forgo resource overcom-
mitment. For low-paying clients, a cheap or free tier of unknown performance
can be offered. However, for mid-range clients, providers will have to follow
one of the following routes to handle the problem of unpredictable resource
availability: (1) tackle the hard task of precisely measuring all the system’s
resources to quantify the real use each virtual machine made of them, and
then charge the clients precisely for the resources they consumed, or (2)

switch to a market-driven model.

A market-driven model is based on how clients value the few monitored

83

resources. It does not necessitate precise measurement of resource use on the
part of the provider—only the final outcome, the client’s subjective valuation
of its performance, matters. Clients, in turn, will have to develop their own
model to determine the value of a smaller number of monitored resources.
The model needs to implicitly factor in virtual machine interference over non-
monitored resources. For example, clients might use a learning algorithm that
produces a time-local model for the connection between monitored resources
and client performance. Though highly expressive, the client’s model need
not be complicated: it is enough that the client can adjust the model to the
required accuracy level. Hence, the minimal client model can be as simple as
a specific sum for a specific amount of resources: below these requirements,
the client will not pay. Above them, the client will not add money. The
client willingness to pay will affect the prices and the resource allocation.
Unlike previously proposed models, this economic model can accommodate
real-world, selfish, rational clients.

5.3.4 Tiered Service Levels

Tiered service [103], where different clients get different levels of service,
can be found in certain scientific grids. Jobs of clients with low privileges
may be preempted (aborted or suspended) by jobs of clients with higher
privileges. Although clouds did not, at first, offer such prioritized service but
rather supplied service at only one fixed level (on-demand), Amazon has since
introduced different priority levels within EC2. The higher priority levels are
accorded to the reserved (introduced March 2009) and on-demand instances.
Spot instances (introduced December 2009) provide a continuum of lower
service levels, since Amazon prioritizes spot instances according to the bid
price stated by each client. Gridspot (2012) operates in a similar manner.
As in grids, these priorities are relative, so it is hard to explicitly define their
meaning in terms of absolute availability. For example, the availability of
on-demand instances depends on the demand for reserved instances. The
PaaS provider Dotcloud (announced in 2010)** and Google App Engine!®
also offer different SLA levels for different fees.

Having clients with different priorities is useful to the provider, who can
provide high-priority clients with elasticity and availability at the expense
of lower-priority clients, while simultaneously renting out currently-spare

84

resources to low-priority clients when high-priority clients do not need them.
Likewise, different priorities allow budget-constrained cloud clients cheap
access to computing resources with poorer availability. Mixing clients of
different relative priorities will allow the providers to simultaneously achieve
high resource utilization and maintain adequate spare capacity for handling
sudden loads.

Extrapolating from the progression of SLA terms we have seen to-date,
we expect that in the RaaS cloud clients will be able to define their own
priority level, choosing from a relatively priced continuum. Moreover, if prices
are market driven, and priority levels reflect the client’s willingness to pay,
then we expect that clients will be able to change their desired priority levels
as often as prices change.

It is possible to extend the prevalent SLA language—"unavailability of a
minimal period X, which is at least a fraction Y of a service period Z”—to
express different absolute levels by controlling the parameters X,Y,Z [20].
Yet, we extrapolate that as more cloud providers adopt flexible SLAs, they
will continue the existing trend of relative priorities, and not venture into
extending the absolute SLA language to several tiers.

5.4 Economic Dynamics

In the previous section, we surveyed several ongoing trends and tried to
surmise where they will lead us next. We now survey the economic forces
operating on clients and on providers and their implications. We believe
these forces caused the phenomena previously discussed and will continue
pushing today’s IaaS clouds forward until today’s clouds turn into RaaS
clouds.

5.4.1 Forces Acting on Clients

As clients purchase more cloud services their bill increases. When bills are
large, clients seek systematic savings. The best way to achieve this is by
paying only for the resources they need, and only when they need them.
The more flexible the provider offerings, the better control clients have over
their costs and the resulting performance. As providers offer increasingly
fine-grained resources and service levels, clients are incentivized to develop

85

Google | O O |

Amazon - * * B

Cloud Provider

MS Azure |- D D D,

1 1 1 1 1 1 1 1
Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Price reduction date (month in 2012)

Figure 5.1: Correlated cloud price reduction dates for three major cloud
providers during 2012

or adopt resource provisioning methods. As the time scales involved shorten,
manual provisioning methods become tedious, increasing the clients’ incen-
tive to rely on computerized provisioning agents [154] to act on their behalf.

5.4.2 Forces Acting on Providers

Competition between IaaS cloud providers is increasing, as indicated by
recent cloud price reductions. During previous years, Amazon reduced its
prices in correlation with new instance type announcements, and only by
15%, while hardware costs dropped by 80% [137]. However, as shown in Fig-
ure 5.1, the timing of price cuts in 2012 by three major cloud providers is

correlated, a phenomenon referred to as a “cloud price war”.16

The competition is aided by the commoditization of cloud computing
platforms. Commoditization eases application porting between providers.
An example for such commoditization is the open source OpenStack,!” which
is the foundation of both Rackspace’s public cloud and HP’s. OpenStack also
offers Amazon EC2/S3 compatible APIs. As changing providers becomes
easier, and as hungry new providers join the fray, competition increases and
providers are forced to lower prices.

86

5.4.3 Implications of Increased Competition

As competition increases and prices decrease, providers attempt to cut their
costs,'® in an effort to maintain their profit margins. At any moment, given
the available revenue-creating client workload, the provider seeks to mini-
mize its costs (in particular, power costs) by idling or halting some machines
or parts thereof [49]. It does so by consolidating instances to as few physi-
cal machines as reasonably possible. When resources are overcommited due
to consolidation and clients suddenly wish to use more resources than are
physically available on the machine, the result is resource pressure.

The move towards tiered service and fine rental granularity is driven, in
part, by the need to reduce costs and the accompanying resource pressure.
When clients change their resource consumption on the fly, providers who
continue to guarantee absolute Quality of Service (QoS) levels have to re-
serve a conservative amount of headroom for each resource on each physical
server. This headroom—spare resources—is required just in case all clients
simultaneously require all the resources promised them. Clients who change
their resource consumption on-the-fly do not pay for this headroom unless
and until they need it, so keeping it around all the time is wasteful.

Under the fixed bundles model, if the host chooses to overcommit re-
sources, some clients will get less than the bundle they paid for. If the head-
room is too small and there is resource pressure, this underprovisioning will
be felt by the client in the form of reduced performance, and the illusion of
a fixed bundle will be broken.

Extending the current absolute SLA language to several tiers only re-
duces some of the headroom. To get rid of the headroom completely, providers
must resort to prioritization via tiered service levels, which only guarantees
clients relative QoS. Relative QoS requires that clients change their approach.
Relative QoS should thus be introduced gradually, allowing clients to control
the risk to which they agree to be exposed.

Here is a concrete example of how a provider might nowadays waste
its resources, and how a future provider might increase the utilization of
its powered-up servers and reduce its power costs. Let us consider a 4GB
physical machine, running an instance that once required 3GB of memory,
and now only uses 2GB. A new client would like to rent an instance with
2GB. Under the IaaS model, the new client cannot be accommodated on

87

this machine. 1GB goes unsold, and 2GB go unused. With tiered SLAs and
dynamic resources, the first client can temporarily reduce its holdings to
2GB, and the provider then can rent 2GB to the new client. If conflicts arise
later due to memory shortage, the provider can choose how much memory
to rent to each client on the basis of economic considerations. No memory
goes unused, and no extra physical server needs to be booted.

5.5 The RaaS Cloud

We have presented the distinct trends operating in IaaS clouds, along with
the economic forces that govern them. We believe that the combined effect
of all these trends and forces is leading to a qualitative transformation of
the TaaS cloud into what we call the Resource-as-a-Service (RaaS) cloud. We
present here our unified view of the RaaS cloud, and discuss possible steps
on the path to its realization.

5.5.1 Trading in Fine-Grained Resources

Seed virtual machine In RaaS clouds, the client purchases upon admit-
tance a seed virtual machine. The seed virtual machine has a minimal initial
amount of dedicated resources. All other resources needed for the efficient
intended operation of the virtual machine are continuously rented. This com-
bination of resource rental schemes—prepurchasing and multiple on-demand
levels—benefits the clients with the flexibility of choice. To draw from ex-
periments on human preference in Internet service provider payment plans,
clients who are presented with both flat-rate and usage-based resource rental
options tend to make use of the full range of choices [6].

Fine-grained resources The resources available for rent include CPU,
RAM, and I/O resources, as well as emerging resources such as computa-
tional accelerators (e.g., GPGPUs and FPGAs) and Flash devices. CPU
capacity is sold on a hardware-thread basis, or even as number of cycles per
unit of time; RAM is sold on the basis of memory frames; 1/0 is sold on the
basis of subsets of I/O devices with associated I/O bandwidth and latency
guarantees. Such devices include network interfaces and block interfaces. Ac-
celerators are sold both as I/O devices and as CPUs. A subset of an I/O

88

device may be presented to the virtual machine as a direct-assigned SR-IOV
Virtual Function(VF) [53] or as an emulated [12] or para-virtual device. Ev-
ery resource comes with a dynamically changing price tag. Resource rental
contracts are set for a minimal fixed period, which does not have to coincide
with the repricing period. The host may offer the guests renewal of their
rental contract at the same price for an additional fixed period.

Host economic coordinator To facilitate continuous trading, the provider’s
cloud software includes an economic coordinator representing the provider’s
interests. This coordinator operates an economic mechanism which defines
the resource allocation and billing mechanism: which client gets which re-
sources and at what price. Several auctions were proposed to such ends, e.g.,
by Kelly [75], Chun and Culler [35], Lazar and Semret [81], Waldspurger
et al. [146], and Lubin et al. [89]. In addition, the coordinator may act as a
clearing house and support a secondary market of computing resources inside
the physical machine, as SpotCloud!® offers to do for fixed-bundle virtual
machines and as Kash et al. [73] propose to do for the wireless spectrum.

Guest economic agent To take part in auctions or trade, clients’ virtual
machines must include an economic agent. This agent represents the client’s
business needs. It rents the necessary resources—given current requirements,
load and costs—at the best possible prices, from either the provider or its
neighbors—virtual machines collocated on the same physical machine, possi-
bly belonging to different clients. When demand outstrips supply, the agent
changes its bidding strategy (in cases where the provider runs an auction)
or negotiates with neighbors’ agents, mediating between the client’s require-
ments and the resources available in the system, ultimately deciding how
much to offer to pay for each resource at any given time.

Subletting Clients can secure resources early and sublet them later if
they no longer need them. The resource securing can be done either by
actively renting resources long term or by negotiating a future contract with
the host. Either way, resource subletting also lays the ground for resource
futures markets among clients. Clients can sublet to other clients on the same
physical machine using infrastructure provided by the host’s coordinator: the
clients agree to redivide resources between them and inform the coordinator,

89

who transfers the local resources from one guest to another (as Hu et al. [62]
do for bandwidth resources). In addition to trading with a limited number
of neighbors, clients can sublet excess resources to anyone, in the form of
nested full virtual machines [21], a concept which is gaining more and more
support. Examples resembling subletting exist today in the Amazon EC2
Reserved Instance Marketplace,?? in CloudSigma’s reseller option,?! and in
DotCloud, which is reselling EC2’s resources with an added value.?? The
subletting option reduces the risk for clients who commit in advance to rent
resources. It also partially relieves the provider of the burden of retail sales,
improves its utilization, and can increase its revenue through seller fees.?3

Legacy clients IaaS providers can introduce RaaS capabilities gradually,
without forcing their clients to change their business logic. Legacy clients,
without an economic agent, can still function in the RaaS cloud just as they
do in an IaaS cloud. They can simply rent large RaaS seed machines, which
serve as laaS instances. laaS virtual machines function in a RaaS cloud just
as well as they do in an IaaS cloud. However, to get the RaaS benefits of
vertical elasticity and reduced costs, clients will need to adapt.

Private clouds Should the provider and clients all belong to the same
economic entity (e.g., as might happen in a company’s private cloud), then
the economic mechanism is not used for actual payments, but still reflects
the relative importance of the different clients and the subjective costs of
resources (electricity, for example).

5.5.2 Prioritized Service Levels

Priorities for headroom only In the RaaS cloud, the client gets an
absolute guarantee (for receiving the resources and for the price paid) only
for its minimal consumption, which is constant. Additional resources are
provided on a priority basis in market prices. A risk-averse client can prepay
for a larger amount of constant resources, trading low costs for peace of
mind. From the provider’s point of view, the aggregate constant consumption
provides a steady income source. Only resources which may go unused (the
headroom) are allocated on the basis of market competition.

90

Vertical elasticity: Robin Hood in reverse RaaS clients are offered
on-the-fly, fine-grained, fine-timed wvertical elasticity for each instance: the
ability to expand and shrink the resource consumption of each virtual ma-
chine. The resources required for this vertical elasticity are limited by the
physical resources contained in a single machine, because migrating running
virtual machines from one physical machine to another will likely remain less
efficient than dynamically balancing the available resources between virtual
machines co-existing on the same physical machines. Hence, during peak
demand times, to enable one client to vertically upscale a virtual machine,
the additional resources must be taken from a meighbor. Instead of static
priorities, in the RaaS cloud providers use the willingness of clients to pay
a certain price for resources at a given moment (e.g., bids) to decide which
client gets which resource. Thus market forces dictate both the constantly
changing prices of resources and their allocation. In effect, the RaaS cloud
provider does the opposite of Robin Hood: it takes from the poor and gives
to the rich.

A few good neighbors The RaaS virtual machine’s vertical elasticity is
determined, via a market mechanism, by its neighbors’ willingness to pay.
The neighbors also determine the cost of the elastic expansion. Due to the
inherent inefficiencies of live virtual machine migration, RaaS clouds must in-
clude an algorithm for placing client virtual machines on physical machines.
The algorithm should achieve the right mixture of clients with different SLAs
on each physical machine in the cloud, such that high-priority clients always
have low-priority clients beside them, to provide them with more capacity
when their demands peak. The low-paying clients can use the high-paying
clients’ leftover resources when they do not need them, keeping the provider’s
machines constantly utilized. Another objective of the allocation algorithm
is to allow the low-priority clients enough aggregate resources for their needs.
A low priority client can be expected to tolerate a temporary loss of service
every so often, but if the physical resources are strictly smaller than the mean
demand, such a client will never get enough resources to make meaningful
progress. Therefore, to retain the low-priority clients, the placement algo-
rithm must provide them with enough resources to make (some) progress.

91

Full house The RaaS provider also influences the quality of service that
the RaaS client experiences by limiting the mazimal possible aggregate de-
mand for physical resources on the machine. Demand can be limited by
controlling the number of virtual machines per physical machine and the
maximal vertical elasticity to which each virtual machine is entitled. When
the maximal possible aggregate demand is lower than the supply, resources
are wasted, but all virtual machines can freely expand. As the maximal
possible aggregate demand exceeds the supply, clients will be less likely to
succeed in vertical expansion when they need it, or might be forced to pay
more for the same expansion. Hence, RaaS clients are willing to pay more
to be hosted in a physical machine with lower maximal possible aggregate
demand. This encourages RaaS providers to expose information about the
aggregate demand and supply on the physical machine to its clients.

5.6 Implications, Challenges, Opportunities

The RaaS cloud gives rise to a number of implications, challenges, and op-
portunities for both providers and clients, which did not exist in markets of
entire virtual machines [7,105,110,123,134,156]. Broadly speaking, the new
research areas can be divided into two categories: technical mechanisms and
policies.

The RaaS cloud requires new mechanisms for allocating, metering, charg-
ing for, reclaiming, and redistributing CPU, memory and I/O resources be-
tween untrusted, not-necessarily-cooperative clients every few seconds. These
mechanisms must be efficient and reliable. In particular, they must be resis-
tant to side-channel attacks from malicious clients [115]. Hardware mecha-
nisms are especially needed for fine-grained resource metering in the RaaS
cloud.

The RaaS cloud requires new system software and new applications. Usu-
ally, current operating systems and applications are written under the as-
sumption that their underlying resources are fixed and always available. In
the RaaS cloud, virtual machines never know the precise amount of resources
that will be available to them at any given second. Thus, the software run-
ning in those virtual machines must adapt to changing resource availability
and exploit whatever resources the software has, when it has them. Assume
a client application that just got an extra 2Gbps of networking bandwidth

92

at a steal of a price, but only for one second. To use it effectively while it is
available, all the software layers, including the operating system, run-time
layer, and application must be aware of it.

The RaaS cloud requires efficient methods of balancing resources within a
single physical machine, while taking into consideration the different guaran-
teed service levels. Bottleneck-resource allocation [44,51,57] is a step towards
allocation of resource bundles, but it still requires an algorithm for setting
the system share to which each client is entitled.

The resource balancers are most efficient when guests with different ser-
vice levels are collocated on the same physical server. Hence, workload bal-
ancers, which balance resources across entire cloud data centers, will need to
consider the virtual machines, flexibility and SLA in addition to the current
considerations (static resource rquests only).

Under dynamic conditions, the intra-machine RaaS mechanisms will quickly
respond to flexibility needs, holding the fort until the slower live migration
can take place. However, live migration must take place to mitigate the re-
source pressure on the effectively most stressed machines, and allow clients
to change their flexibility bounds. Large IaaS providers apparently manage
without live migration [115]: the high rate of initialization and shutdown of
virtual machines makes the initial balancer effective enough. However, the
fine time granularity of the changes in the RaaS cloud means live migra-
tion is going to be required more often. Hence, the RaaS cloud will require
efficient methods for live migration of virtual machines and for network vir-
tualization.

On the policy side, the RaaS cloud requires new economic models for
deciding what to allocate, when to allocate it, and at what prices [39]. Ideally,
they should optimize the provider’s revenue or a social welfare function:
a function of the benefit of all the clients. The clients may measure their
benefit in terms of starvation, latency, or throughput, but the mechanisms
should optimize the impact of those performance metrics on the welfare
of the clients, for example by maximizing the sum of client benefits or by
minimizing the unhappiness of the most unsatisfied client.

These new economic models should also consider that resources may
complete or substitute one another in different ways for different clients.
For one client resources might be economic complements: if, for each thread
the application requires 1GB RAM and 1 core, a client renting 2GB and 2

93

cores will only be interested in adding a combination of 1GB and 1 core. For
another client, resources might be economic substitutes: every additional GB
allows the application to cache enough previous results to require one core
less. So when cores are expensive, a client that is renting 2GB and 2 cores
will be able to release one core and rent another GB instead.

These mechanisms should be incentive compatible: truth telling regard-
ing private information should be a good course of action for the clients, so
that the provider can easily optimize the resource allocations. The mecha-
nisms should be collusion-resistant: a virtual machine should not suffer if
several of the virtual machines it is co-located with happen to belong to the
same client. Like approximation algorithms for multi-unit auctions [43,140],
they should be computationally efficient at large scale, so that solving the
resource allocation problem does not become prohibitive.

The mechanisms should preserve the clients’ privacy [98] as well as min-
imize the price-of-anarchy [80]: the waste incurred by using a distributed
mechanism. Moreover, in order to work in the real world, the economic
mechanisms must accommodate realistic clients’ willingness to pay, which
is a function of their performance measurements. The mechanism must sup-
port such measured functions, which are not necessarily mathematically nice
and regular (e.g., contain steps [108]). Another real-world demand is simplic-
ity. If researchers combined some of the works mentioned above to create
a cumbersome mechanism with satisfactory theoretical qualities, that still
would not guarantee its acceptance by the market: the providers and the
clients.

In conclusion, making the RaaS cloud a reality will require solving hard
problems spanning the entire gamut from game theory and economic mod-
els to system software and architecture. The onus is now on us, the cloud
computing research community, to lead the way and build the mechanisms
and policies that will make the RaaS cloud a reality.

Notes

"Mttp://www.cloudsigma. com

*nttp://gridspot.com

3http://www.profitbricks.com

4 https://developers.google.com/appengine/kb/billing\#time_granularity_instance_
pricing, accessed December 2012.

94

Shttps://cloud.google.com/pricing/compute-engine, accessed May 2013.

6 “Fifty percent of the time the site is down in seconds—even when we’ve contacted site
owners and they’ve told us everything will be fine. It’s often an unprecedented amount
of traffic, and they don’t have the required capacity.”—Stephen Fry, http://tinyurl.com/
StephenFrySeconds.

"http://www.rackspace.com/cloud/public/servers/techdetails/

8http://www.gogrid.com

“https://cloud.google.com/pricing/compute-engine

http://aws.amazon.com/about-aws/newsletters/2012/08/14/august-2012/
"http://aws.amazon. com/ebs/

12 https://developers.google.com/appengine/kb/billing

13Greg D’Alesandre, http://tinyurl.com/D-Alesandre .
Yhttps://www.dotcloud. com/pricing.html
https://cloud.google.com/pricing/
http://tinyurl.com/cloud-price-war

Yhttp://openstack.org

'8 James Hamilton, “Amazon cycle of innovation” slide, http://tinyurl.com/james—hamilton
Yhttp://spotcloud. com
Onttp://aws.amazon.com/ec2/reserved-instances/marketplace/

nttp: //www.cloudsigma. com/cloud- computing/what-is-the-cloud/171
Znttp://docs.dotcloud. com/0.9/faq/
http://aws.amazon.com/ec2/reserved-instances/marketplace/

95

Chapter 6

Ginseng: Market Driven
Memory Allocation
(Memory-as-a-Service)

6.1 Abstract

Physical memory is the most expensive resource in use in today’s cloud
computing platforms. Cloud providers would like to maximize their clients’
satisfaction by renting precious physical memory to those clients who value
it the most. But real-world cloud clients are selfish: they will only tell their
providers the truth about how much they value memory when it is in their
own best interest to do so. Under these conditions, how can providers find
an efficient memory allocation that maximizes client satisfaction?

We present Ginseng, the first market-driven framework for efficient al-
location of physical memory to selfish cloud clients. Ginseng incentivizes
selfish clients to bid their true value for the memory they need when they
need it. Ginseng continuously collects client bids, finds an efficient memory
allocation, and re-allocates physical memory to the clients that value it the
most. Ginseng achieves a x6.2-x15.8 improvement in aggregate client sat-
isfaction when compared with state-of-the-art approaches for cloud memory
allocation. It achieves 83%—-100% of the optimal aggregate client satisfaction.

96

6.2 Introduction

Infrastructure-as-a-Service (IaaS) cloud computing providers rent computing
resources to their clients. As competition between providers gets tougher and
prices start going down, providers will need to continuously and ruthlessly
reduce expenses, primarily by improving their hardware utilization. Physical
memory is the most constrained and thus precious resource in use in cloud
computing platforms today [54,60,61,92,102,145]. One way for providers
to significantly reduce their expenses is by using less memory to run more
client guest virtual machines on the same physical hosts.

Whereas today cloud computing clients buy a supposedly-fixed amount of
physical memory for the lifetime of their guests, nothing stops their provider
from overcommitting this memory. Clients today have no idea and no way
to discern how much physical memory they are actually getting. Clients
would much prefer to have full visibility and control over the resources they
receive [3,106]. They would like to pay only for the physical memory they
need, when they need it [17,52]. By granting clients this flexibility providers
can increase client satisfaction.

Therefore, finding an efficient allocation of physical memory on each
cloud host—an allocation that gives each guest virtual machine precisely
the amount of memory it needs, when it needs it, at the price it is willing
to pay—poses benefits for both clients, whose satisfaction is improved, and
providers, whose hardware utilization is improved.

Previous physical memory allocation schemes assumed fully cooperative
client guest virtual machines, where the host knows precisely what each guest
is doing, how much benefit additional memory would bring to it, and the im-
portance of that guest’s workload to the client [54, 60, 61, 102]. However,
when it comes to commercial cloud providers and their paying laaS clients,
none of these assumptions are realistic. Real-world clients act rationally and
selfishly. They are black boxes with private information such as their perfor-
mance statistics, how much memory they need at the moment, and what it is
worth to them. Rational, selfish black-boxes will not share this information
with their provider unless it is in their own best interest to do so.

When white-box models are applied to selfish guests, the guests have
an incentive to manipulate the host into granting them more memory than
their fair share. For example, if the host gives memory to those guests that

97

will benefit more from it, each guest will say it benefits from memory more
than any other guest. If the host gives memory to those guests that perform
poorly with their current allocation, each guest will say it performs poorly.
If the host allocates memory on the basis of passive black-box or grey-box
measurements [72, 86,92, 145] such as page faults, guests have an incentive
to bias the measurement results, e.g., by inducing unnecessary page faults.
Furthermore, black-box methods compare the guests only by technical quali-
ties such as throughput and latency, which are valued differently by different
guests under different circumstances.

In this work we address the cloud provider’s fundamental memory allo-
cation problem: How should it divide the physical memory on each cloud
host among selfish black-box guests? A reasonable meta-approach would be
to give more memory to guests who would benefit more from it. But how
can the host compare the benefits of additional memory for each guest?

We make the following three contributions. Our first contribution
is Ginseng, a market-driven memory allocation framework for allocating
memory efficiently to selfish black-box virtual machines. Ginseng is the first
cloud platform to optimize overall client satisfaction for black box guests.

Our second contribution is the Memory Progressive Second Price
(MPSP) auction, a game-theoretic market-driven mechanism which in-
duces auction participants to bid (and thus express their willingness to pay)
for memory according to their true economic valuations (how they perceive
the benefit they get from the memory, stated in monetary terms). In Ginseng,
the host periodically auctions memory using the MPSP auction. Guests bid
for the memory they need as they need it; the host then uses these bids to
compare the benefit that different guests obtain from physical memory, and
to allocate it to those guests which benefit from it the most. The host is not
manipulated by guests and does not require unreliable black-box measure-
ments.

Ginseng is the first full implementation of a single-resource Resource-
as-a-Service (RaaS) cloud [3]. It is ready for a world of dynamic-memory
applications—applications that can improve their performance when given
more memory on-the-fly over a large range of memory quantities and can
return memory to the system when needed. Dynamic-memory applications
are still scarce. Our third contribution is a dynamic-memory version
of Memcached, a widely-used key-value storage cloud application, as well

98

as MemoryConsumer, a dynamic memory benchmark we developed.

Ginseng achieves a x6.2 improvement in aggregate client satisfaction
for MemoryConsumer and x15.8 improvement for Memcached, when com-
pared with state-of-the-art approaches for cloud memory allocation. Overall,
it achieves 83%-100% of the optimal aggregate client satisfaction.

6.3 System Architecture

Ginseng’s system architecture is depicted in Figure 6.1. Ginseng is a market-
driven framework for allocating memory in the cloud using guest bids. Chal-
lenges in auctioning memory, as opposed to other kinds of resources, and
how Ginseng overcomes them, are described in Section 6.4.

Ginseng has a host component and a guest component. The host’s auc-
tioneer receives guest bids using the protocol specified in Section 6.5, per-
forms the MPSP auction described in Section 6.6, and uses a balloon [86]
to change each guest’s memory allocation according to the auction’s results.
Ginseng does not specifically depend on a balloon; it only requires that the
host supports some underlying mechanism for memory borrowing. We im-
plemented Ginseng for cloud hosts running the KVM hypervisor [76].

Guests utilize an economic learning agent to rent more or less physical
memory. Each guest’s agent acts on its behalf according to its valuation-of-
memory function within the framework of the MPSP protocol. The guest is
free to use any agent it wishes provided it speaks the MPSP protocol. We
describe the guest agent we implemented in Section 6.7. Since all commu-
nication between the agents and the auctioneer is over TCP/IP, the agents
and the auctioneer could run anywhere; our prototype runs them inside the
guests and in the host, respectively.

6.4 Memory Auctions

Ginseng auctions memory between guests. Each guest has a different, chang-
ing, private (secret) valuation for memory. We define the aggregate benefit of
a memory allocation to all guests—their satisfaction from auction results—
using the game-theoretic measure of social welfare. The social welfare of an
allocation is defined as the sum of all the guests’ valuations of the memory
they receive in this allocation. An efficient memory auction allocates the

99

Host Guest

| Application h N
Ginseng Strategic Agent
Perf(memory,load) ‘
Vp(perf) |
‘ Strategy Adviser j

> Auctioneer

»‘ Communicator |< >‘ Communicator ‘
|
Y

‘ Balloon Controller } >‘ Balloon Driver ‘

Figure 6.1: Ginseng system architecture

memory to the guests such that the social welfare is maximized. A necessary
condition for a memory auction to maximize the social welfare is Pareto
efficiency: there is no other allocation in which no guest benefits less, and
at least one guest benefits more. Another requirement for a good memory
auction is fairness: not preferring one guest over another [147]. An ex-post
fair auction—fair even after the allocation was made—is better than an ex-
ante fair auction, which is fair by expectation value, but may be unfair once
a random choice is made in the auction.

VCG [37,55,138] auctions optimize social welfare by incentivizing even
selfish participants with conflicting economic interests to inform the auction-
eer of their true valuation of the auctioned items. They do so by the exclusion
compensation principle, which means that each participant is charged for the
damage it inflicts on other participants’ social welfare, rather than directly
for the items it wins. VCG auctions are used in various settings, including
Facebook’s repeated auctions [58,91].

Various auction mechanisms, some of which resemble the VCG family,
have been proposed for divisible resources, in particular for bandwidth shar-
ing [75,81,93]. For practical reasons, bidders in these auctions do not com-
municate their valuation for the full range of auctioned goods. One of these
VCG-like auctions is Lazar and Semret’s Progressive Second Price (PSP)

100

auction [81]. None of the auctions proposed so far for divisible goods, includ-
ing the PSP auction, are suitable for auctioning memory, because memory
has two characteristics that set it apart from other divisible resources: first,
the participants’ valuation functions may be non-concave; second, transfer-
ring memory too quickly between two participants leads to waste.

6.4.1 Non-concave Valuation Functions

The memory valuation function, which also describes how much the guest
is willing to pay for different memory quantities, is a composition of two
functions: V(mem, load) = V,(perf(mem,load)). perf(mem,load) describes
the performance the guest can achieve given certain load and memory quan-
tity. It can be measured either online [160] or offline [54,61]. Performance
is a guest-specific metric that differs between guests. It might be measured
in hits per second for a webserver, transactions per second for a database,
trades per second for a high-frequency-trading system, or any other guest-
specific metric. Vp(perf), the guest’s owner’s (i.e., the client’s) valuation of
performance function, describes the value the client derives from a given
level of performance from a given guest. This function is different for each
client and is private information of that client.

If either of these functions is non-concave or not monotonically rising,
the composed function may be non-concave or not monotonically rising as
well. The PSP auction optimally allocates a divisible resource if and only
if all the valuation functions are monotonically rising and concave. Other
bandwidth auctions also rely on the monotonically rising concave property
of the valuation functions.

Guest performance perf(mem, load) is not necessarily a concave, monoton-
ically rising function of physical memory. For example, in the experimental
environment, our memcached version with dynamic cache size has a con-
cave, monotonically rising performance graph (Figure 6.2(a)). However, the
performance graph of off-the-shelf memcached in the same environment is
monotonically rising, but not concave (Figure 6.2(b)). The performance
graph of our dynamic memcached, in a default system configuration, is not
always concave or monotonically rising (Figure 6.2(c)). Because on-line mea-
surements of real production systems cannot be expected to always produce
concave, monotonically rising performance graphs, the valuation-of-memory

101

—2 —3 : | |
w0 w0 @-@ load: 10] .
0 I > > load: 8 | .
= 4 = |[«<r0ad: 6
v ¥ 2 HA-A load: 4
—3 — ||V load: 2
8 8 @@ load: 1
e C \
G 2 ©
£ 1l
— \ —
o o
£1 =
)) .
o [a 1 |
0! 0
06 1.0 14 18 2.2 04 05 06 0.7 0.8
Memory [GB] Memory [GB]
(a) Dynamic Memcached, (b) Memcached, 500MB
experimental system internal cache, default system
6 ——————— =9 .
w0 @@ load: 10 A-A load: 4 ~ 8 |@-@ load:
A5 H>> 0ad:8 ¥ oad: 2| L O[> r0a:
E <1< load: 6 @@ load: 1 <7 <1< load:
¥ 4 ' : B D © 6 HAA load:
= ' ' V-V load:
8 . 1
23
©
£2
S _f 2
T1p
Q 1
0! 0
0.6 1.0 1.4 1.8 2.2 2.6 0.6 1.0 14 18 2.2
Memory [GB] Memory [GB]
(c) Dynamic Memcached, (d) MemoryConsumer,
default system experimental system

Figure 6.2: Application performance (“get” hit rate for Memcached, hit
rate for MemoryConsumer) as a function of guest physical memory, for
different load values. Load is number of concurrent requests.

graph V(mem, load) may also be non-concave or even not monotonically ris-
ing.

Auction protocols which assume monotonically rising concave valuation
functions either interpret a bid of unit price and quantity (p, ¢) as willingness

102

to purchase exactly ¢ units for unit price p or as willingness to buy up to ¢
units at price p. In the first case, the bidding language is limited to exact
quantities. In the second case, if the valuation function is non-concave, the
guest may get a quantity that is smaller than the one it bid for, and pay
for it a unit price it is not willing to pay. If the function is not, at the very
least, monotonically rising, it may even get a quantity it would be better off
without.

MPSP supports non-concave and non-monotonic valuation functions by
specifying forbidden ranges. These are forbidden memory-quantity ranges
for a single price bid. The guest can use forbidden ranges to cover domains
in which its average valuation per memory unit is lower than its bid price. By
definition, MPSP will not allocate the guest a memory quantity within its
forbidden ranges. Rather, it will optimize the allocation given the constraints.
The guest can thus avoid getting certain memory quantities in advance while
still maintaining its expressiveness.

6.4.2 Memory Waste

Since guest valuations change over time, auctions must expire and allow
resources to be put up for auction again. Repeated bandwidth auctions
(rounds) can be analyzed as stand-alone auctions because the benefit from
increased bandwidth is immediate. In contrast, the benefit from winning
more memory is not immediate.

Memory is often used for caching. To utilize increased cache sizes, guests
need to retain the memory used for caches for relatively long periods of time,
to increase the likelihood of cache hits. Cycling allocations are repeating al-
location patterns involving guest and host behavior [23], where resources are
transferred back and forth between guests. If subsequent memory auctions
result in cycling allocations, then increasing auction frequency will yield less
benefit for guests; memory they rented but did not yet have time to use is
wasted. Hence, unlike in bandwidth auctions, memory auctions should not
be analyzed separately. Instead the auctioneer should control the amount of
memory exchanging hands in each auction round to balance memory waste
with the time required to respond to changing guest valuations.

Reclaim Factor. In MPSP, each guest i is set up permanently with the
bare minimal physical memory it requires to operate, denoted as bare;. This

103

memory is charged for separately by a constant hourly fee. Only extra mem-
ory is rented using auctions. In each round, the auctioneer reclaims a reclaim
factor 0 < a <1 of each guest’s extra memory for a new auction. The guest
continues to rent the rest of the extra memory it won in previous auctions
at the prices for which it won it. The host can change the reclaim factor
between auctions. It can increase it to improve the system’s responsiveness
when the memory pressure rises or is expected to rise (e.g., a new guest is
launched), or when guests change bids fast, indicating fast valuation changes.
Otherwise, it can decrease it to decrease the potential memory waste.

Tie Breaking. Guests are sorted by the unit-prices they bid when they
queue for memory. When two or more bids are identical, the tie must be
broken, preferably fairly and Pareto-efficiently.

Tied PSP guests are excluded from the allocation [81], so that if some
bidders expect to be tied, they are incentivized to change their bids. A steady
state is when the auction’s personal results (a guest’s won goods and pay-
ment) turn out the same in subsequent auctions in response to the same
strategy. A Nash equilibrium is a steady state in which guests stick to their
bids if they know what other guests plan to bid. Breaking ties by excluding
guests prevents ties in Nash equilibria. However, in dynamic, real-life sce-
narios, guest bids are not always in Nash equilibrium, especially if guests do
not continuously inter-communicate. Hence, we sought alternatives to this
tie-breaking method, which we find unsuitable for memory auctions.

We considered three Pareto-efficient options. Dividing the memory among
all the tied guests is ex-post fair, but it is also NP-hard, because the forbid-
den ranges may turn solving it into solving a knapsack problem. Preferring
guests according to a random shuffle is ex-ante fair before each round. Pre-
ferring the current memory holder [160] is only ex-ante fair before the tie
is formed, but is the most efficient tie breaker. We opted for combining the
latter two approaches in Ginseng. Guests are sorted lexically by three quali-
ties: first by bid prices, then by their current holdings, and then by a random
shuffle.

6.5 Repeated Auction Protocol

In the MPSP auction, memory allocations change every round. The guest
rents the memory for the full duration of one round, or more if the reclaim

104

factor is small. Here we describe one MPSP auction round, indexed ¢.

Initialization. For each guest 7, a reference point called the base memory
is initialized as base;(0) = bare; when it enters the system. The guest’s initial
memory allocation is its base memory.

Auction Announcement. The host computes a decay in the base mem-
ory of each guest i according to the reclaim factor 0 < o < 1 to

base;(t) = o - bare; + (1 — «) - final; (t — 1), (6.1)

where final;(t—1) is the total memory allocated to the guest in the previous
round (including the bare memory). It computes the free memory—maximal
amount of memory each guest can bid for—as the excess physical memory
beyond the host’s memory and the aggregate base memories. It then informs
each guest of its new base, the free memory, and the auction’s closing time,
after which bids are ignored.

Bidding. Interested guests bid for memory. Agent i’s bid is composed of
a unit price p;—memory price per MB per hour (billing is still done per sec-
ond according to exact rental duration.) and a list of desired ranges: mutually
exclusive, closed ranges of desired memory quantities [rf , q{ Jforj=1...my,
sorted in ascending order. The bid means that the guest is willing to rent
any memory quantity within the desired range list, in addition to its current
basic holdings base;(t), for a unit price p;. The forbidden ranges are those
that lie between the desired ranges. To simplify the notation in the context
of the same round, we drop hereafter the round indexing (t), e.g., base;(t)
can be denoted as base;.

Bid Collection. The host asynchronously collects guest bids. It consid-
ers the most recent bid from each guest, dismissing bids received before the
auction was announced. Guests that did not bid lose the auction automati-
cally. A guest that persists in not bidding gradually loses its extra memory,
until it is left with its bare minimal memory.

Allocation and Payments. The host computes the allocation and pay-
ments according to the MPSP auction protocol described in Section 6.6.
For each guest 4, it computes how much memory it won (denoted by ¢’;)
and at what unit price (denoted by p’;). The payment rule guarantees that
0<p; <pi

Accounting. In each round, a guest may win a memory chunk: a mem-

105

ory quantity with an attached rental unit-price. Over time, guests come to
hold memory chunks of different sizes with different unit prices. The host
holds this information as a list, sorted by unit price. The list is updated
at the end of the auction round in two stages: first, a of the guest’s extra
memory is released (the cheapest chunks or parts thereof). Then, if the guest
won memory quantity ¢, in the auction, a memory chunk of size ¢}, with a
unit price of p} is added to the list. Note that for & = 1 one chunk at most
exists, and the accounting is trivial.

Informing Guests. The host informs each guest i of its personal re-
sults p/, ¢;. To improve the performance of guest learning algorithms, to be
described in Section 6.7.3, the host also announces information that guests
can work out anyhow, about borderline bids: the lowest accepted bid’s unit-
price and the highest rejected bid’s unit-price.

Adjusting and Moving Memory. After an adjustment period follow-
ing the announcement, the host actually takes memory from those who lost
it and gives it to those who won, by shrinking and expanding their balloons
as necessary. The purpose of this period is to allow each guest’s agent to
notify its applications of the upcoming memory changes, and then allow the
applications time to gracefully reduce their use of memory, if necessary. The
applications are free to choose when to start reducing their memory con-
sumption, according to their memory-release agility. This early notification
approach makes it possible for the guest operating systems to gracefully
tolerate sudden large memory changes and spares applications the need to
monitor second-hand information on memory pressure.

6.6 The Auction

The MPSP auction relies on finding an optimal allocation: an allocation
that maximizes the social welfare function (SW), defined as the sum of guest
valuations for the memory they won,

SW = Z (final;(t)) — Vi(basei(t))), (6.2)

where N is the number of guests and V;(-) is guest i’s memory valuation
function for their current loads. To determine the optimal allocation, the

106

MPSP auction solves a constrained divisible good allocation problem. After
we define the allocation rule algorithm and the payment rule, we proceed to
discuss complexity and give an example. The correctness proof is omitted
for brevity.

6.6.1 Allocation Rule

The optimal allocation is found using a constrained divisible good allocation
algorithm. In each stage, a divisible good allocation is attempted: the guests
are allocated their maximal desired quantities according to the tie breaking
order (discussed in Section 6.4.2). If there are a guest g and a forbidden range
R such that g is allocated a memory quantity inside R, then the allocation
is invalid. If the SW value of the invalid allocation can improve the known
highest valid value, two constrained allocations are recursively considered
instead: one in which guest g gets a memory quantity beyond the forbidden
range R, and another in which it gets less than R’s starting point. The social
welfare of the wvalid allocations is compared to find the optimal allocation.

6.6.2 Payment Rule

The payments follow the exclusion compensation principle. According to the
PSP rule [81], if guest ¢ gets some memory ¢/; > 0, it pays:

vo= o S ok [d(0,50) — dulsins0)] (63)

0 ki
where s; is agent ¢’s bid and s_; are the other guests’ bids. Note that to
compute the payment for a guest which gets allocated some memory, the
constrained divisible good allocation algorithm needs to be computed again
without this guest. In total, the allocation procedure needs to be called one

time more than the number of winning guests.

6.6.3 Complexity

The MPSP algorithm solves an NP-hard problem, because its bidding lan-
guage includes forbidden ranges. Its time complexity is O(N?2-2M), where N
is the number of guests and M is the number of all the forbidden ranges in
all the bids. To find an optimal allocation, at most 2™ divisible allocations

107

are attempted, each taking O(NN) to compute. For the payment rule, O(N)
allocations need to be computed.

However, for real life performance functions, a few forbidden ranges are
enough to cover the non-concave regions (up to one for the functions we
measured and for Websphere [61]). Given the small number of guests on
a physical machine, the algorithm’s run-time is reasonable (less than one
second using a single hardware thread in our experiments). For concave
functions, the complexity is reduced to O(N?), as in the PSP auction [81].

Had Ginseng been implemented on the basis of bundles in a multi-unit
auction, the memory would have been divided to units. The clients would
have bid for bundles of such units. The host would have had to trade off the
accuracy of the final allocation with the complexity of the auction by con-
trolling the bundle size. As the number of units grows, the final allocation is
more accurate, but the auction’s complexity grows. In contrast, the MPSP
auction is of a continuous resource, and thus its fine-grained allocation ac-
curacy does not increase its algorithmic complexity.

6.6.4 Example of a Single Round

Consider a system with 6 MB of physical memory and two guests, bidding
bidy = (p1 = 2,71 = 3,q1 = 4) and bidy = (p2 = 1,79 = 3,q2 = 5). In the
first stage, we sort the guests by price, and try to allocate 4MB to guest 1
and 2MB to guest 2. This is an invalid allocation, because guest 2 gets a
quantity in its forbidden range, which is [0, 3). We examine two constrained
systems instead. (1) Guest 2 gets no more than the start of the forbidden
range, which is 0. In this case, the allocation is 4MB to guest 1, with a social
welfare of 8. (2) Guest 2 is guaranteed the full forbidden range, which is 3.
Then the rest of the free memory is allocated by the order of prices, so guest
1 gets the other 3 MB. The social welfare in this case is 9, and this is the
chosen allocation.

According to Equation 6.3, the guests pay pj = %(1 [5—3]) = % and

ph =1 (2[4—3]) = 2, because in each other’s absence they each would have
gotten their maximal desired range.

108

6.7 Guest Strategy

In this section we present the bidding strategy used by the guests in the
performance evaluation in Section 6.9. To simplify the notation, we drop
the guest’s index in the remainder of this section.

The guest is myopic: it wishes to maximize its estimated utility in this
round Ugg. The guest considers bidding for different maximal desired mem-
ory quantities. For each maximal quantity g, it is clear (as will be explained
in Section 6.7.1) that the best strategy would be to bid its true valuation for
the quantity. The guest then compares its estimated utility from bidding for
the different maximal quantities, as described in Section 6.7.2, with the help
of on-line learning algorithms (in Section 6.7.3). Our guest does not collude
with its neighbors.

6.7.1 Choosing the bid price p

In this section we assume the maximal desired memory quantity ¢ is given.
For the simple case of an exact desired memory quantity (m = 1, 7" = ¢ =
q), for any value ¢, bidding the mean unit valuation of the desired quantity
p(Q) _ V (base+q)—V (base)

do. By bidding lower than p(q), the guest risks losing the auction, but by

is the best strategy, no matter what the other guests

bidding higher it risks operating at a loss (paying more than what it thinks
the memory is worth).

If the valuation function is (at least locally, in the range up to ¢) concave
monotonically rising, bidding p(q) is still the best strategy for ¢ regardless of
other guests’ bids: p(g) is the guest’s minimal valuation for the range because
the unit valuation drops with the quantity. See for example Figure 6.3(a),
where the valuation function is above the line connecting the valuation of
1200 MB with the base (400 MB) valuation.

For other valuation functions, where the unit valuation may rise locally
with quantity, the guest avoids getting quantities for which the unit valuation
is lower than the bid price by covering them with the aforementioned forbid-
den ranges. This coverage ensures that the client never operates at a loss.
Such a case is demonstrated in Figure 6.3(b), where the range [1700, 2000]
MB is forbidden.

When the guest uses at least one forbidden range, bidding p(q) still pro-
tects the guest from operating at a loss, but it is not necessarily the best

109

Valuation (V)
Valuation (V)

A0 0.0

400 800 1200 1600 2000 2400 400 800 1200 1600 2000 2400
Allocation (MB) Allocation (MB)
(a) Single range (b) Multiple range

Figure 6.3: Strategies for choice of unit price for two maximal quantities,
using the same valuation function. Figure 6.3(a) demonstrates a single
desired range strategy for a concave monotonically rising part of the
valuation function. Figure 6.3(b) demonstrates a multiple desired range
strategy for a non-concave, not even monotonically rising part of the
valuation function.

strategy. For learning purposes, the guest can choose, according to its level
of risk aversion, to retain ¢, but lower the bid price if it allows it to decrease
its forbidden ranges. This will make the guest more flexible regarding the
memory quantities it can take, and enable the host to give it a partial allo-
cation in more cases, when the alternative might be not getting any memory
quantity at all.

However, in a steady state, the guest already knows how much memory
it can get for any bid it makes. The guest is incentivized to raise its bid price
to a maximum, and by this increase the exclusion compensation that other
guests pay, and make them more considerate. Hence, our guests always bid

p(g™).
6.7.2 Choosing ¢™

The guest chooses ¢ that maximizes U, in a steady state. Ugg is assessed
by estimating the quantity of memory it will get, which is defined for sim-

110

plicity as
m

> .
Qest(pa qm) = { a P Prmin (64)

0 P < Pmin

where Py, is the lowest price the guest can offer and still have a chance of
getting any memory at all. The utility estimation also requires an estima-
tion of the unit price to be paid for the allotted memory amount, pess. The
estimated utility is defined as:

Uest(qm) = V(base + Qest(pa qm)) -Y
—Pest(Gest(P:q™)) - Gest (P, q™), (6.5)

where Y denotes the known part of the cost (which is paid for the base
memory), and if peg is needed, it is assessed according to Section 6.7.3.

For concave valuation functions V (+) Uest(¢™) is maximized when p(¢™) =
Pmin- 10 such cases, the guest must only estimate and predict p,,;, to bid
optimally. For other functions, the guest needs to evaluate the full expression
in Equation 6.5, including pest and gegt, to find arg maxgm (Uegt). If several
values of ¢ maximize Uy, the guest prefers to bid with higher p values,
which improve its chances of winning the auction. For non-concave valuation
functions, the full expression in Equation 6.5 must be evaluated.

6.7.3 Evaluating Guest Utility

The guest evaluates py,;, for the current round on the basis of ten recent
borderline bids. ¢es: is predicted on the basis of ppin, according to Equa-
tion 6.4. The price to be paid, p’, depends mainly on non-granted bids. To
predict it, the guest maintains a historical table of (p/,¢’) pairs, and uses it
as a basic estimate for pes;. The pes estimate is further bounded from above
by the highest losing bid price in the last auction round.

6.8 Experimental Setup

In this section we describe the experimental setup in which we evaluate
Ginseng.
Alternative Memory Allocation Methods. Static is a fixed alloca-

tion of the same amount of memory to each guest without any overcommit-

111

ment. Host-swapping is the same as static except the host is allowed to swap
guest memory to balance memory between guests as it sees fit. The Memory
Overcommitment Manager (MOM) [86] collects data from its guests to learn
about their memory pressure and continuously adjusts their balloon sizes to
make the guests feel the same memory pressure as the host.

Workloads. To experiment with overcommitment trade-offs, we needed
benchmarks of dynamic memory applications: applications that can improve
their performance when given more memory on-the-fly over a large range of
memory quantities, and can return memory to the system when needed. We
experimented with a modified dynamic memcached and with MemoryCon-
sumer, a dedicated dynamic memory benchmark. Both applications inter-
acted with the Ginseng guest agent to dynamically adjust their heap sizes
when they won or lost memory.

Dynamic memcached is a version of memcached that changes its heap
size on the fly to respond to guest memory changes. Memcached was driven
by a memslap client. The application’s performance is defined as the “get”
hit rate. !

MemoryConsumer is a dynamic memory benchmark. It tries to write
to a random 1MB-sized cell out of a range of 1950 cells. If the address is
within the range of memory currently available to the program, 1MB of data
is actually written to the memory address, and it is considered a hit. After
each attempt, whether a hit or a miss, it sleeps for 0.1 seconds, so that misses
cost time. The application’s performance is defined as the hit rate.

We profiled the performance of each workload with varying amounts of
memory to create its perf(mem, load) function. We measured performance
under different loads for four concurrent guests without memory overcommit-
ment, as also done by Hines et al. [61]. We gradually increased and decreased
the physical memory in small steps, waiting in each step for the performance
to stabilize. For memcached we waited and measured the performance for
200 seconds, and for MemoryConsumer for 60 seconds. The perf(mem, load)
graphs can be seen in Figure 6.2(a) for the dynamic Memcached and Fig-
ure 6.2(d) for MemoryConsumer.

Load. We defined “load” for memcached and MemoryConsumer as the
number of concurrent requests being made. We used two load schemes: static
loads, where each guest’s load is constant over time, and coordinated dynamic

'Dynamic-memcached is available from https://github.com/ladypine/memcached.

112

loads. In coordinated dynamic loads, each pair of guests exchange their loads
every Tjoqq- The load-exchange timing is not coordinated among the different
guest pairs in the experiments. Loads are in the range [2, 10]. The total load
is always the number of guests x6, so that the aggregate hit rate of different
experiments will be comparable.

Machine Setup. We used a cloud host with 12GB of RAM and two
Intel(R) Xeon(R) E5620 CPUs @ 2.40GHz with 12MB LLC. Each CPU has
4 cores with hyper-threading enabled, for a total of 16 hardware threads.
The host ran Linux with kernel 2.6.35-31-server #62-Ubuntu, and the
guests ran 3.2.0-29-generic #46-Ubuntu. To reduce measurement noise,
we disabled EIST, NUMA, and C-STATE in the BIOS and Kernel Samepage
Merging (KSM) [16] in the host kernel. To prevent networking bottlenecks,
we increased the network buffers. We dedicated hardware thread 0 to the
host and pinned the guests to hardware threads 1... N. When the host also
drove the load for memcached, memslap processes were randomly (uniformly)
pinned to threads (N +1)...15.

Memory Division. 0.75GB were dedicated to the host. Thus, in static
allocation experiments, each guest got 11.25GB/N, where N denotes the
number of guests. To allow guests to both grow and shrink their memory
allocations, we configured all guests with a high mazimal memory of 10GB,
most of which was occupied by balloons, leaving each guest with a smaller
initial memory. In Ginseng experiments, we started the guests with initial
memory equal to their bare memory (0.6GB) and limited the sum of current
memories to 11.25GB.

When using host-swapping based methods (static with host-swapping
and MOM), extensive host-swapping caused the host to freeze when the
maximal guest memory was set to 10GB. Hence we also compared against
hinted (white-box) methods, in which the maximal memory of each guest
was configured as 2GB instead of 10GB. In our experiments, 2GB is the
most memory any rational guest would ask for, since performance remains
flat with any additional memory beyond 2GB. This white-box configuration,
which is based on our knowledge of the experiment design, is intended to
get the best performance out of the alternative memory allocation methods.
The initial and maximal memory values are summarized in Table 6.1.

Reducing Guest Swapping. Bare metal operating systems shield ap-
plications from memory pressure by paging memory out and by clearing

113

Method/Memory (GB) | Initial | Maximal
Ginseng bare 10
Static 11.25/N —
MOM bare 10
Host-swapping 10 —
Hinted MOM bare 2
Hinted host-swapping 2 —

Table 6.1: Guest configuration: initial and maximal memory values for each
overcommitment method.

buffers and caches, but dynamic-memory applications should be exposed to
memory pressure to respond to it. To this end we minimized guest swapping
by setting vm.min_free kbytes to 0.

Reducing Indirect Overcommitment. Bare metal operating systems
keep some memory free, in case of sudden memory pressure. In a virtualized
system, the hypervisor can indirectly overcommit this memory by giving it
to other operating systems while it is not in use; the hypervisor relies on
its ability to page out guests if and when sudden memory pressure occurs.
Since we focus on direct overcommitment (e.g., using balloons) we set the
tunable knob vm.overcommit memory to 1 in our guests, thus reducing the
amount of memory they maintain which the host can indirectly overcommit.

Time Scales. Three time scales define the usability of memory borrow-
ing and therefore the limits to the experiments we conducted: a typical time
that passes before the change in physical memory begins to affect perfor-
mance, Tiemory; the time between auction rounds, Tyyction; a typical time
scale in which conditions (e.g., load) change, Tj,qq. Useful memory borrow-
ing requires Tjoqq >> Tinemory- This condition is also necessary for on-line
learning of memory valuation. To evaluate T,emory, We performed large step
tests, making abrupt sizable changes in the physical memory and measur-
ing the time it took the performance to stabilize. We empirically determined
good values for Tj,,4 on the basis of step tests results: 1000 seconds for mem-
cached experiments, whereas for MemoryConsumer 200 seconds are enough.
We also used those step tests to verify that major faults (swapping) were
insignificant, and to verify that the performance measurement method was
getting enough time to evaluate the performance. For example, memslap

114

required 200 seconds to start experiencing cache misses.

In realistic setups providers should set Tyyuction < Tjoad- Therefore, we
set Tyuction 10 12 seconds. In each 12-second auction round the host waited
3 seconds for guest bids and then spent 1 second computing the auction’s
result and notifying the guests. The guests were then allowed 8 seconds to
prepare in case they lost memory.

6.9 Performance Evaluation

This section attempts to answer the following four questions: (1) which al-
location method provides the best social welfare? (2) how does the reclaim
factor affect social welfare? (3) what are the host revenue, wasted memory,
ties, and inefficiency in a Ginseng system? (4) how important (and accurate)
is off-line profiling of guest performance?

6.9.1 Comparing Social Welfare

We begin by evaluating the social welfare achieved by Ginseng vs. each of the
five other methods listed in Table 6.1 for a varying number of guests on the
same physical host. We evaluate Memcached guests and MemoryConsumer
guests in separate sets of experiments. In each experiment set, guests were
subject to dynamic loads. Each Memcached experiment lasted 60 minutes,
with Tjoeq = 1000 seconds. Each MemoryConsumer experiment lasted 30
minutes with Tj,,q = 200 seconds. For each experiment we present average
results of 5 experiments. The reclaim factor was set to 1. Ginseng guests use
the strategy described in Section 6.7.

In both benchmarks, perf(mem) is a concave function. To evaluate Gin-
seng’s abilities over non-concave functions, we used performance valuation
functions V), (perf) that make the resulting composed valuation function V (mem)
non-concave.

In the first experiment set (MemoryConsumer), each guest ¢’s valuation
function is defined as

Vi(mem) = f; - (perflmem))? (6.6)

where the f; values were drawn from the Pareto distribution, a widely used
model for income and asset distributions [129]. We used a Pareto index of

115

1.1, which is reasonable for income distributions [130], and a lower bound of
10~ -

The “square of performance” valuation function is characteristic of on-

line games and social networks, where the memory requirements are propor-
tional to the number of the users, and the income is proportional to user
interactions, which are proportional to the square of the number of users.
The composed valuation function is drawn in Figure 6.4(a).

In the second experiment set (dynamic memcached), each guest i’s val-
uation function is defined as V(mem) = f; - perf(mem), where the f; values
were distributed according to a Pareto distribution with a Pareto index of
1.36, another reasonable value for income distributions, bounded in the range
[1074, 100]%. The bounding represents the fact that on-line trading does
not span the whole range of human transactions: some are too cheap or too
expensive to be made on-line. The highest coefficient was set as:

(6.7)

1.8.3 otherwise.

I 0.1% perf(mem) < 3.4%0i
1 =
Khit

This sort of piecewise-linear valuation functions characterizes service level
agreements that distinguish usage levels by unit price. The valuation func-
tion for the first guest is shown in Figure 6.4(b).

The social welfare of the different experiments is compared in Figure 6.5.
The figures contain two upper bounds for the social welfare, achieved through
a simulator, which is presented in Section 6.9.3. The tighter bound results
from a simulation of Ginseng itself, and the looser bound results from a
white-box on-line simulation. The MOM and host-swapping methods yield
negligible social welfare values for these experiments, and are not presented.

As can be seen in Figure 6.5, Ginseng achieves much better social welfare
than any other allocation method for both workloads. It improves social
welfare by up to x15.8 for memcached and up to x6.2 for MemoryConsumer,
compared with both black-box approaches (static) and white-box approaches
(hinted-mom). Since each guest is allocated a fixed amount of memory (bare)
on startup, as the number of guests increases, the potential for social welfare
increases, but our host has less free memory to auction; hence the relative
peak in social welfare for 7 guests (MemoryConsumer). In the Memcached
experiment the relative peak is flat because the first guest’s valuation is

116

8 9
7 8
v v/
+r A -
25 o[
S 4 s,
EE S3t
S2 S5
1 1
0~ 0
0. 0.6
Memory [GB] Memory [GB]
(a) MemoryConsumer (b) Dynamic Memcached

Figure 6.4: Valuation functions for different loads

significantly larger than the rest. In both experiment sets, Ginseng achieves
83%—-100% of the optimal social welfare. The sharp decline in Ginseng’s
social welfare for 13 guests comes when Ginseng no longer has enough free
memory to answer even the needs of the most valuable guest.

As can be seen in Figure 6.6, in which the performance of the different
methods is compared, the improvement that Ginseng delivers does not come
at a cost when the aggregate performance is considered: Ginseng's aggregate
performance is roughly equivalent to the performance of the better methods,
namely hinted-MOM and static division.

6.9.2 Reclaim Factor Analysis

To examine the impact of the reclaim factor on social welfare in a real system,
we combined a statically loaded memcached guest, which is vulnerable to
allocation cycles, with a dynamically loaded MemoryConsumer guest, whose
load changed every 60 seconds. Each guest got bare = 0.8GB. The results
of this experiment for various reclaim factors are given in Figure 6.7. As can
be seen in Figure 6.8, lowering the reclaim factor reduces the penalty that
MemoryConsumer suffers when conditions change and it needs to change
its strategy. When the reclaim factor is lower, the system gets sluggish and
does not stabilize before the load changes again.

117

O3 static V-V hinted-host-swapping >=X Upper Bound
©-0 ginseng A—A hinted-mom @@ Ginseng Simulation

4.5 T T T T T T T T
40| ,’&Q - * -
~ - Y

N

0.0 sz

Number of VMs

(a) MemoryConsumer, valuation is square of performance

@@ static V-V hinted-host-swapping >=X Upper Bound
O-0 ginseng A—A hinted-mom @@ Ginseng Simulation
3.5 T
=¥ - % - % KA
3.0 —_ \
O]

N
&)
T

\ -
\

2.0
1.5
1.0 -

0.5

0.0 iz — sz sz
6 7 8 9 10 11 12 13
Number of VMs

\

Social Welfare [$/s]

(b) Memcached, first guest valuation is piecewise linear

Figure 6.5: Social welfare (mean and standard deviation) under different
allocation schemes as a function of the number of guests, for dynamic load
experiments. The dashed lines indicate simulation-based upper bounds on

Ginseng’s social welfare.

118

In real systems there is a tradeoff between system responsiveness and
limitation of allocation cycles that does not exist in simulations. This exper-
iment proves the importance of the reclaim factor as a knob for the host to
control the system’s stability.

6.9.3 Simulated Experiments

To evaluate various aspects of Ginseng’s performance, we augmented the ex-
perimental results with simulated experiments. The simulator was created by
re-using Ginseng’s algorithmic core with simulated guests that use the same
strategy as real guests; our simulations can be seen, therefore, as emulations
of the Ginseng process.

In our simulations we measured social welfare, sum of guest utilities, and
host revenue. In addition we measured an upper bound on waste, ties, and
the inefliciency, as explained below.

Waste and Ties. The simulations did not account for the impact of
fast ownership changes on the actual value obtained from memory, because
the performance of simulated guests stabilized immediately once the memory
size changes. We defined the upper bound on memory waste due to ownership
changes as the maximal total allocated memory minus the static allocations
over the last 40 auction rounds:

. N,
Waste(t) = _max ; final;(T) — ; Tgi_rho final;(T).

Waste can be caused by fast load changes (Tjpaq < Tmemory) as well as by
cycling allocations. Ties do not cause cycles because when they are broken,
preference is given to the previous owner, leading to a stable solution. Since
the simulations lasted 1000 rounds, a moving window of 40 rounds filtered
out transient effects while still catching large cycles.

Inefficiency. The simulation environment also enabled an on-line white-
box computation of the optimal allocation which we compare with Gin-
seng’s experimental results. The optimal allocation results from a centralized
constraint-satisfaction algorithm, with which the guests share their full valua-
tion functions. The social welfare that originates from the optimal allocation
is denoted by SWiax. We computed the inefficiency, defined as 1 — %,
using the simulation results. Inefficiency quantifies the aggregate valuation

119

degradation experienced due to the mechanism design and the bidding lan-
guage.

Simulation Setup. We ran the simulations with 10 MemoryConsumer
guests, with identical linear valuation functions, with bare memories of 0.8G B
and with static loads that sum up to a total load of 60, the same total load
as in the 10-guest experiments. We performed a parametric sweep over the
reclaim factor and the total physical memory of the system, in the range
of 11-20GB, corresponding with decreasing memory overcommitment ratios
of 4-1. We defined the memory overcommitment ratio as the sum of each
guest’s maximal demand for rented memory (at any point in time during the
experiment) divided by the memory that was available for rent at ¢ = 0. The
higher the overcommitment ratio, the fiercer is the competition for memory.

Simulation Results can be seen in Figure 6.9. In the static Memo-
ryConsumer simulations, the reclaim factor has a low impact on the host
revenue and sum of guest utilities, and no impact on the social welfare and
the inefficiency. The inefficiency ranges from 0 in a well provisioned system to
35% for an overcommitment ratio of 3.5. The inefficiency can be reduced by
using a richer bidding language [93]. There are no ties in the MemoryCon-
sumer simulations, and usually no waste either. We attribute the lack of
ties to the different slopes of the MemoryConsumer performance graphs for
the different loads (in Figure 6.2(d)). In contrast, memcached performance
graphs share the same slope in their lower parts (Figure 6.2(a)), and indeed
in memcached simulations (not shown due to lack of space) up to 80% of
the simulation rounds resulted in ties. This is consistent with our design
assumption in Section 6.4.2, that ties do happen in real life, and supports
our claim that they must be efficiently dealt with.

Discussion: Host Revenue. Ginseng does not attempt to maximize
host revenue directly. Instead, it assumes that the host charges an admittance
fee for cloud services and maximizes the aggregate client satisfaction (the
social welfare). Maximizing social welfare improves host revenues indirectly
because better-satisfied guests are willing to pay more. Likewise, improving
each cloud host’s hardware (memory) utilization should allow the provider
to run more guests on each host. Nevertheless, it is interesting to examine
the host’s direct revenues.

For small overcommitment ratios (< 1.3) the host revenue is negligible
(< 5% of the maximal social welfare): the guests’ profits (Figure 6.9(b)) equal

120

their valuations (Figure 6.9(a)). As the overcommitment ratio increases, host
revenue decreases because there is less memory to rent. When the host rev-
enue is zero and the social welfare is high, as is the case for the low overcom-
mitment range, the system is functioning well and is in a state of equilibrium,
where guests are more considerate of their neighbors thanks to the exclusion
compensation principle. Our guests reach such equilibria using indirect ne-
gotiations that result from their learning strategy (in Section 6.7.3). More
sophisticated guests may directly negotiate to ease their way into an equi-
librium [18].

We also ran simulations with dynamic loads, for an overcommitment
ratio of 1.5, changing the dynamicity of the system by controlling the ratio
of Tioaq and Tyyction. According to Figure 6.9(f), the social welfare in the
simulation improve as the system is less dynamic and as the reclaim factor
is increased.

6.9.4 Impact of Off-Line Profiling

In our experiments we used performance graphs that were measured in ad-
vance in a controlled environment. In real life, artificial intelligence methods
should be used to collect such data on-the-fly. Since the accuracy of the
best on-the-fly methods is bounded by the accuracy of hindsight, we can
bound the impact of refraining from on-the-fly evaluation on the performance
graphs. In Figure 6.10 we compare our benchmarks’ predicted performance
(according to measured load and memory quantities, and using Figure 6.2)
with performance values measured during Ginseng experiments for the same
loads and memory quantities. The experimental values were collected after
the memory usage stabilized (more than Tipemory after a memory change).
The comparison shows that the profiled data is accurate enough, as can
be seen when comparing Ginseng’s experiment results to its simulations in
Figure 6.5.

6.10 Conclusions

Ginseng is the first cloud platform that allocates physical memory to self-
ish black-box guests while maximizing their aggregate benefit. It does so
using the MPSP auction, in which even guests with non-concave valuation

121

of memory are incentivized to bid their true valuations for the memory they
request. Using the MPSP auction, Ginseng achieves an order of magnitude
of improvement in the social welfare.

Although Ginseng focuses on selfish guests, it can also benefit altruistic
guests (e.g., when all guests are owned by the same economic entity). In this
case, economic valuations can distinguish between guests that perform the
same function for different purposes, such as a test server vs. a production
server.

Ginseng is the first concrete step towards the Resource-as-a-Service (RaaS)
cloud [3]. In the Raa$ cloud, all resources, not just memory, will be bought
and sold on the fly. Extending Ginseng to resources other than physical
memory remains as future work.

122

B3 static V-V hinted-host-swapping >~X Upper Bound
O-0 ginseng A—A hinted-mom @@ Ginseng Simulation

3.0 2 T T T T T T
—g =18 T X<
25 - \X\]

20 F

15

10

Performance [10? hits]

0.5

0.0 ! L L s s sk sk s |

5 6 7 8 9 10 11 12 13
Number of VMs

(a) MemoryConsumer, valuation is square of performance

O3 static V-V hinted-host-swapping >~X Upper Bound
O-0 ginseng A—A hinted-mom @@ Ginseng Simulation

2.5

20

\O/‘U
15

1.0]

Performance [10* hits]

05F .

OO]]]]]]]

6 7 8 9 10 11 12 13
Number of VMs

(b) Memcached, first guest valuation is piecewise linear

Figure 6.6: Performance (mean and standard deviation) under different
allocation schemes as a function of the number of guests, for dynamic load
experiments. The dashed lines indicate the performance according to the
simulations that yield an upper bound on the social welfare, as indicated in

Figure 6.5.

123

%g T T [1 |
=12f]
volOF i
20.8| - = — N
soaflg| |8 = L %
004 .
ca-L | © _

8(2) I I I I I

0.05 0.25 0.50 0.75 1.00

Reclaim Factor

Figure 6.7: Impact of reclaim factor on social welfare for a mixed workload
of memcached and MemoryConsumer

— SWa=0.5 — Memory a=0.5 o SWa=1 ---- Memory a=1 — Load
60 T T T T T 2.0 - 10
o= m -3
d
%;} 150 N
i -6
>
Sz 10 § 3
g g -4 -
()
IS 0.5%) —2
00 -0
5% 20 -10
Ew —_
2 158 8
22 S0
s -6 T
S 102 S
> g4 -
o 05 @
£ s -2
S :
= 00 -0
0 2 4 6 8 10 12 14 16

Time [m]

Figure 6.8: Two mixed-workload experiment traces of utility and memory
allocation

124

L 40 100 o 40
C C
g 35 095 £ 35
= 090 £
€ €
3.0 3.0
% 0.85 %
§ 2.5 0.80 § 2.5
o 0.75 o
2 2.0 2 2.0
*g : : 0.70 *g
S L5F- T i W & 1.5
1.0 L L 0.60 1.0 L L
0.1 0.4 0.7 1.0 0.1 0.4 0.7
Reclaim Factor Reclaim Factor
(a) Social welfare (b) Sum of guest utilities
= 0.35 - 4.0 ! ! 0.40
C C
g 030 @ 35|ttt - 0.35
=) =) 5 5
E 0.25 E 0.30
S 0.20 S 025
5 0.15 5 0.20
3 ' 3 0.15
2 010 = 0.10
£ 0.05 & 0.05
= 0 000 = 0.00
0.1 0.4 0.7 1.0 0.1 0.4 0.7 1.0
Reclaim Factor Reclaim Factor
(c) Host revenue (d) Inefficiency
g +0 250 1.00 0.90
g 35 3
£~ 200 & 0.88
£ 30 8
o 150 $ 0.10 0.86
O &~
5 25 =
>
5 100 = 0.84
2.0 2
> < E
g 15 50 g 0.01 0.82
9 7 A
= 10 0 7 0.80
0.1 0.4 0.7 1.0 0.1 0.4 0.7 1.0
Reclaim Factor Reclaim Factor
(e) Waste (MB) (f) Social welfare (dynamic)

Figure 6.9: Impact of reclaim factor and overcommitment ratio on Ginseng
time-averaged performance for MemoryConsumer guests. Figure 6.9(f)
shows the impact of the reclaim factor and dynamicity on social welfare in
dynamic simulations for an overcommitment ratio of 1.5. Social welfare,
revenue and profit values are normalized by the maximal social welfare
achieved in the parametric sweep.

125

° L 10 b
—5F 1 vgal -
0 58 '
D4 4 =
§ i 6L T
=3 1 S +% :
© —4r ¥ £
§2 — + — g % é +

15 o IREE 41

0 [I I I 0 | o F

0 1 2 3 4 5 6 0 2 4 6 8 10
Predicted [khits/s] Predicted [0.1 hits/s]
(a) memcached (b) MemoryConsumer

Figure 6.10: Comparison of predicted performance values (according to the
profile graphs, given load and memory allocation) with measured
performance.

126

Chapter 7

RaaS: Additional Research
Directions

In this section we outline several research directions that might build on the
concept of RaaS, with a focus on our implementation of Ginseng. We begin
with challenges within the Ginseng scope, continue to outline an extension
of Ginseng to a multi-resource system, turn to analyze side-channel attacks
that can be made on Ginseng and their ramifications, and conclude with a
proposal for a mechanism with improved stability.

7.1 Single Resource

7.1.1 Game-Theoretic Challenges

The MPSP auction is uncharted territory with regard to game theory: the
reclaim factor, which reduces waste, introduces private guest-states that
change over time and affect the guests’ valuation of additional memory
chunks. When the base memory changes, the forbidden ranges and the bid
price change as well (because the base memory and its valuation are their
point of reference). In addition, valuations may change at random due to
dynamic loads. In this work we only analyzed guest strategies with a hori-
zon of one auction round. In simpler problems of repeated games without
private states, there may be rational strategies which are irrational to play
as a stage game (single round). This may also be the case here: there are
strategies that are irrational in the stateless game (with @ = 1), but are

127

rational in the private-state game. For example, if a guest expects a fast
increase of demand for memory, it can plan ahead and bid for more mem-
ory than it currently needs. It will benefit from keeping its payments lower
for several rounds, until the system reaches a new equilibrium. Even in a
stateless game, prediction of other guests’ bids may incentivize a guest to lie
about its valuation in a repeated VCG auction. Analysis of such strategies
calls for new theoretic approaches.

7.1.2 Guest Logic

The current guest agent is rather simplistic. It does not communicate with
its neighbors, nor does it make future plans (even when a low reclaim fac-
tor is used). There are many directions in which the the guest agent can
evolve. The guest agent’s accuracy can improve through learning. For ex-
ample, if the agent is enhanced with a load anticipation capability, it will
be able to bid according to predictions rather than according to the current
load. If it communicates with the application, it can learn of an upcoming
increased need for resources. If the guest communicates with its neighbors, it
can trade in resources that it previously rented for a low price, and sell them
for a higher price. If the guest collects data on its performance on the fly, it
will be able to update the perf(mem) function on-line, and thus adapt it to
changing conditions. For example, if the network has become a bottleneck
and a memory increase does not improve the performance, the guest can
learn this on-line and stop bidding for large memory increases.

7.1.3 Host Logic

The reclaim factor is a knob that requires a policy, a heuristic to operate
it. It can be changed dynamically, but the host needs to decide how to do
so. The dynamic changing of the reclaim factor must be made in light of
the total amount of memory that was bid for, the available memory and the
provider’s plans for adding or removing guests. Another type of information
that might affect the reclaim factor is black-box measurements, which might
be used to assess the rate at which conditions change.

128

7.1.4 Provider Logic: Global Cloud View

The host logic must be combined with a global cloud view mechanism that
matches guests to hosts. The matching should include a per-host pricing
of entrance to that host. Hosts with lower resource pressure should have a
higher entrance fee. The global view algorithm must also be combined with
a live migration recommendation system that optimizes the social welfare
while considering the migration overhead.

7.1.5 Minimal Price

When the host does not lose from renting a resource, maximizing the so-
cial welfare of all the guests (the aggregate valuation) also maximizes the
aggregate utility of the guests and the host:

N

N N N
SW = Ui+ Upost = »_(Vi(finali) —pj)+ > _pf = _Vi(final). (7.1)
=1 =1

=1 =1

In this case, renting spare resources for extremely low prices (and even for
free) still improves the social welfare, as long as the renting guest benefits
from the resource.

However, the host may prefer not to rent the resource. Hosts that can
power down unused resources (e.g., memory segments or cores) value them
at least as the difference of the active and suspended resource operational
costs. In addition, the host may consider the wear and tear (in particular
in Flash devices) and missed opportunity costs (for being less responsive to
future resource pressure). In such cases, the social welfare is higher when the
memory is rented only to clients who value it more than the host does. To this
end, the host’s valuation of resources can be represented in the auction as a
special guest, whose bid is the minimal price for the full system’s memory.

7.1.6 Memory Shedding

When the reclaim factor is smaller than 1, the guest’s base memory changes
with each auction round. To make for a Pareto-efficient system, the guest
must be allowed to promptly shed any non-required memory, without waiting
for its base memory to dwindle over time. Otherwise, the gradual decay
might lead the base memory into one of the guest’s forbidden ranges, thus

129

forcing the guest to pay for memory that degrades its performance. When the
guest’s requirements change quickly but the reclaim factor is small, shedding
unrestricted amounts of extra memory within a single round will protect the
guest from system sluggishness without hurting the other guests.

Memory shedding also enables the guest to adjust the price it pays for
memory rented long ago. In the chunks method, memory is tagged according
to the price for which it was rented. In time, the most expensive memory
chunks remain. For concave monotonically rising functions, the payment
converges from below to the exact valuation of the memory. However, if prices
drop and memory pressure is lower, the guest should be able to announce
memory shedding. This means that the guest is willing to lose all the memory
it is currently renting, but if it wins it, it wins it for a low price (the current
market price).

7.2 Multi-Resource Allocation

Ginseng can be expanded to a full RaaS [3] implementation, allocating multi-
ple resources simultaneously (e.g., memory, I/O, and CPU) [3]. In this section
we outline the algorithm for a multi-resource RaaS, without implementing
it. The implementation is left for future work.

The expansion to multi-resource introduces the notions of economic com-
plements: resources are called economic complements if guests would like to
rent more of one resource when they rent more of the other. For example,
consider an application that utilizes a core and 500MB in each thread. Guest
A has 500MB and one core, and guest B has 1000MB and one core. They
both perform at a rate of a single thread. However, guest B values an ad-
ditional core more than guest A, because given an additional core, guest B
will double its performance, while guest A’s performance will remain the
same. Gutman and Nissan [57] assume such utility functions, denoted Leon-
tief utilities. However, resources may also be economic substitutes: resources
are called economic substitutes if guests would like to rent less of one re-
source when they rent more of the other. For example, when using a caching
application such as memcached, a guest which rents a large memory quantity
will require less bandwidth to get the stored items, or it might require less
CPU cycles to compute them again. Furthermore, the same resources might
be substitutes for one guest, and complements to another. This dependency

130

might be of high order. However, the guest does not have to state its full
valuation function, but rather state its local manifestation, since Ginseng’s
bidding language includes the designation of desired ranges. For a small
enough range, an approximation to the first order of the guest’s valuation
of resources is accurate enough. Formally, a guest’s valuation of D resources
de Rf can be multi-linearly approximated locally as

D

Vid)= Y a]]d (7.2)

ve{0,1}P k=1

We denote the coefficients a for short as a @ € R2”. For the simplest multi-
resource case, Equation 7.2 is reduced to a bilinear function:

V(di,d2) = ago + ao1di + aiodz + ar1dids. (7.3)

We set the valuation of the reference point V(ﬁ) = 0, and thus a5 = 0 and
2P 1 free coefficients are left. This setting is consistent with using only one

free coefficient in the single-resource case (the bid price p).

7.2.1 Bidding Language

The extended bidding language for D resources includes the unit-price coeffi-
cients @, and a list of m desired ranges (D-dimensional boxes) in which the
unit-price coefficients are valid. Formally, the bid is of the form

i (™,q)...(F,q") (7.4)
where @ €RP
and V j=1...m, ¥ ¢ eRY. (7.6)

The bid is interpreted as a willingness to pay a global price according to
Equation 7.2 for resources within the desired ranges. The resource unit-
prices are computed as the partial derivatives derived from Equation 7.2:

P = V1<k<D. (7.7)

For the two resource case, we derive the resource unit-prices from Equa-
tion 7.3:

IV (dy,ds)
p— —_— d .
P1 i, ap1 + a1ds (7.8)
p2 = aio+and (7.9)

Note that although the valuation might decrease with any resource (e.g.,
the valuation of cores might decrease with additional bandwidth), the prices
must still be positive. If the prices are non-positive, the guest should not bid
at all in this range.

7.2.2 Allocation Rule

The multi-resource allocation rule is an extension of the single resource rule.
The single resource allocation rule is computed by attempting a divisible-
good allocation, which is efficiently done by sorting the bids, and then split-
ting the case along a 2-tree structure if a forbidden range was split by the
divisible good algorithm. However, multi-resource bids are not necessarily
sortable by unit price.

Consider an auction for memory and bandwidth. There are two guests,
A and B. Guest A bids a higher unit-price for bandwidth than guest B, while
for memory guest B’s unit price exceeds A’s. Now suppose there is enough
bandwidth for both guests, but memory is insufficient, so it is a bottleneck
resource of the system. In this case, the multi-resource auction should be
reduced to the single resource MPSP, the bids should be reduced to unit-
prices for memory when bandwidth is at the full desired ranges, and guest
B should be sorted before guest A. However, if bandwidth is the bottleneck
resource, then unit-prices for memory matter, and the multi-resource auction
should be reduced to a single-resource bandwidth auction, preferring guest
A over guest B. These examples demonstrate the problem of sorting points
in a multi-dimensional space. In the case of the bilinear bids the problem is
even harder. In each bid, one resource’s unit-price depends on the amount
of other resources allocated to the guest. This means one bid’s unit-price
might exceed another bid’s unit-price for one allocation, but be lower for
another. Hence, even the divisible multi-resource allocation problem cannot
be solved using a simple sorting of bids by their unit-prices, as done in the

132

single resource auction.

We define the divisible multi-resource allocation problem as a linear pro-
gramming problem: Find vectors d; € Rf Vi = 1... N that maximize the
social welfare SW = Zf\i 1 Vi(d;) under the constraints

N
0<> dip < Ay Vk=1...D (7.10)
=1
(HTI{IT]]C> <dy < <rgéf<q]k> ¥i=1...N, k=1...D, (7.11)
J= J=

where A; denotes the amount of resource k available for auction. That is,
the solution does not allocate more resources than the host can allocate, and
the resources allocated to each guest are within a D-dimensional box that
covers all of the guest’s desired ranges.

The indivisible multi-resource allocation problem can be solved using a
branching algorithm, which is an extension of the 2-tree in the single re-
source auction. In each step of the tree, a divisible multi-resource allocation
is attempted. If the divisible allocation is a valid indivisible allocation, it is
evaluated as a candidate for the optimal allocation. However, the resulting
allocation may be invalid: it may allocate a guest with resource amounts out-
side any of its desired ranges, as demonstrated in the example in Figure 7.1.
In this case, the guest’s box, as defined for the divisible multi-resource al-
gorithm, is divided to sub-boxes that do not contain the guest’s allocated
resource amounts.

The simplest division covers each desired range in a separate box, since
each desired range is convex. However, there is an opportunity for complexity
reduction for large numbers of desired ranges. An alternative method for sub-
box division is demonstrated in Figure 7.4. First, a forbidden box is defined
around the allocated amounts, such that it is a maximal box that has no
intersection with any desired range. The maximal box is not unique: its shape
is determined by the order of the dimensions in which the forbidden box’s
sizes are maximized, as demonstrated by the different maximal forbidden
boxes in Figures 7.2 and 7.3.

Once the forbidden bounding box is chosen, the guest’s covering box
minus the forbidden range is expressed as a union of disjoint boxes. When
possible, the division lines are chosen such that they do not divide any desired

133

range. This is how the solid blue lines in Figure 7.4 were chosen. Then the
bounding boxes are shrunk to minimal boxes covering the desired ranges,
as demonstrated by the solid black rectangles in Figure 7.4. A covering box
might shrink to zero volume (like the non-existent box which could have
covered the high memory regimes in Figure 7.4) because it does not contain
any desired ranges. Such shrunken boxes do not lead to a branch.

The choice of the forbidden box and branching option can affect the
computations required to find the optimal allocation, but not the correctness
of the algorithm or the maximal social welfare. The chosen box and branching
option might also affect the order in which optimal allocations are discovered,
so that if an order criterion is used in the process (e.g., in case of a tie, prefer
the previously found allocation), the final allocation might also be affected.

Convex Coverage

Desired ‘ Desi Ir?ed
: Range [Desired ange
Bandwidth (MB/s)| - - |- =t Range - - - - “@Allocated resources

Desired | | Desired
Range Range

Memory (MB)
Figure 7.1: Indivisible multi-resource allocation. The blue point indicates

the result of the divisible multi-resource auction for one guest, located
outside this guest’s divisible ranges, but inside those ranges’ covering box.

7.3 Side-Channel Attacks

Memory overcommitment and dynamic memory allocation methods are a
side channel through which information can leak from one guest to its neigh-

134

Bandwidth (MB/s)|_ _ _

Memory (MB)

Figure 7.2: Forbidden bounding box choice (red box)—maximizing the
bandwidth dimension first.

Bandwidth (MB/s)|_ _ _

Memory (MB)

Figure 7.3: Forbidden bounding box choice (red box)—maximizing the
memory dimension first.

135

Desred | Desired

; Range
Bandwidth (MB/g) - - - |02 --[F’e?;gid ----- e
Range

Desired, | | Desired
Range ! Range

Memory (MB)

Figure 7.4: Indivisible multi-resource allocation branching. The pink box is
a forbidden range that includes the allocated resource amounts.

bor. A hostile guest might then use this information, or even just the fact
that it might leak, to harm other guests or the host. In this section, the term
neighbor denotes a non-malicious guest, co-located with a malicious guest
on the same physical machine.

7.3.1 Information Leakage

In Ginseng, the borderline bids (the bid unit-prices of the accepted bid with
the lowest unit-price and of the rejected bid with the highest unit-price) are
announced by the host, because they are important to the convergence of the
bidding process. Were they not announced, the guest could still approximate
them by recording how much it was charged. One way to approximate them
is for the malicious guest to bid for a small memory quantity while gradually
raising its bid price until it is allocated some memory, thus discovering the
lowest accepted bid’s unit-price, which would then equal its own bid. The
unit-price that this malicious guest is charged would be the highest rejected
bid’s unit-price.

136

In a system with only two guests, a guest can easily deduce full informa-
tion about its neighbor’s memory valuation function. It can bid repeatedly
for all of the system’s memory with a gradually increasing low bid price. In a
steady state (that is, if the neighbor does not change his bid), the guest can
delimit the unit-price in its neighbor’s bid between two of its own bids’ unit-
prices. Its own highest bid that did not win the full memory is a lower bound
for the unit-price of the neighbor’s bid, and its own lowest fully-winning bid’s
unit-price serves as an upper bound. These bounds can be as close as the
guest wishes, and thus reveal the unit-price of the neighbor’s bid to any
desired accuracy. This method can also inform the guest of its neighbor’s re-
quired memory for this price by comparing the memory quantities it won in
those two bids that close on the neighbor’s bid. This method will inform the
guest of one p,¢™ point on the neighbor’s valuation function. By collecting
several such points, the guest can learn the neighbor’s valuation function for
the relevant ranges (ranges which the neighbor used for bidding).

The malicious guest can even monitor changes in its neighbor’s memory
valuation over time. As we demonstrated earlier, changes in the neighbor’s
load can result in changes in its memory valuation function. In addition,
valuation functions may change due to the subjective importance of the
neighbor’s workload. By comparing the evolution of the function p(¢™) over
time, the guest can learn when the neighbor needs memory more (that is,
when the memory is more important to the neighbor). Such information
about times in which resources are more crucial to the neighbor’s operation
might be used by the malicious guest to initiate hostile, disruptive activ-
ity. However, the information gathering activities themselves damage the
neighbor, causing it to lose an auction or only partially win it.

In a system with more than two guests, deducing the neighbors’ valuation
functions is harder but not impossible, because the information gathering
process can be repeated, and thus noise (coming form other neighbors) can
be cleaned. Furthermore, to disrupt the system, a malicious guest does not
need to know its neighbors’ full valuation function. It is enough for the
malicious guest to discover the memory quantity requested by all the other
guests together and the highest unit-price of the bids.

137

7.3.2 Disruptive Activity

A hostile client may design a hostile guest that we denote a soldier. The
soldier causes damage to its neighbors while maintaining its own costs rea-
sonably low. The lower its costs are, the more soldiers the hostile client can
afford to operate.

Soldiers can invalidate their neighbors’ caches. If the soldier bids a high
unit-price for a large memory quantity, it takes hold of memory that was pre-
viously rented to other guests. The ownership change requires that the host
itself clear the memory of its contents, to prevent information leak between
guests. When the soldier allows the neighbor to win (in the next auction),
the memory is already wiped out, and needs to be slowly filled again with
cached items and files. The soldier pays for the rental of a large memory
quantity, but only for a single auction round’s duration, and only as much
as it is worth to the neighbor. If memory shedding is allowed, even a low
reclaim factor will not increase the soldier’s costs.

Such soldiering activity disrupts the system’s stability. It invalidates the
neighbors’ assumption of a steady state, and slows down the system’s con-
vergence to an efficient allocation. As a result of the instability, memory is,
in effect, wasted, because the neighbors benefit less than they could have
from the memory that they rent. The hostile activity also raises the border-
line bids, and thus causes simple advisors, such as the one we developed, to
respond by bidding higher (often for a smaller amount of memory). Thus
the effect of the temporary artificial memory pressure is imprinted on the
learning algorithms for several more auction rounds, until it decays. Overall,
a soldier’s activity on a host degrades the quality of service on this host for
all the other neighbors. To cause more damage, the soldier might trigger its
hostile activity when its neighbors’ memory valuation is high.

7.3.3 Prevention of Disruptive Activity

The host would like to identify such disruptive behavior, contain and prevent
it. However, positive identification is hard, because such disruptive bidding
may be the result of benign fast load changes, as demonstrated in the ex-
periment in Figure 6.8. Soldiers might be better identified by examining the
correlation of their bidding strategy with that of their neighbors’. However,
correlation between guests’ bids does not necessarily indicate malicious in-

138

tent. It can also be a benign response to the introduction of instability, e.g.,
the addition of a new guest on the same host or a notable bid change made
by a third guest (that increases the resource pressure). Such benign guest
bidding strategies need to be filtered out to identify malicious guests.
Under uncertainty, without proof of the maliciousness of a guest, the
provider will be reluctant to prevent such bidding. A safer measure on the
part of the provider would be to contain the suspicious guest: prevent it
from harming other clients, while avoiding harm to the suspicious client
itself. Such containment can be achieved by live migration of the suspicious
guest to a host that only holds guests belonging to the same client.
Causing the provider to co-locate one client’s guests on the same physical
machine, without any guest belonging to any other client, is the equivalent of
Amazon’s dedicated instances, for which Amazon currently charges $10 per
hour per region [8]. Dedicated instances have many benefits. They have fast
inter-guest communication. They can be used with shared memory mecha-
nisms (e.g., shared memory MPI), which are faster than MPI over Ethernet.
They might also be used more efficiently for scientific computing. In addition,
dedicated instances are protected against various side channel attacks [115].

139

Chapter 8

Conclusion

In this work we set out to pursue the goal of efficient sharing of computing
resources. Starting with a combination of grids and a cloud, we tried to
improve the overall efficiency by finding the most efficient client strategies.
We were able to control the inefficiency by assigning a cost to it. However,
changing only one side of the client-provider equation was not enough—the
most efficient strategies still suffered the inherent waste of replication.

Our journey in pursuit of this goal lead us to examine cloud computing
models, in which payments are explicit and cost saving is an intuitive client
goal. We discovered that Amazon’s spot instances, the cloud model which we
first perceived as the most efficient sharing method in a cloud environment,
were actually not market driven, and hence not very efficient: artificially
raised prices maximize neither the provider’s nor the clients’ revenue. How-
ever, spot instances themselves are still a good candidate for efficient sharing
of computing resources.

To reach the holy grail of efficient resource sharing, we charted a road
map that follows current cloud trends to their culmination in the RaaS cloud.
We outlined how memory would be allocated and shared in the RaaS cloud,
and set out to implement its prototype. Our early results were promising:
a x6.2-x15.8 improvement in aggregate client satisfaction when compared
with state-of-the-art approaches for cloud memory allocation. We are con-
vinced that the cloud industry is indeed marching towards the Resource-as-a-
Service cloud model, and that this change will make the sharing of computing
resources more efficient.

140

Appendix: Software

Spot Price Simulation

There are many functions that the Matlab scripts can perform, most of which
were used for the analysis of the spot instance traces. However, what might
be useful to other researchers is the simulation of spot instance prices given
workload traces (such as those available from the Parallel Workloads Archive
or the Grid Workload Archive).

The script paper_sims.mloads a trace in the SWF format, using get_trace.m.
The body of the simulation is done in the script cloud_2nd price_loads.m.
The simulation is event driven, with two kinds of events: the arrival of a new
instance bid and the change of the reserve price (if the reserve price is set to
be random). On each such event, the running and waiting instance bids are
sorted, and the number of sold instances that maximizes the host revenue
is computed. Then instances are killed and/or admitted accordingly. The
input key user_values controls the distribution from which the user bids
are taken.

This is an example of the script’s printout:
next random step chosen at time 9825050.000000 as 2309.000000

spot_price =

0.9376

done with 10892/20001 free hosts 32/70 waiting bids 8777
done with 10892/20001 free hosts 32/70 waiting bids 8777
done with 10892/20001 free hosts 32/70 waiting bids 8778

done with 10892/20001 free hosts 32/70 waiting bids 8779

141

done with 10892/20001 free hosts 32/70 waiting bids 8780
done with 10892/20001 free hosts 32/70 waiting bids 8781
done with 10892/20001 free hosts 31/70 waiting bids 8781

As demonstrated in the printout, many of the bids might never get a
chance to run. Realistic users would quit the queue with such bids, but this
behavior is not implemented in the simulation. We end the simulation when
the last instance request arrives. We do so because we do not wish to describe
the gradual decline of occupancy that results from the ending of the trace.

The spot instance analysis was performed on the basis of data from now
inactive Web sites whose data is nonetheless still available from the following

locations:

SpotWatch https://s3-eu-west-1.amazonaws.com/ruben.ruben/SpotWatch.
tar

CloudExchange http://files.evercu.be/cloudexchange.tgz

The simulator code is available as free software from http://www.cs.
technion.ac.il/~ladypine/spotprice.tar.gz.

Dynamic memcached

Memcached provides key-value hashing for values of a wide range of sizes. It
stores the items in slabs according to their size. Each slab group can hold
items whose size is within a fixed range. This structure works well for a
fixed distribution of item sizes, but might pose a problem if the item size
distribution changes: memcached might be unable to store items of one size
due to lack of space, while storing obsolete items of other sizes.

Dormando, one of memcached’s lead developers, created a branch of mem-
cached 1.4 in which it is possible to move a slab between groups, so that it
can hold items of a different size. This mechanism cleans all the items from a
slab of one group and adds it as a new slab to another group. The slab group
from which a slab will be taken is chosen on the basis of recent utilization
statistics.

We extended this version of memcached, allowing it to shrink the heap
size by cleaning slabs and not reassigning them. The heap shrink is triggered

142

by a change of the desired heap size, which can now be communicated to
memcached on the fly, using the command “-m” (the same syntax which is
used for setting the heap size when initializing the program.) The aggressive-
ness of the shrinking operating is controlled by the automove_level. In the
most aggressive mode, a slab group from which slabs will be taken is chosen
even without gathering utilization statistics, to enable a quick response to

memory pressure.

Another method which hastens memory shrinkage is to order the release
of several slabs together. First we define a slab group’s equal share of released
slabs as the ratio of the number of slabs that must be released and the number
of active slab groups. This is the number of slabs that should be released
from each active slab group if there is no preference for any slab group,
so that the release is done evenly. Then we determine the first candidate
for slab release on the basis of available utilization data. Since this data is
deleted when read, the first candidate is usually also the best candidate. The
best candidate might not be strictly preferable to other candidates, but at
least it is not worse than them. From this candidate we release its a number
of slab which equals the equal share, as defined earlier. If all the items are
of the same size, there is only one active slab group. In this case, all the
slab release commands are given at once, without gathering more utilization
statistics. When there is more than one slab group, the rest of the releases
are determined on the basis of the poorer utilization data gathered from this
point on.

Heap shrinkage can also be manually activated from the command line,
by issuing the command:”slab reassign N -S”, where N is the slab index to
shrink, and S is the number of slabs to take from this item size.

This is the printout of the slabs_shrink.t test, showing an allocation
of slabs for two item sizes, followed by a shrinkage, and expansion and then
another shrink operation.
ok 1
ok 2
ok 3 - verbose is not 0
ok 4 - slab 31 evicted is nonzero
ok 5 - slab 25 evicted is nonzero
gap 4718848 for gap 5 to reach from 6291456 to 2097152 when currently
using 6816000

143

ok 6 - slab shrink was ordered
emergency source changed from 0 to 25
emergency source changed from 0 to 31
ok 7 - slabs shrunk is nonzero

ok 8 - slab 25431 pagecount changed
Slabs class 31 25

Changed from 4 2

toll

limit_maxbytes 2 total malloced 2

ok 9 - stored key

ok 10 - stored key

ok 11 - slab expand was ordered

ok 12 - slab 31 pagecount increased - using the increased memory limit
Slabs class 31 25

Changed from 1 1

to 8 2

gap 7864576 for gap 8 to reach from 20971520 to 3145728 when currently
using 11010304

ok 13 - slab shrink was ordered
emergency source changed from 0 to 25
emergency source changed from 0 to 31
ok 14 - slabs shrunk is nonzero

ok 15 - slab 25431 pagecount changed
Slabs class 31 25

Changed from 8 2

tol1

Memcached is free software, released under the BSD license. Our version
is available from https://github.com/ladypine/memcached.

144

Bibliography

[1]

Hussein A. Abbass, Ruhul Sarker, and Charles Newton. PDE:
A Pareto-frontier differential evolution approach for multi-
objective optimization problems. In CEC, 2001.

Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and
Dan Tsafrir. Deconstructing Amazon EC2 spot instance pricing.
In IEEE Third International Conference on Cloud Computing
Technology and Science (CloudCom), 2011.

Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and
Dan Tsafrir. Raas: Resource as a service. In USENIX Conference
on Hot Topics in Cloud Computing (HotCloud), 2012.

K. Agrawal, A. Benoit, L. Magnan, and Y. Robert. Scheduling al-
gorithms for linear workflow optimization. In Parallel Distributed
Processing (IPDPS), 2010 IEEE International Symposium on,
pages 1 —12, 2010.

Nezih Yigitbasi Alexandru Iosup and Dick Epema. On the per-
formance variability of production cloud services. In Cluster,
Cloud and Grid Computing (CCGrid), 2011.

Jorn Altmann and Karyen Chu. How to charge for net-

work services—flat-rate or usage-based? Computer Networks,
36(5):519 — 531, 2001.

Jorn Altmann, Costas Courcoubetis, George Stamoulis, Manos
Dramitinos, Thierry Rayna, Marcel Risch, and Chris Bannink.
GridEcon: A market place for computing resources. In Grid

145

[12]

[13]

[14]

Economics and Business Models, volume 5206 of Lecture Notes in
Computer Science, pages 185-196. Springer Berlin / Heidelberg,
2008.

Amazon EC2 dedicated instances. http://aws.amazon.com/
dedicated-instances. [Accessed Apr, 2013].

Amazon EC2 spot instances. http://aws.amazon.com/ec2/
spot-instances. [Accessed Aug, 2011].

Spot instance termination conditions? http://tinyurl.com/
2dzp734, Mar 2010. Online AWS Developer Forums discussion.
[Accessed Apr, 2011].

AMD. ACP — the truth about power consumption starts
here. white paper, 2007. http://www.amnd.com/us/Documents/
43761C_ACP_WP_EE.pdf.

Nadav Amit, Muli Ben-Yehuda, Dan Tsafrir, and Assaf Schus-
ter. vVIOMMU: efficient IOMMU emulation. In USENIX Annual
Technical Conference (ATC), 2011.

David P. Anderson, Eric Korpela, and Rom Walton. High-
performance task distribution for volunteer computing. In e-
Science, pages 196-203, 2005.

Artur Andrzejak, Derrick Kondo, and David P. Anderson. Ex-
ploiting non-dedicated resources for cloud computing. In
NOMS’10.

Artur Andrzejak, Derrick Kondo, and Sangho Yi. Decision model
for cloud computing under SLA constraints. In IEEE/ACM In-
ternational Symposium on Modelling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS), 2010.

Andrea Arcangeli, Izik Eidus, and Chris Wright. Increasing mem-

ory density by using ksm. In Ottawa Linux Symposium (OLS),
pages 19-28, 2009.

146

[17]

[18]

[19]

22]

Michael Armbrust, Armando Fox, Rean Griffith, Anthony D
Joseph, Randy Katz, Andy Konwinski, Gunho Lee, David Patter-

son, Ariel Rabkin, Ion Stoica, and Matei Zaharia. A view of cloud
computing. Communications of the ACM, 53(4):50-58, 2010.

Lawrence M. Ausubel and Paul Milgrom. Combinatorial auc-
tions, chapter The lovely but lonely Vickrey auction, pages 17-40.
2006.

Junjik Bae, Eyal Beigman, Randall Berry, Michael L. Honig, and
Rakesh Vohra. An efficient auction for non concave valuations.
In 9th International Meeting of the Society for Social Choice and
Welfare, 2008.

Salman A. Baset. Cloud SLAs: Present and future. ACM
SIGOPS Operating Systems Review (OSR), 46(2), Jul 2012.

Muli Ben-Yehuda, Michael D. Day, Zvi Dubitzky, Michael Factor,
Nadav Har’El, Abel Gordon, Anthony Liguori, Orit Wasserman,
and Ben-Ami Yassour. The turtles project: Design and imple-
mentation of nested virtualization. In USENIX Symposium on
Operating Systems Design & Implementation (OSDI), pages 423—
436, 2010.

A. Benoit, Y. Robert, A. L. Rosenberg, and F. Vivien. Static
strategies for worksharing with unrecoverable interruptions. In
IPDPS, 2009.

Christian Borgs, Jennifer T. Chayes, Nicole Immorlica, Kamal
Jain, Omid Etesami, and Mohammad Mahdian. Dynamics of bid
optimization in online advertisement auctions. In International

Conference on World Wide Web (WWW), pages 531-540, 2007.

Sem Borst, Onno Boxma, Jan Friso Groote, and Sjouke Mauw.
Task allocation in a multi-server system. J. of Scheduling,
6(5):423-436, 2003.

Stephan Borzsonyi, Donald Kossmann, and Konrad Stocker. The
skyline operator. In ICDE, pages 421-430, 2001.

147

[26]

[27]

[28]

[31]

32]

Paul Brebner and Anna Liu. Performance and cost assessment
of cloud services. In Service-Oriented Computing, volume 6568
of Lecture Notes in Computer Science, pages 39-50. 2011.

Rajkumar Buyya, David Abramson, Jonathan Giddy, and Heinz
Stockinger. Economic models for resource management and
scheduling in grid computing. Concurrency and Computation:
Practice and Ezxperience, 14(13-15):1507-1542, 2002.

Rajkumar Buyya and Manzur Murshed. Gridsim: A toolkit for
the modeling and simulation of distributed resource management
and scheduling for grid computing. Concurrency and Computa-
tion: Practice and Experience, 14(13).

Henri Casanova. On the harmfulness of redundant batch re-
quests. In HPDC' pages 255-266, 2006.

Henri Casanova, Arnaud Legrand, and Martin Quinson. SimGrid:
a generic framework for large-scale distributed experiments. In
10th IEEFE International Conference on Computer Modeling and
Simulation, March 2008.

Jeffrey S. Chase, Darrell C. Anderson, Prachi N. Thakar,
Amin M. Vahdat, and Ronald P. Doyle. Managing energy and
server resources in hosting centers. In ACM Symposium on Op-
erating Systems Principles (SOSP), 2001.

Junliang Chen, Chen Wang, Bing Bing Zhou, Lei Sun,
Young Choon Lee, and Albert Y. Zomaya. Tradeoffs between
profit and customer satisfaction for service provisioning in the
cloud. In HPDC, 2011.

Ran Chen and Hao Li. The research of grid resource scheduling
mechanism based on pareto optimality. In Software Engineering
(WCSE), 2010 Second World Congress on, 2010.

Navraj Chohan, Claris Castillo, Mike Spreitzer, Malgorzata
Steinder, Asser Tantawi, and Chandra Krintz. See spot run: us-
ing spot instances for mapreduce workflows. In USENIX Con-
ference on Hot Topics in Cloud Computing (HotCloud), 2010.

148

[35]

[40]

[41]

Brent N. Chun and David E. Culler. Market-based proportional
resource sharing for clusters. Technical report, Berkeley, CA,
USA, 2000.

Walfredo Cirne, Francisco Brasileiro, Daniel Paranhos, Luis
Fabricio W. Goées, and William Voorsluys. On the efficacy, ef-
ficiency and emergent behavior of task replication in large dis-
tributed systems. Parallel Comput., 33(3), 2007.

Edward H. Clarke. Multipart pricing of public goods. Public
Choice, 11(1):17-33, Sep 1971.

Daniel Cordeiro, Pierre-Frangois Dutot, Grégory Mounié, and De-
nis Trystra. Tight analysis of relaxed multi-organization schedul-
ing algorithms. In IEEFE Int’l Parallel & Distributed Processing
Symposium (IPDPS), 2011.

Amir Danak and Shie Mannor. Resource allocation with supply
adjustment in distributed computing systems. In Int’l Confer-
ence on Dsitributed Computing Systems (ICDCS), 2010.

Kalyanmoy Deb. Multi- Objective Optimization Using Evolution-
ary Algorithms. John Wiley and Sons, first edition, 2001.

Yang Ding, Mahmut Kandemir, Padma Raghavan, and
Mary Jane Irwin. A helper thread based EDP reduction scheme
for adapting application execution in cmps. In IPDPS, 2008.

Menno Dobber, Robert D. van der Mei, and Ger Koole. Dynamic
load balancing and job replication in a global-scale grid environ-
ment: A comparison. IEEE Trans. Parallel Distrib. Syst., 20(2),
2009.

Shahar Dobzinski and Noam Nisan. Mechanisms for multi-unit
auctions. Journal of Artificial Intelligence Research, 37:85-98,
2010.

Danny Dolev, Dror G. Feitelson, Joseph Y. Halpern, Raz Kupfer-
man, and Nathan Linial. No justified complaints: on fair sharing
of multiple resources. In Innovations in Theoretical Computer
Science Conference (ITCS), pages 68-75. ACM, 2012.

149

[45]

[50]

Jack J. Dongarra, Emmanuel Jeannot, Erik Saule, and Zhiao Shi.
Bi-objective scheduling algorithms for optimizing makespan and
reliability on heterogeneous systems. In Nineteenth Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA),
2007.

Benjamin Edelman, Michael Ostrovsky, and Michael Schwarz. In-
ternet advertising and the generalized second-price auction: Sell-
ing billions of dollars worth of keywords. American Economic
Review, 97(1):242-259, March 2007.

John P. Holdren et al. Realizing the full potential of government-
held spectrum to spur economic growth. Technical report, The
President’s Council of Advisors on Science and Technology, 2012.

Dror Feitelson. Parallel workloads archive. Website. http://
www.cs.huji.ac.il/labs/parallel/workload/index.html.

Anshul Gandhi, Mor Harchol-Balter, and Michael A. Kozuch.
Are sleep states effective in data centers? In International Green
Computing Conference (IGCC), 2012.

Gaurav D. Ghare and Scott T. Leutenegger. Improving speedup
and response times by replicating parallel programs on a snow.
In JSSPP ’04.

Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski,
Scott Shenker, and Ion Stoica. Dominant resource fairness: Fair
allocation of multiple resource types. In USENIX Symposium
on Networked Systems Design € Implementation (NSDI), 2011.

Zhenhuan Gong, Xiaohui Gu, and John Wilkes. Press: Predic-
tive elastic resource scaling for cloud systems. In International
Conference on Network and Service Management (CNSM), pages
9-16. IEEE, 2010.

Abel Gordon, Nadav Amit, Nadav Har’El, Muli Ben-Yehuda,
Alex Landau, Dan Tsafrir, and Assaf Schuster. ELI: Bare-metal

150

performance for I/O virtualization. In ACM Architectural Sup-
port for Programming Languages & Operating Systems (ASP-
LOS), 2012.

Abel Gordon, Michael Hines, Dilma Da Silva, Muli Ben-
Yehuda, Marcio Silva, and Gabriel Lizarraga. Ginkgo: Auto-
mated, application-driven memory overcommitment for cloud
computing. In ASPLOS RESoLVE ’11: Runtime Environ-
ments/Systems, Layering, and Virtualized Environments (RE-
SoLVE) workshop, 2011.

Theodore Groves. Incentives in teams. Econometrica, 41(4):617—
631, Jul 1973.

Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan Savage,
Alex C. Snoeren, George Varghese, Geoffrey M. Voelker, and
Amin Vahdat. Difference engine: harnessing memory redundancy
in virtual machines. In USENIX Symposium on Operating Sys-
tems Design & Implementation (OSDI), 2008.

Avital Gutman and Noam Nisan. Fair allocation without trade.
In International Conference on Autonomous Agents and Multia-
gent Systems (AAMAS), volume 2, pages 719-728, 2012.

John Hegeman. Facebook’s ad auction. Talk at Ad Auctions
Workshop, May 2010.

Joseph L. Hellerstein, Walfredo Cirne, and John Wilkes. Google
cluster data. Website, 2011. http://code.google.com/p/
googleclusterdata/.

Jin Heo, Xiaoyun Zhu, Pradeep Padala, and Zhikui Wang. Mem-
ory overbooking and dynamic control of xen virtual machines in
consolidated environments. In IFIP/IEEE Symposium on Inte-
grated Management (IM), 2009.

Michael Hines, Abel Gordon, Marcio Silva, Dilma Da Silva,
Kyung Dong Ryu, and Muli Ben-Yehuda. Applications know
best: Performance-driven memory overcommit with ginkgo. In

151

[64]

[65]

[66]

[67]

[68]

CloudCom ’11: 8rd IEEE International Conference on Cloud
Computing Technology and Science, 2011.

Liting Hu, Kyung Dong Ryu, Dilma Da Silva, and Karsten
Schwan. v-bundle: Flexible group resource offerings in clouds.
In Int’l Conference on Dsitributed Computing Systems (ICDCS),
2012.

Alexandru Iosup, Catalin Dumitrescu, Dick H. J. Epema, Hui Li,
and Lex Wolters. How are real grids used? The analysis of four
grid traces and its implications. In GRID, 2006.

Alexandru Iosup, Mathieu Jan, Omer Ozan Sonmez, and Dick
H. J. Epema. On the dynamic resource availability in grids. In
GRID, 2007.

Alexandru Tosup, Hui Li, Mathieu Jan, Shanny Anoep, Catalin
Dumitrescu, Lex Wolters, and Dick H. J. Epema. The Grid Work-
loads Archive. Future Generation Comp. Syst., 24(7):672-686,
2008. http://gwa.ewi.tudelft.nl/pmwiki/.

Alexandru Iosup, Simon Ostermann, Nezih Yigitbasi, Radu Pro-
dan, Thomas Fahringer, and D. Epema. Performance analysis
of cloud computing services for many-tasks scientific computing.
IEEFE Trans. on Parallel and Distrib. Sys., 22, 2011.

Alexandru Iosup, Ozan Sonmez, and Dick Epema. Dgsim: Com-
paring grid resource management architectures through trace-
based simulation. In Euro-Par ’08.

Keith R. Jackson, Lavanya Ramakrishnan, Karl J. Runge, and
Rollin C. Thomas. Seeking supernovae in the clouds: a perfor-
mance study. In HPDC, pages 421-429, 2010.

Bahman Javadi and Rajkumar Buyya. Comprehensive statisti-
cal analysis and modeling of spot instances in public cloud envi-
ronments. Technical Report CLOUDS-TR-2011-1, Cloud Com-
puting and Distributed Systems Laboratory, The University of
Melbourne, 2011.

152

[70]

[75]

[76]

Emmanuel Jeannot, Erik Saule, and Denis Trystram. Bi-
objective approximation scheme for makespan and reliability
optimization on uniform parallel machines. In FEuro-Par 2008,
volume 5168 of Lecture Notes in Computer Science, chapter 94,
pages 877-886. 2008.

Ramesh Johari and John N. Tsitsiklis. Efficiency loss in a net-
work resource allocation game. Mathematics of Operations Re-
search, 29(3):407-435, 2004.

Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. Geiger: monitoring the buffer cache in a vir-
tual machine environment. In ACM Architectural Support for
Programming Languages & Operating Systems (ASPLOS), pages
14-24, 2006.

Ian A. Kash, Rohan Murty, and David C. Parkes. Enabling
spectrum sharing in secondary market auctions. In Workshop on
the Economics of Networks, Systems, and Computation, 2011.

Rama Katkar and David H. Reiley. Public versus secret reserve
prices in ebay auctions: Results from a pokémon field experiment.
Advances in Economic Analysis and Policy, 2006.

Frank Kelly. Charging and rate control for elastic traffic. Euro-
pean Transactions on Telecommunications, 8:33-37, 1997.

Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and

Anthony Liguori. KVM: the Linux virtual machine
monitor. In Ottawa Linuz Symposium (OLS), pages
225-230, 2007. http://www.kernel.org/doc/ols/2007/

01s2007v1-pages-225-230.pdf.[Accessed Apr, 2011].

Derrick Kondo, Andrew A. Chien, and Henri Casanova. Resource
management for rapid application turnaround on enterprise desk-
top grids. In SC’04, 2004.

Derrick Kondo, Gilles Fedak, Franck Cappello, Andrew A. Chien,
and Henri Casanova. Characterizing resource availability in en-
terprise desktop grids. Future Generation Com. Sys., 23(7).

153

[79]

[82]

[85]

Derrick Kondo, Bahman Javadi, Alexandru Iosup, and Dick H. J.
Epema. The failure trace archive: Enabling comparative analysis
of failures in diverse distributed systems. In CCGRID, 2010.

Elias Koutsoupias and Christos Papadimitriou. Worst-case equi-
libria. pages 404-413, 1999.

Aurel Lazar and Nemo Semret. Design and analysis of the
progressive second price auction for network bandwidth shar-
ing. Telecommunication Systems - Special issue on Network Eco-
nomics, page http://comet.columbi, 1999.

Young Choon Lee, Riky Subrata, and Albert Y. Zomaya. On the
performance of a dual-objective optimization model for workflow
applications on grid platforms. IEEE Trans. Parallel Distrib.
Syst., 20(9):1273-1284, 2009.

Moshe Levy and Sorin Solomon. New evidence for the power-law
distribution of wealth. Physica A, 242:90-94, 1997.

Huagang Li and Guofu Tan. Hidden reserve prices with risk-
averse bidders. Technical report, University of British Columbia,
2000.

Tong Li and Isabelle Perrigne. Timber sale auctions with random
reserve prices. Review of Economics and Statistics, 85(1):189—
200, 2003.

Adam G. Litke. Memory overcommitment manager. website,
2011. https://github.com/aglitke/mom.

Huan Liu. A measurement study of server utilization in pub-
lic clouds. In Int’l Conference on Cloud and Green Computing
(CGC), 2011.

Tim Lossen. Cloud exchange. http://cloudexchange.org/.
[Accessed Apr, 2011].

Benjamin Lubin, David C. Parkes, Jeff Kephart, and Rajarshi
Das. Expressive power-based resource allocation for data cen-

154

ters. In International Joint Conference on Artificial Intelligence
(1JCAI), 2009.

Uri Lublin and Dror G. Feitelson. The workload on parallel
supercomputers: modeling the characteristics of rigid jobs. J.
Parallel Distrib. Comput., 63:1105-1122, November 2003.

Brendan Lucier, Renato Paes Leme, and Eva Tardos. On rev-
enue in the generalized second price auction. In International
Conference on World Wide Web (WWW), 2012.

Dan Magenheimer. Memory overcommit... without the commit-
ment. In Xen Summit. USENIX association, June 2008.

Patrick Maillé and Bruno Tuffin. Multi-bid auctions for band-
width allocation in communication networks. In IEEE INFO-
COM, 2004.

Patrick Maillé and Bruno Tuffin. Multi-bid versus progressive
second price auctions in a stochastic environment. Quality of
Service in the Emerging Networking Panorama, pages 318-327,
2004.

Michael Mattess, Christian Vecchiola, and Rajkumar Buyya.
Managing peak loads by leasing cloud infrastructure services
from a spot market. In IFEFE Int’l Conference on High Per-
formance Computing and Communications (HPCC'), 2010.

Christopher A. Mattson and Achille Messac. Pareto frontier
based concept selection under uncertainty, with visualization.
Optimization and Engineering, 6(1), 2005.

Michele Mazzucco and Marlon Dumas. Achieving performance
and availability guarantees with spot instances. In IEEE Int’l
Conference on High Performance Computing and Communica-
tions (HPCC), 2011.

Frank McSherry and Kunal Talwar. Mechanism design via differ-
ential privacy. In The 48th Annual Symposium on Foundations
of Computer Science (FOCS), 2007.

155

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

Emmanuel Medernach. Workload analysis of a cluster in a grid
environment. In Workshop on Job Scheduling Strategies for Par-
allel Processing, 2005.

Achille Messac, Amir Ismail-Yahaya, and Christopher A. Matt-
son. The normalized normal constraint method for generating
the Pareto frontier. Structural and Multidisciplinary Optimiza-
tion, 25(2), 2003.

Grzegorz Milo$, Derek G. Murray, Steven Hand, and Michael A.
Fetterman. Satori: Enlightened page sharing. In USENIX An-
nual Technical Conference (ATC), 2009.

Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. Q-clouds:
Managing performance interference effects for qos-aware clouds.
In ACM SIGOPS FEuropean Conference on Computer Systems
(EuroSys), 2010.

Andrew Odlyzko. Paris metro pricing for the internet. In Pro-
ceedings of the 1st ACM Conference on Electronic Commerce,
EC 99, pages 140-147, New York, NY, USA, 1999. ACM.

Ana-Maria Oprescu and Thilo Kielmann. Bag-of-tasks schedul-
ing under budget constraints. In CloudCom, 2010.

Fernando Martinez Ortuno and Uli Harder. Stochastic calculus
model for the spot price of computing power. In Annual UK
Performance Engineering Workshop (UKPEW), 2010.

Zhonghong Ou, Hao Zhuang, Jukka K Nurminen, Antti Yl&-
Jaaski, and Pan Hui. Exploiting hardware heterogeneity within
the same instance type of amazon EC2. In USENIX Conference
on Hot Topics in Cloud Computing (HotCloud), 2012.

Pradeep Padala, Kai-Yuan Hou, Kang G. Shin, Xiaoyun Zhu,
Mustafa Uysal, Zhikui Wang, Sharad Singhal, and Arif Merchant.
Automated control of multiple virtualized resources. In ACM
SIGOPS European Conference on Computer Systems (EuroSys),
2009.

156

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

David C. Parkes, Ariel D. Procaccia, and Nisarg Shah. Beyond
dominant resource fairness: Extensions, limitations, and indivisi-
bilities. In The ACM Conference on Electronic Commerce (EC),
2012.

Lucian Popa, Arvind Krishnamurthy, Sylvia Ratnasamy, and Ion
Stoica. Faircloud: Sharing the network in cloud computing. In
ACM HotNets, 2011.

Muntasir Raihan Rahman, Yi Lu, and Indranil Gupta. Risk
aware resource allocation for clouds. Technical report, University
of llinois at Urbana-Champaign, 2011.

Christina Ramberg. Internet Marketplaces: The Law of Auctions
and Ezxchanges Online. Oxford, 2002.

Sarvapali D. Ramchurn, Perukrishnen Vytelingum, Alex Rogers,
and Nicholas R. Jennings. Putting the ’smarts’ into the smart
grid: a grand challenge for artificial intelligence. Commun. ACM,
55(4):86-97, April 2012.

Juan Manuel Ramirez-Alcaraz, Andrei Tchernykh, Ramin
Yahyapour, Uwe Schwiegelshohn, Ariel Quezada-Pina, José Luis
Gonzélez-Garcia, and Adan Hirales-Carbajal. Job allocation
strategies with user run time estimates for online scheduling in
hierarchical grids. J. Grid Comput., 9:95-116, March 2011.

Stefan Ried, Holger Kisker, Pascal Matzke, Andrew Bartels, and
Miroslaw Lisserman. Sizing the cloud—understanding and quan-
tifying the future of cloud computing. Technical report, Forrester,
2011.

Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan
Savage. Hey, you, get off of my cloud: exploring information
leakage in third-party compute clouds. 2009.

Kyung Dong Ryu, Xiaolan Zhang, Glenn Ammons, Vasanth Bala,
Stefan Berger, Dilma M Da Silva, Jim Doran, Frank Franco,
Alexei Karve, Herb Lee, James A Lindeman, Ajay Mohindra,

157

[117]

118]

[119]

[120]

[121]

[122]

[123]

[124]

Bob Oesterlin, Giovanni Pacifici, Dimitrios Pendarakis, Darrell
Reimer, and Mariusz Sabath. RC2—a living lab for cloud comput-
ing. In Proceedings of the 24th international conference on Large
installation system administration (LISA), pages 1-14. USENIX
Association, 2010.

Dmitriy Samovskiy. Amazon ec2 spot instances - a flop? http:
//tinyurl.com/somic11, Aug 2011. [Accessed Sep, 2011].

Sujay Sanghavi and Bruce Hajek. Optimal allocation of a divis-
ible good to strategic buyers. In IEEE Conference on Decision
and Control (CDC), 2004.

Erik Saule and Denis Trystram. Analyzing scheduling with tran-
sient failures. Inf. Process. Lett., 109:539-542, May 2009.

Martin Schwidefsky, Hubertus Franke, Ray Mansell, Himanshu
Raj, Damian Osisek, and JongHyuk Choi. Collaborative memory
management in hosted linux environments. In OLS ’06: 2006
Ottawa Linux Symposium, 2006.

Vyas Sekar and Petros Maniatis. Verifiable resource accounting
for cloud computing services. In ACM Cloud Computing Security
Workshop (CCSW), 2011.

Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John
Wilkes. Cloudscale: elastic resource scaling for multi-tenant

cloud systems. In ACM Symposium on Cloud Computing
(SOCC), page 5. ACM, 2011.

Jeffrey Shneidman, Chaki Ng, David C. Parkes, Alvin Auyoung,
Alex C. Snoeren, Amin Vahdat, and Brent Chun. Why markets
could (but don’t currently) solve resource allocation problems
in systems. In USENIX Workshop on Hot Topics in Operating
Systems (HOTOS), page 7, 2005.

Mark Silberstein. Building online domain-specific computing
service over non-dedicated grid and cloud resources: Superlink-
online experience. In CCGRID ’11, 2011.

158

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

Mark Silberstein, Artyom Sharov, Dan Geiger, and Assaf Schus-
ter. Gridbot: Execution of bags of tasks in multiple grids. In
SC"09.

Mark Silberstein, Anna Tzemach, Nickolay Dovgolevsky, Madyan
Fishelson, Assaf Schuster, and Dan Geiger. Online system for
faster multipoint linkage analysis via parallel execution on thou-
sands of personal computers. The American Journal of Human
Genetics, 78(6):922-935, 2006.

Daniel Paranhos Da Silva, Walfredo Cirne, Francisco Vilar
Brasileiro, and Campina Grande. Trading cycles for informa-
tion: Using replication to schedule bag-of-tasks applications on
computational grids. In Furo-Par, 2003.

Gurmeet Singh, Mei-Hui Su, Karan Vahi, Ewa Deelman, Bruce
Berriman, John Good, Daniel S. Katz, and Gaurang Mehta.
Workflow task clustering for best effort systems with pegasus.
In MG 08.

Wataru Souma. Universal structure of the personal income dis-
tribution. Fractals, 9(04):463-470, 2001.

Wataru Souma. Physics of personal income. http://arxiv.
org/pdf/cond-mat/0202388, 2002.

Douglas Thain, Todd Tannenbaum, and Miron Livny. Dis-
tributed computing in practice: the Condor experience. Con-
currency - Practice and Ezperience, 17(2-4):323-356, 2005.

Adel Nadjaran Toosi, Rodrigo N. Calheiros, Ruppa K. Thu-
lasiram, and Rajkumar Buyya. Resource provisioning policies to
increase iaas provider s profit in a federated cloud environment.
In IEEE Int’l Conference on High Performance Computing and
Communications (HPCC), 2011.

Bhuvan Urgaonkar, Prashant Shenoy, and Timothy Roscoe. Re-
source overbooking and application profiling in a shared internet
hosting platform. ACM Trans. Internet Technol., 9(1), 2009.

159

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

Kurt Vanmechelen, Wim Depoorter, and Jan Broeckhove. Com-
bining futures and spot markets: A hybrid market approach to
economic grid resource management. Journal of Grid Comput-
ing, 9:81-94, 2011.

Akshat Verma, Puneet Ahuja, and Anindya Neogi. Power-aware
dynamic placement of hpc applications. In ACM Int’l Conference
on Supercomputing (ICS), 2008.

Kurt Vermeersch. Spot watch. http://spotwatch.eu/input/.
Accessed Apr, 2011.

Kurt Vermeersch. A broker for cost-efficient qos aware resource
allocation in EC2. Master’s thesis, Universiteit Antwerpen, 2011.

William Vickrey. Counterspeculation, auctions, and competitive
sealed tenders. Journal of Finance, 16(1), 1961.

Daniel R. Vincent. Bidding off the wall: Why reserve prices
may be kept secret. Journal of Economic Theory, 65(2):575-584,
1995.

Berthold Vocking. A universally-truthful approximation scheme
for multi-unit auctions. In Annual ACM-SIAM Symposium on
Discrete Algorithms, 2012.

William Voorsluys, Saurabh Kumar Garg, and Rajkumar Buyya.
Provisioning spot market cloud resources to create cost-effective
virtual clusters. In ICA3PP, 2011.

Anton Vorontsov. Add mempressure cgroup. http://lwn.net/
Articles/528687/, Accessed April 2013, Dec 2012.

N. Vydyanathan, U. Catalyurek, T. Kurc, J. Saltz, and P. Sa-
dayappan. Toward optimizing latency under throughput con-
straints for application workflows on clusters. In Euro-Par, 2007.

Nagavijayalakshmi Vydyanathan, Umit Catalyurek, Tahsin
Kurc, Ponnuswamy Sadayappan, and Joel Saltz. A duplication

160

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

based algorithm for optimizing latency under throughput con-
straints for streaming workflows. In Proceedings of the 2008 37th
International Conference on Parallel Processing, ICPP ’08, 2008.

Carl A. Waldspurger. Memory resource management in Vmware
ESX server. In USENIX Symposium on Operating Systems De-
sign & Implementation (OSDI), volume 36, pages 181-194, 2002.

Carl A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart,
and W. S. Stornetta. Spawn: A distributed computational econ-
omy. IEEFE Transactions on Software Engineering, Feb 1992.

Hongyi Wang, Qingfeng Jing, Rishan Chen, Bingsheng He,
Zhengping Qian, and Lidong Zhou. Distributed systems meet
economics: pricing in the cloud. In USENIX Conference on Hot
Topics in Cloud Computing (HotCloud), 2010.

Sewook Wee. Debunking real-time pricing in cloud computing.
In Cluster, Cloud and Grid Computing (CCGrid), 2011.

Alexander Wieder, Pramod Bhatotia, Ansley Post, and Rodrigo
Rodrigues. Brief announcement: modelling mapreduce for opti-
mal execution in the cloud. In ACM SIGACT-SIGOPS sympo-
sium on Principles Of Distributed Computing (PODC), 2010.

Joshua Wingstrom and Henri Casanova. Probabilistic allocation
of tasks on desktop grids. In IPDPS, 2008.

UW-Madison CS Dept. Condor pool. Website. http://wuw.cs.
wisc.edu/condor/uwcs/.

Timothy Wood, Gabriel Tarasuk-Levin, Prashant Shenoy, Peter
Desnoyers, Emmanuel Cecchet, and Mark D. Corner. Memory
buddies: exploiting page sharing for smart colocation in virtual-
ized data centers. In ACM/USENIX Int’l Conference on Virtual
Ezecution Environments (VEE), pages 31-40, 2009.

Sangho Yi, Artur Andrzejak, and Derrick Kondo. Monetary cost-
aware checkpointing and migration on Amazon cloud spot in-
stances. IEEFE Transactions on Services Computing, 2011.

161

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

Sangho Yi, Derrick Kondo, and Artur Andrzejak. Reducing costs
of spot instances via checkpointing in the Amazon Elastic Com-
pute Cloud. In IEEFE International Conference on Cloud Com-
puting (CLOUD), 2010.

Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy
Katz, and Ion Stoica. Improving mapreduce performance in het-
erogeneous environments. In OSDI’08, 2008.

Sharrukh Zaman and Daniel Grosu. Combinatorial auction-
based dynamic vm provisioning and allocation in clouds. In
IEEEFE International Conference on Cloud Computing Technology
and Science (CloudCom), 2011.

Qi Zhang, Eren Gurses, Raouf Boutaba, and Jin Xiao. Dynamic
resource allocation for spot markets in clouds. In Workshop on
Hot Topics in Management of Internet, Cloud, and Enterprise
Networks and Services (Hot-ICE), 2011.

Han Zhao, Xinxin Liu, and Xiaolin Li. Hypergraph-based task-
bundle scheduling towards efficiency and fairness in heteroge-
neous distributed systems. In IEEFE Int’l Parallel & Distributed
Processing Symposium (IPDPS), 2010.

Han Zhao, Miao Pan, Xinxin Liu, Xiaolin Li, and Yuguang Fang.
Optimal resource rental planning for elastic applications in cloud
market. In IEEE Int’l Parallel & Distributed Processing Sympo-
situm (IPDPS), 2012.

Weiming Zhao and Zhenlin Wang. Dynamic memory balanc-
ing for virtual machines. In ACM/USENIX Int’l Conference on
Virtual Ezecution Environments (VEE), pages 21-30, 20009.

Xia Zhou, Sorabh G, Subhash Suri, and Haitao Zheng. eBay
in the sky: Strategy-proof wireless spectrum auctions. In ACM
International Conference on Mobile Computing and Networking

(MobiCom,), 2008.

162

XS 19797 20NN ARWH NRIYN
N"DINY

FTI-12 TINAR 737K

XS 19797 20NN ARWH NRIYN
n"oINY

PPN 2Y NN

ININN NZAPS MWITN DY 2PN 1M DYDY
DY MOPYT

FTI-12 TINAR 737K

HNIY IMNTNOV NN — PITVN VIDY WIN
2013 %)Y non V'YW N

AYNNN YTNRY NLVSPH IOV GOX '9179 THNINA NYYI 7NN

-9NWNA NTIN MPADIN NIMINN HY TORYY YONN NN PID0Y NTIN N
R3a)a)

98PN

OPNIPY-RI MMPY YA 90 NIN PYN 2NN SY INPI 2NN PPANDN
P2, DVNNYN BN DN DOMYNN 1IWNNN PARYN NN DIPIDY ODNoVN
NN 292 NOT HNMO NIIWNT 290N N¥AN NDIIN DN DUNNYN DY
SDN TN DIPIN DN . DOMYN 2IWNND 2ANYN YW N2 NN DY IMIVON
D212 DN DYTN DNNIN DOWNM 1Y NWNN MOWN DY O»I39510 MT
VUNN YRV PI9NT YTI WNNYNT DPNTPY-NI DIPMNOND MNP DPo0

>y

IMOY NNY NI PR NN TPIR 12 WNT DN MMPY TV OIITH NN
5S¢ 11230 DY 22X Y DNNIN DT HY YNIY DNNIAY TN SV 2NN
TN DINA PN TNTVN PPN NIV NOY DINNON WX T DY 1Y) TN 2ANWN
NOY D DN NN N NIOY NNDN NP TMPWN 1NN NMMIVIVON YW 11LI9
TIPDYRILIN MWD NP DIPY TNY MNIND 91939 3T 2900 NPYY ©
AT DN YYD 1IN 2 DIRID NN 1O-11D .DHDIDL DWNTIVN HIYVHUNN
MY DIWN TINT NN PYN 2IWHNT NN AR ZRNND XN P TN 9 119w
1 S0ANN9 PYY MPTIIN JIY YR PN Y DPNONY MYVNY WIND NI
2N Y 59190 YR TINT MYY PAY NN 9PV 59 NIY 133 1277 .00

2919 MYLVVN PPN

PV YNOIN 9T IR NN NN 2220 PY PO N TITH IN ONHNIN DN
DXPNNN NPNVDN NPNAZ NYTN TIT DN NN .("VIFD” DYN NN 100N
TYTNZ W NAVOYI PR 0N 9N N TY NN TR 597 MYt IWN NN OV
1P PN 1A TPNVONN THINRD RN I2Y NN DI, PNN 5O JW MPIN NN
2V DXPNNA NI NPNVIY NNMP 2D DONSID NN .M PNHNI 1IWNN M PYND
JTPIONIND PN NN Y D297 :DX0IV0N MY NX 02NN IWNRD NN
MY NYIT 293" PN NVXYA 2IWNNN NN DTN DN IWNRI O ON

MY NOYON YN DPNHND NPNHVY P MY

N

VP22 YN 5y DODIAN VIDN PPN D NINMIND NN NNTIAY M¥N DIV
“PHNN R} NP0 NOW OPPY MNWKRIN DIV R ININS TINIL 2D DRI NN
DPANN 29 PN NTW 19 M JRDX T Y 190777 191K DXV 1INY O
-0Y ;N9 NIPN NYAITN TWUND DPINONIND PN IRDN ST 9Y NONS IWN
NPV DXPHNN NPNVDNA YRN P DX NIV DYYNI OYPNN M 2N
11, DPMONYN DX PHN DIPININ YW 7132 MIYNNHND DIYL NN DWYNRN PN
Y2 PDONVIOW PONMN 299 INVN J2PY PODN PIY NP TN PR
TONM DWHRNVN DX YR YR PO TININIT PIvH IWN WD 1TON
MYY ST MON 5Y DIPHNN NPY TN NN PNTPIA 191 DPHN NYIAPY M
SV NRN MYSNXR Y9 THIVINN MIVN 5S¢ MIAPY OT Y NYINN PEINO
“NOD DRAWN NN TPEIMPON NIONY DAY VDY JY) T SY Mapy
D>PHRN NPNVDN HY DIMNINY DT DPIMPN DINN MY D PHN NP
NI TPDONIIVIN TPIMTIT NNRT NV SV NP V9N PPN INBX SV
NOY IPNNN DIDID DY 722 T2 IXINI W YIDY DY 3D MMPIN IHIUN
DY9NITIN DRI HY TIY NDOIN PN N ,NPINN VXYW NN NHN NNPY

DOV 2NN PANWYN 9 DINNIN PYN IWNND 7IWa Mo RN 1N
-I¥ NN) 0D NPTY IHNN TNV NPIYNI ,DINPIIN DINND YA 0190
5NV NININM IV ONPWN INY DOVOWI PP 2IWNHM SARWN X PHN 3 D9
-WN O Y NN SY NN NNMI 7NN DIDYNN MY DIPR MNP
DPPOYN DTN HY NIMNN NN DODIN NN OHPVINDIX NN K 1D
PN 5Y M¥9NM DAPRN Y D) 1D DN DPY PY 1IWHN MNIN SV
INYRIZ T APHN DOND XD 1IN 7T .D»9395 DNV ¥ DINN O
TNTAVI 92D NI INXM IMINNDA WIDIDY TNY IMNM MPYN I8P NN
-90(PYN VNN PPV P2 DPHN TNNIN NXID NIINND NIV ToN3 ,Iwns
9Y WIIN DWTN DPODY OV TYNY D91 NN NINN IWNI IMNY 1N
JIN TN NN THNOD MPT SY IR %779 295 DAPM DXANYN MIVN
MITNA GINY CMPYD IPIIVR’) NP D00 PYN VNN HTINY DAY 1N
PHRN NN DNIVN MMPIN M 570 "MPYI ANV’ SY 57N TIOY 1Y
-9 DIYN PN DN WK PN TR DONY ONY DXANWNRN Y DINANN
D912 DNY MDD NIX DYIPWNR MMPIN ,MXTN Y179 DjPna OmN)
APNN WX MPIN T2 .0NY IOPRNND MIVANI DN 0905 MINN Y370
N 20N 9122 PN DWNN PAD 1PN)TN 2NN MPN TINVIAN N Y1
PDID MV NN T TTIV THND DINIWNN PIINIFY Y IPVDINT MINTN 9
PYaNT MPIN Y DAY MDD TP XTI TPPO NN 93 TN 9399

DX ANVNI MWD INDA 1PN MY Y 9910 IWN DN 1910

PIYN WN L TPYI ARUN” HY STIN PY 2NN HY DINL AN DINND N
NI NN OPNIPY NI MMPOY NN MPNHNI) NPTY NPPY NI MP»yA]
799 NN P NPOM PIDRD NIVINNY NI, NPIZND TN NYPN ANWND
TINSPNA GON OWVIP YN NIN NI JONN 1 WP NPNT N, DION R
W IPNOMN TPYPND NIDNA NPN NIDND 1 MMPIN NOVINY NI PN
ANVNY MPRIN PR NI MN»PN DXPXY DARYN NPON MOY T297)
TN TTWN WN Y PO D00 MNT TN JY DONIN DIPVN AN N PN
19IND ANWN DY IINNDN TN ONZY IPTNNRN NINN DY PNSN2 MMpPoN
POONN ANYNI TN MPIN NN DY NTTHN MY 5y DIDNN IN M
YNID TN YTV NI POOM MPIMNNIN NN PRI NWY MpPoN WX DTTH D
oY MOIWNN DD TPNIIN INNI SY DNNND DX TTI NN NIIWNN NI NN
NNM JY MINKIN PYN DILVN AN DYIAPN ONY DARYND 2Y IMPIN 9

JNINN TMIDTY MO INDWI TN 77O MINVN IWN 17PNHIN

TIONNN YN TPYIN NI SY DD NN DIDLN AN SV INIIWNN POND
NIDN NPT YDV MVYYY NINDN PDNIPOY NOVN T NN S LN
PYND PNNN T2 T DY NIIWNN 2K ONNNA NYPLPND NPTINT >IN
T INNN NIINN INZI PINNDD 9N NI NN MZNI DV ML)

JIYPYWO AR DIDON PYD MITYPHRN MIOND

NN NN NAY "MPYI ARYND 1Y OV YIDNY 1PION MINNA DD»ON N
DND HYUNY) DPPINI DMWY DXIARYN MNID DMYY MMPIN N ,DXINYN
TIINT 2190 MPIN IWNRI W) DPIWNI N (MNY IMPNNI NN SY DNV
TOPNN DN NNX 1D M . (YN NXINY TaYN J37 1P2-7MN MND YN Pr1a
SN 9N MOPNN MPYI ARV 5TIN2 Y DY W0 X1y DIDLN NPIVON
9y D2OWUN NYAYNN NRXIND TPV NN DPIINN DIV JY YN NON IV
MMPIN SY NONNN NN NN 52190 Y0 PN JPNYN Y NRYPNN NN
0N DI JY YN IMWY TIWN MPIN MATYNL DMIPY D) 1 NI N
DNTIN 12) M IDIN IVINY YN PIY YIY DINTND NN INY ¥I9 MpPoN

DON DNPN DY MTTINNN 2077

