
Bare-Metal Performance for Virtual Machines with Exitless
Interrupts

[Extended Abstract]
∗

Nadav Amit
Technion, Israel

namit@cs.technion.ac.il

Abel Gordon
Stratoscale, Israel

abel@stratoscale.com

Nadav Har’El
Cloudius Systems, Israel
nadav@harel.org.il

Muli Ben-Yehuda
Stratoscale, Israel

mulix@mulix.org

Alex Landau
Facebook, Washington

landau.alex@gmail.com

Assaf Schuster
Technion, Israel

assaf@cs.technion.ac.il

Dan Tsafrir
Technion, Israel

dan@cs.technion.ac.il

ABSTRACT
Direct device assignment enhances the performance of guest
virtual machines by allowing them to communicate with
I/O devices without host involvement. But even with device
assignment, guests are still unable to approach bare-metal
performance, because the host intercepts all interrupts, in-
cluding those generated by assigned devices to signal to
guests the completion of their I/O requests. The host in-
volvement induces multiple unwarranted guest/host context
switches, which significantly hamper the performance of I/O
intensive workloads. To solve this problem, we present ELI
(ExitLess Interrupts), a software-only approach for handling
interrupts within guest virtual machines directly and se-
curely. By removing the host from the interrupt handling
path, ELI manages to improve the throughput and latency
of unmodified, untrusted guests by 1.3x–1.6x, allowing them
to reach 97%–100% of bare-metal performance even for the
most demanding I/O-intensive workloads.

1. INTRODUCTION
I/O activity is a dominant factor in the performance of

virtualized environments [16, 24], motivating direct device as-
signment where the host assigns physical I/O devices directly
to guest virtual machines. Examples of such devices include
disk controllers, network cards, and GPUs. Direct device
assignment provides superior performance than alternative
I/O virtualization approaches, because it almost entirely re-
moves the host from the guest’s I/O path. Without direct
device assignment, I/O-intensive workloads might suffer un-
acceptable performance degradation [16, 18, 24]. Still, direct

∗A full version of this paper is available in Proceedings of
ACM Architectural Support for Programming Languages
(ASPLOS) 2012.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

Figure 1: Exits during interrupt handling

access does not allow I/O-intensive workloads to approach
bare-metal (non-virtual) performance [5, 8, 15, 24], limiting
it to 60%–65% of the optimum by our measurements. We
find that nearly the entire performance difference is induced
by interrupts of assigned devices.

I/O devices generate interrupts to asynchronously com-
municate to the CPU the completion of I/O operations. In
virtualized settings, each device interrupt triggers a costly
exit [1, 5], causing the guest to be suspended and the host
to be resumed, regardless of whether or not the device is as-
signed. The host first signals to the hardware the completion
of the physical interrupt as mandated by the x86 specifica-
tion. It then injects a corresponding (virtual) interrupt to
the guest and resumes the guest’s execution. The guest in
turn handles the virtual interrupt and, like the host, signals
completion, believing that it directly interacts with the hard-
ware. This action triggers yet another exit, prompting the
host to emulate the completion of the virtual interrupt and
to resume the guest again. The chain of events for handling
interrupts is illustrated in Figure 1.

The guest/host context switches caused by interrupts in-
duce a tolerable overhead for non-I/O-intensive workloads,
a fact that allowed some previous virtualization studies to
claim they achieved bare-metal performance [4, 13]. But our
measurements indicate that this overhead quickly ceases to be
tolerable, adversely affecting guests that require throughput
of as little as 50 Mbps. Notably, previous studies improved
virtual I/O by relaxing protection [12, 13] or by modifying
guests [4], whereas we focus on the most challenging virtual-
ization scenario of untrusted and unmodified guests.

Many previous studies identified interrupts as a major
source of overhead [5, 14], and many proposed techniques to

reduce it, both in bare-metal settings [9, 22, 20, 25] and in
virtualized settings [3, 8, 15, 24]. In principle, it is possible to
tune devices and their drivers to generate fewer interrupts,
thereby reducing the related overhead. But doing so in prac-
tice is far from trivial [21] and can adversely affect both
latency and throughput.

Our approach rests on the observation that the high inter-
rupt rates experienced by a core running an I/O-intensive
guest are mostly generated by devices assigned to the guest.
Indeed, we measure rates of over 150K physical interrupts per
second, even while employing standard techniques to reduce
the number of interrupts, such as interrupt coalescing [20, 25,
3] and hybrid polling [9, 22]. As noted, the resulting guest/host
context switches are nearly exclusively responsible for the in-
ferior performance relative to bare metal. To eliminate these
switches, we propose ELI (ExitLess Interrupts), a software-
only approach for handling physical interrupts directly within
the guest in a secure manner.

With ELI, physical interrupts are delivered directly to
guests, allowing them to process their devices’ interrupts
without host involvement; ELI makes sure that each guest
forwards all other interrupts to the host. With x86 hardware,
interrupts are delivered using a software-controlled table of
pointers to functions, such that the hardware invokes the
k-th function whenever an interrupt of type k fires. Instead
of utilizing the guest’s table, ELI maintains, manipulates,
and protects a “shadow table”, such that entries associated
with assigned devices point to the guest’s code, whereas the
other entries are set to trigger an exit to the host.

We experimentally evaluate ELI with micro- and macro-
benchmarks. Our baseline configuration employs standard
techniques to reduce (coalesce) the number of interrupts,
demonstrating ELI’s benefit beyond the state-of-the-art. We
show that ELI improves the throughput and latency of guests
by 1.3x–1.6x. Notably, whereas I/O-intensive guests were
so far limited to 60%–65% of bare-metal throughput, with
ELI they reach performance that is within 97%–100% of
the optimum. Consequently, ELI makes it possible to, e.g.,
consolidate traditional data-center workloads that nowadays
remain non-virtualized due to unacceptable performance loss.

2. MOTIVATION AND RELATED WORK
For the past several decades, interrupts have been the main

method by which hardware devices can send asynchronous
events to the operating system [6]. The main advantage of
using interrupts to receive notifications from devices over
polling them is that the processor is free to perform other
tasks while waiting for an interrupt. This advantage applies
when interrupts happen relatively infrequently, as was the
case until high performance storage and network adapters
came into existence. With these devices, the CPU can be
overwhelmed with interrupts, leaving no time to execute code
other than the interrupt handler [17]. When the operating
system is run in a guest, interrupts have a higher cost since
every interrupt causes multiple exits [1, 5].

In the remainder of this section we introduce the existing
approaches to reduce the overheads induced by interrupts,
and we highlight the novelty of ELI in comparison to these
approaches. We subdivide the approaches into two categories.

2.1 Generic Interrupt Handling Approaches
We now survey approaches that equally apply to bare

metal and virtualized environments.

Polling disables interrupts entirely and polls the device for
new events at regular intervals. The benefit is that handling
device events becomes synchronous, allowing the operating
system to decide when to poll and thus limit the number
of handler invocations. The drawbacks are added latency,
increased power consumption (since the processor cannot
enter an idle state), and wasted cycles when no events are
pending. If polling is done on a different core, latency is
improved, but a core is wasted.

A hybrid approach for reducing interrupt-handling over-
head is to dynamically switch between using interrupts and
polling [9, 17]. Linux uses this approach by default through
the NAPI mechanism [22]. Switching between interrupts and
polling does not always work well in practice, partly due
to the complexity of predicting the number of interrupts a
device will issue in the future.

Another approach is interrupt coalescing [25, 20, 3], in
which the OS programs the device to send one interrupt in a
time interval or one interrupt per several events, as opposed to
one interrupt per event. As with the hybrid approaches, coa-
lescing delays interrupts and hence might increase latency [14]
and burst TCP traffic [25]. Deciding on the right model and
parameters for coalescing is particularly complex when the
workload runs within a guest [8]. Getting it right for a wide
variety of workloads is hard if not impossible [3, 21]. Unlike
coalescing, ELI does not reduce the number of interrupts;
instead it streamlines the handling of interrupts targeted at
virtual machines. Coalescing and ELI are therefore comple-
mentary: coalescing reduces the number of interrupts, and
ELI reduces their cost.

All evaluations in Section 5 were performed with the default
Linux configuration, which combines the hybrid approach
(via NAPI) and coalescing.

2.2 Virtualization-Specific Approaches
Using an emulated or paravirtual [4] device provides much

flexibility on the host side, but its performance is much lower
than that of device assignment, not to mention bare metal.
Liu [15] shows that device assignment of SR-IOV devices
can achieve throughput close to bare metal at the cost of as
much as 2x higher CPU utilization. He also demonstrates
that interrupts have a great impact on performance and are
a major expense for both the transmit and receive paths.

There are software techniques [2] to reduce the number
of exits by finding blocks of exiting instructions and exiting
only once for the whole block. These techniques can increase
the efficiency of running a virtual machine when the main
reason for the overhead is in the guest code. When the reason
is in external interrupts, such as for I/O intensive workloads
with SR-IOV, such techniques do not alleviate the overhead.

Dong et al. [8] discuss a framework for implementing SR-
IOV support in the Xen hypervisor. Their results show that
SR-IOV can achieve line rate with a 10Gbps network interface
controller (NIC). However, the CPU utilization is 148% of
bare metal. In addition, this result is achieved using adaptive
interrupt coalescing, which increases I/O latency.

Several studies attempted to reduce the aforementioned
extra overhead of interrupts in virtual environments. vIC [3]
discusses a method for interrupt coalescing in virtual storage
devices and shows an improvement of up to 5% in a macro-
benchmark. Their method uses the nmber of “commands in
flight” to decide decide how much to coalesce. Therefore, as
the authors say, this approach cannot be used for network

devices due to the lack of information on commands (or pack-
ets) in flight. Dong et al. [7] use virtual interrupt coalescing
via polling in the guest and receive side scaling to reduce
network overhead in a paravirtual environment. Polling has
its drawbacks, as discussed above, and ELI improves the more
performance-oriented device assignment environment.

NoHype [12] argues that modern hypervisors are prone to
attacks by their guests. In the NoHype model, the hypervisor
is a thin layer that starts, stops, and performs other admin-
istrative actions on guests, but is not otherwise involved.
Guests use assigned devices and interrupts are delivered
directly to guests. No details of the implementation or per-
formance results are provided. Instead, the authors focus on
describing the security and other benefits of the model.

3. X86 INTERRUPT HANDLING
To put ELI’s design in context, we begin with a short

overview of how interrupt handling works on x86 today.

3.1 Interrupts in Bare-Metal Environments
x86 processors use interrupts and exceptions to notify

system software about incoming events. Interrupts are asyn-
chronous events generated by external entities such as I/O
devices; exceptions are synchronous events—such as page
faults—caused by the code being executed. In both cases,
the currently executing code is interrupted and execution
jumps to a pre-specified interrupt or exception handler.

x86 operating systems specify handlers for each interrupt
and exception using an architected in-memory table, the
Interrupt Descriptor Table (IDT). This table contains up to
256 entries, each entry containing a pointer to a handler. Each
architecturally-defined exception or interrupt has a numeric
identifier—an exception number or interrupt vector—which is
used as an index to the table. The operating systems can use
one IDT for all of the cores or a separate IDT per core. The
operating system notifies the processor where each core’s IDT
is located in memory by writing the IDT’s virtual memory
address into the Interrupt Descriptor Table Register (IDTR).
Since the IDTR holds the virtual (not physical) address of
the IDT, the OS must always keep the corresponding address
mapped in the active set of page tables. In addition to the
table’s location in memory, the IDTR holds the table’s size.

When an external I/O device raises an interrupt, the pro-
cessor reads the current value of the IDTR to find the IDT.
Then, using the interrupt vector as an index to the IDT,
the CPU obtains the virtual address of the corresponding
handler and invokes it. Further interrupts may or may not
be blocked while an interrupt handler runs.

System software needs to perform operations such as en-
abling and disabling interrupts, signaling the completion of
interrupt handlers, configuring the timer interrupt, and send-
ing inter-processor interrupts (IPIs). Software performs these
operations through the Local Advanced Programmable Inter-
rupt Controller (LAPIC) interface. The LAPIC has multiple
registers used to configure, deliver, and signal completion of
interrupts. Signaling the completion of interrupts, which is
of particular importance to ELI, is done by writing to the
end-of-interrupt (EOI) LAPIC register. The newest LAPIC
interface, x2APIC [11], exposes its registers using model spe-
cific registers (MSRs), which are accessed through“read MSR”
and “write MSR” instructions. Previous LAPIC interfaces
exposed the registers only in a predefined memory area which
is accessed through regular load and store instructions.

3.2 Interrupts in Virtual Environments
x86 hardware virtualization [11] provides two modes of

operation, guest mode and host mode. The host, running in
host mode, uses guest mode to create new contexts for running
guest virtual machines. Once the processor starts running a
guest, execution continues in guest mode until some sensitive
event forces an exit back to host mode. The host handles any
necessary events and then resumes the execution of the guest,
causing an entry into guest mode. These exits and entries are
the primary cause of virtualization overhead [1, 5, 18], which
is particularly pronounced in I/O intensive workloads [15,
23, 19]. It comes from the processor cycles spent switching
between contexts, the time spent in host mode to handle the
exit, and the resulting cache pollution.

This work focuses on running unmodified and untrusted
operating systems. On the one hand, unmodified guests are
not aware they run in a virtual machine, and they expect
to control the IDT exactly as they do on bare metal. On
the other hand, the host cannot easily give untrusted and
unmodified guests control of each core’s IDT. This is because
having full control over the physical IDT implies total control
of the core. Therefore, x86 hardware virtualization extensions
use a different IDT for each mode. Guest mode execution
on each core is controlled by the guest IDT and host mode
execution is controlled by the host IDT. An I/O device can
raise a physical interrupt when the CPU is executing either in
host mode or in guest mode. If the interrupt arrives while the
CPU is in guest mode, the CPU forces an exit and delivers
the interrupt to the host through the host IDT.

Guests receive virtual interrupts, which are not necessarily
related to physical interrupts. The host may decide to inject
the guest with a virtual interrupt because the host received
a corresponding physical interrupt, or the host may decide
to inject the guest with a virtual interrupt manufactured
by the host. The host injects virtual interrupts through the
guest IDT. When the processor enters guest mode after an
injection, the guest receives and handles the virtual interrupt.

During interrupt handling, the guest will access its LAPIC.
Just like the IDT, full access to a core’s physical LAPIC
implies total control of the core, so the host cannot easily
give untrusted guests access to the physical LAPIC. For
guests using the first LAPIC generation, the processor forces
an exit when the guest accesses the LAPIC memory area.
For guests using x2APIC, the host traps LAPIC accesses
according to MSR bitmap, which specifies the sensitive MSRs
that cannot be accessed directly by the guest. When the guest
accesses sensitive MSRs, execution exits back to the host. In
general, x2APIC registers are considered sensitive MSRs.

3.3 Interrupts from Assigned Devices
The key to virtualization performance is for the CPU to

spend most of its time in guest mode, running the guest, and
not in the host, handling guest exits. I/O device emulation
and paravirtualized drivers [4] incur significant overhead
for I/O intensive workloads running in guests [5, 15]. The
overhead is incurred by the host’s involvement in its guests’
I/O paths for programmed I/O (PIO), memory-mapped I/O
(MMIO), direct memory access (DMA), and interrupts.

Direct device assignment is the best performing approach
for I/O virtualization [8, 15] because it removes some of the
host’s involvement in the I/O path. With device assignment,
guests are granted direct access to assigned devices. Guest
I/O operations bypass the host and are communicated di-

rectly to devices. As noted, device DMA also bypass the host;
devices perform DMA accesses to and from guest memory
directly. Interrupts generated by assigned devices, however,
still require host intervention.

In theory, when the host assigns a device to a guest, it
should also assign the physical interrupts generated by the
device to that guest. Unfortunately, current x86 virtualization
only supports two modes: either all physical interrupts on
a core are delivered to the currently running guest, or all
physical interrupts in guest mode cause an exit and are
delivered to the host. An untrusted guest may handle its own
interrupts, but it must not be allowed to handle the interrupts
of the host and the other guests. Consequently, before ELI,
the host had no choice but to configure the processor to force
an exit when any physical interrupt arrive in guest mode.
The host then inspected the interrupt and decided whether
to handle it by itself or inject it to the associated guest.

Figure 1 describes the interrupt handling flow with base-
line device assignment. Each physical interrupt from the
guest’s assigned device forces at least two exits from guest to
host: when the interrupt arrives and when the guest signals
completion of the interrupt handling. As we exemplify in Sec-
tion 5, interrupt-related exits are the foremost contributors
to virtualization overhead for I/O intensive workloads.

4. ELI: DESIGN AND IMPLEMENTATION
ELI enables unmodified and untrusted guests to handle

interrupts directly and securely. ELI does not require any
guest modifications, and thus should work with any operating
system. It does not rely on any device-specific features, and
thus should work with any assigned device.

4.1 Exitless Interrupt Delivery
ELI’s design was guided by the observation that nearly all

physical interrupts arriving at a given core are targeted at
the guest running on that core. This is due to several reasons.
First, in high-performance deployments, guests usually have
their own physical CPU cores (or else they would waste
too much time context switching); second, high-performance
deployments use device assignment with SR-IOV devices; and
third, interrupt rates are usually proportional to execution
time. The longer each guest runs, the more interrupts it
receives from its assigned devices. Following this observation,
ELI makes use of available hardware support to deliver all
physical interrupts on a given core to the guest running on it,
since most of them should be handled by that guest anyway,
and forces the (unmodified) guest to reflect back to the host
all those interrupts which should be handled by the host.

The guest OS continues to prepare and maintain its own
IDT. Instead of running the guest with this IDT, ELI runs
the guest in guest mode with a different IDT prepared by
the host. We call this second guest IDT the shadow IDT.
Just like shadow page tables can be used to virtualize the
guest MMU [4, 1], IDT shadowing can be used to virtualize
interrupt delivery. This mechanism, depicted in Figure 2,
requires no guest cooperation.

By shadowing the guest’s IDT, the host has explicit control
over the interrupt handlers invoked by the CPU on interrupt
delivery. The host can configure the shadow IDT to deliver
assigned interrupts directly to the guest’s interrupt handler or
force an exit for non-assigned interrupts. The simplest method
to cause an exit is to force the CPU to generate an exception,
because exceptions can be selectively trapped by the host and

Figure 2: ELI interrupt delivery flow

can be easily generated if the host intentionally misconfigures
the shadow IDT. For our implementation, we decided to force
exits primarily by generating not-present (NP) exceptions.
Each IDT entry has a present bit. Before invoking an entry to
deliver an interrupt, the processor checks whether that entry
is present (has the present bit set). Interrupts delivered to
not-present entries raise a NP exception. ELI configures the
shadow IDT as follows: for exceptions and physical interrupts
belonging to devices assigned to the guest, the shadow IDT
entries are copied from the guest’s original IDT and marked
as present. Every other entry in the shadow IDT should be
handled by the host and is therefore marked as not present
to force a not-present exception when the processor tries
to invoke the handler. Additionally, the host configures the
processor to force an exit from guest mode to host mode
whenever a not-present exception occurs.

Any physical interrupt reflected to the host appears in
the host as a not-present exception and must be converted
back to the original interrupt vector. The host inspects the
cause for this exception. If the exit was actually caused by a
physical interrupt, the host raises a software interrupt with
the same vector as the physical interrupt, which causes the
processor to invoke the appropriate IDT entry. If the exit
was not caused by a physical interrupt, then it is a true guest
not-present exception and should be handled by the guest. In
this case, the host injects the exception back into the guest.
True not-present exceptions are rare in normal execution.

The host sometimes also needs to inject into the guest
virtual interrupts raised by devices that are emulated by
the host (e.g., the keyboard). These interrupt vectors will
have their entries in the shadow IDT marked not-present.
To deliver such virtual interrupts through the guest IDT
handler, ELI enters a special injection mode by configuring
the processor to cause an exit on any physical interrupt and
running the guest with the original guest IDT. ELI then
injects the virtual interrupt into the guest for handling. After
the guest signals completion of the injected virtual interrupt,
ELI leaves injection mode by reconfiguring the processor to let
the guest handle physical interrupts directly and resuming the
guest with the shadow IDT. As we later show in Section 5, the
number of injected virtual interrupts is orders of magnitude
smaller than the number of physical interrupts generated by
the assigned device. Thus, the number of exits due to physical
interrupts while running in injection mode is negligible.

Even when all the interrupts require exits, ELI is not slower

than baseline device assignment. The number of exits never
increases and cost per exit remains the same. Common OS
rarely modify the IDT content after system initialization.
Entering and leaving injection mode requires only two mem-
ory writes, one to change the IDT pointer and the other to
change the CPU execution mode.

4.2 Placing the Shadow IDT
There are several requirements on where in guest memory

to place the shadow IDT. First, it should be hidden from the
guest, i.e., placed in memory not normally accessed by the
guest. Second, it must be placed in a guest physical page that
is always mapped in the guest’s kernel address space. This
is an x86 architectural requirement, since the IDTR expects
a virtual address. Third, since the guest is unmodified and
untrusted, the host cannot rely on any guest cooperation for
placing the shadow IDT. ELI satisfies all three requirements
by placing the shadow IDT in an extra page of a device’s
PCI BAR (Base Address Register).

PCI devices which expose their registers to system software
as memory do so through BAR registers. BARs specify the
location and sizes of device registers in physical memory.
Linux and Windows drivers will map the full size of their
devices’ PCI BARs into the kernel’s address space, but they
will only access specific locations in the mapped BAR that
are known to correspond to device registers. Placing the
shadow IDT in an additional memory page tacked onto the
end of a device’s BAR causes the guest to (1) map it into
its address space, (2) keep it mapped, and (3) not access it
during normal operation. All of this happens as part of normal
guest operation and does not require any guest awareness
or cooperation. To detect runtime changes to the guest IDT,
the host also write-protects the shadow IDT page.

4.3 Configuring Guest and Host Vectors
Neither the host nor the guest have absolute control over

precisely when an assigned device interrupt fires. Since the
host and the guest may run at different times on the core
receiving the interrupt, both must be ready to handle the
same interrupt. (The host handles the interrupt by injecting it
into the guest.) Interrupt vectors also control that interrupt’s
priority relatively to other interrupts. Therefore, ELI makes
sure that for each device interrupt, the respective guest and
host interrupt handlers are assigned to the same vector.

4.4 Exitless Interrupt Completion
Although ELI IDT shadowing delivers hardware interrupts

to the guest without host intervention, signaling interrupt
completion still forces an exit to host mode. This exit is
caused by the guest signaling the completion of an interrupt.
As explained in Section 3.2, guests signal completion by
writing to the EOI LAPIC register. This register is exposed
to the guest either as part of the LAPIC area (older LAPIC
interface) or as an x2APIC MSR (the new LAPIC interface).
With the old interface, every LAPIC access causes an exit,
whereas with the new one, the host can decide on a per-
x2APIC-register basis which register accesses cause exits.

Before ELI, the host configured the CPU’s MSR bitmap
to force an exit when the guest accessed the EOI MSR. ELI
exposes the x2APIC EOI register directly to the guest by
configuring the MSR bitmap to not cause an exit when the
guest writes to the EOI register. Combining this interrupt
completion technique with ELI IDT shadowing eliminates

the exits on the critical interrupt handling path.
Guests are not aware of the distinction between physical

and virtual interrupts. They signal the completion of all inter-
rupts the same way, by writing the EOI register. When the
host injects a virtual interrupt, the corresponding completion
should go to the host for emulation and not to the physi-
cal EOI register. Thus, during injection mode (described in
Section 4.1), the host temporarily traps accesses to the EOI
register. Once the guest signals the completion of all pending
virtual interrupts, the host leaves injection mode.

4.5 Protection
Full details of the considered threat model are available in

the full paper. Here we briefly describe possible attacks and
the mechanisms ELI employs to prevent them

A malicious guest may try to steal CPU time by disabling
interrupts forever. To prevent such attack, ELI uses the pre-
emption timer feature of x86, which triggers an unconditional
exit after a configurable period of time elapses.

A misbehaving guest may refrain from signaling interrupt
completion and thereby mask host interrupts. To prevent it,
ELI signals interrupt completion for any assigned interrupt
still in service after an exit. To maintain correctness, when
ELI detects that the guest did not complete any previously
delivered interrupts, it falls back to injection mode until the
guest signals completions of all in-service interrupts. Since all
of the registers that control CPU interruptibility are reloaded
upon exit, the guest cannot affect host interruptibility.

A malicious guest can try to block or consume critical phys-
ical interrupts, such as a thermal interrupt. To protect against
such an attack, ELI uses one of the following mechanisms. If
there is a core which does not run any ELI-enabled guests,
ELI redirects critical interrupts there. If no such core is avail-
able, ELI uses a combination of Non-Maskable-Interrupts
(NMIs) and IDT limiting.

Non-Maskable-Interrupts (NMIs) trigger unconditional ex-
its; they cannot be blocked by guests. ELI redirects critical
interrupts to the core’s single NMI handler. All critical in-
terrupts are registered with this handler, and whenever an
NMI occurs, the handler calls all registered interrupt vectors
to discern which critical interrupt occurred. NMI sharing
has a negligible run-time cost (since critical interrupts rarely
happen). However, some devices and device drivers may lock
up or otherwise misbehave if their interrupt handlers are
called when no interrupt was raised.

For critical interrupts whose handlers must only be called
when an interrupt actually occurred, ELI uses a complemen-
tary coarse grained IDT limit mechanism. The IDT limit is
specified in the IDTR register, which is protected by ELI
and cannot be changed by the guest. IDT limiting reduces
the limit of the shadow IDT, causing all interrupts whose
vector is above the limit to trigger the usually rare general
protection exception (GP). A GP is intercepted and handled
by the host similarly to the not-present (NP) exception. No
events take precedence over the IDTR limit check [11], and
all handlers above the limit are therefore guaranteed to trap
to the host when called.

5. EVALUATION
We implement ELI within the KVM hypervisor. This sec-

tion evaluates the performance of our implementation.

5.1 Methodology and Experimental Setup

0%

20%

40%

60%

80%

100%

0G

1G

2G

3G

4G

5G

%
 o

f
b

a
re

-m
e

ta
l
th

ro
u

g
h

p
u

t

ba
se

lin
e

ELI

netperf

63%

0K

2K

4K

6K

8K

10K

ba
se

lin
e

ELI

apache

49%

0K

40K

80K

120K

160K

a
b

s
o

lu
te

 t
h

ro
u

g
h

p
u

t
/

s
e

c
o

n
d

ba
se

lin
e

ELI

memcached

66%

Figure 3: Performance of I/O intensive workloads
relatively to bare-metal.

We measure and analyze ELI’s effect on high-throughput
network cards assigned to a guest virtual machine. Network
cards are the most common use-case of device assignment, due
to their high throughput and because SR-IOV network cards
make it easy to assign one physical network card to multiple
guests. We use throughput and latency to measure perfor-
mance, and we contrast the results achieved by virtualized
and bare-metal settings to demonstrate that the former can
approach the latter. As noted earlier, performance-minded
applications would typically dedicate whole cores to guests.
We limit our evaluation to this case.

Our test machine is an IBM System x3550 M2 server,
equipped with Intel Xeon X5570 CPUs, 24GB of memory,
and an Emulex OneConnect 10Gbps NIC. We use another
similar remote server (connected directly by 10Gbps fiber) as
a workload generator and a target for I/O transactions. Guest
mode and bare-metal configurations execute with a single
vCPU or CPU respectively; 1GB of memory is assigned for
each. All setups run Ubuntu 9.10 with Linux 2.6.35.

We run all guests on the KVM hypervisor (which is part
of Linux 2.6.35) and QEMU-KVM 0.14.0, with and without
ELI modifications. To check that ELI functions correctly in
other setups, we also deploy it in an environment that uses
a different device (BCM5709 1Gbps NIC) and a different OS
(Windows 7); we find that ELI indeed operates correctly.

We configure the hypervisor to back the guest’s memory
with 2MB huge pages and two-dimensional page tables. Huge
pages minimize two-dimensional paging overhead and reduce
TLB pressure. We note that only the host uses huge pages;
in all cases the guest still operates with the default 4KB
page size. We quantify the performance without huge pages,
finding that they improve performance of both baseline and
ELI runs similarly (data not shown).

Recall that ELI makes use of the x2APIC hardware to
avoid exits on interrupt completions. x2APIC is available in
every Intel x86 CPU since Sandy Bridge microarchitecture.
Alas, the hardware we used for evaluation does not support
x2APIC. To nevertheless measure the benefits of ELI utilizing
x2APIC hardware, we slightly modify our Linux guest to
emulate the x2APIC behavior. Specifically, we expose the
physical LAPIC and a control flag to the guest, such that the
guest may perform an EOI on the virtual LAPIC (forcing an
exit) or the physical LAPIC (no exit), according to the flag.

5.2 Throughput

statistics baseline ELI bare-metal
Exits/s 90506 1118
Time in guest 67% 98%
Interrupts/s 36418 66546 68851
handled in host 36418 195

Injections/s 36671 458
IRQ windows/s 7801 192
Requests/s 7729 11480 11875
Avg response ms 0.518 0.348 0.337

Table 1: Apache benchmark execution breakdown.

I/O virtualization performance suffers the most with work-
loads that are I/O intensive and which incur many interrupts.
We start our evaluation by measuring three well-known exam-
ples of network-intensive workloads, and show that for these
benchmarks ELI provides a significant (49%–66%) through-
put increase over baseline device assignment, and that it
nearly (to 0%-3%) reaches bare-metal performance.

We consider the following three benchmarks: Netperf
TCP stream, which opens a single TCP connection to the
remote machine, and makes as many rapid write() calls of
a given size as possible; Apache HTTP server, measured
using remote ApacheBench which repeatedly requests a static
page from several concurrent threads; and Memcached, a
high-performance in-memory key-value storage server, mea-
sured using the Memslap benchmark which sends a random
sequence of get (90%) and set (10%) requests.

We configure each benchmark with parameters which fully
load the tested machine’s CPU (so that throughput can
be compared), but do not saturate the tester machine. We
configure Netperf to do 256-byte writes, ApacheBench to
request 4KB static pages from 4 concurrent threads, and
Memslap to make 64 concurrent requests from 4 threads.

Figure 3 illustrates how ELI improves the throughput of
these three benchmarks. Each of the benchmarks was run on
bare metal and under two virtualized setups: baseline device
assignment, and device assignment with ELI.

The figure shows that baseline device assignment perfor-
mance is still considerably below bare-metal performance:
Netperf throughput on a guest is at 60% of bare-metal
throughput, Apache is at 65%, and Memcached at 60%. With
ELI, Netperf achieves 98% of the bare-metal throughput,
Apache 97%, and Memcached 100%. It is evident that using
ELI gives a significant throughput increase, 63%, 49%, and
66% for Netperf, Apache, and Memcached, respectively.

5.3 Execution Breakdown
Breaking down the execution time to host, guest, and

overhead components allows us to better understand how
and why ELI improves the guest’s performance. Table 1
shows this breakdown for the Apache benchmark. (Netperf
and Memcached appear in the full paper). We summarize
here the results of the three benchmarks.

Guest performance should be better with ELI because the
guest gets a larger fraction of the CPU (the host uses less),
and/or because the guest runs more efficiently when it gets to
run. With baseline device assignment, only 60%–69% of the
CPU time is spent in the guest. The rest is spent in the host,
handling exits or performing the world-switches necessary on
every exit and entry. ELI eliminates most of the exits, and

0%

20%

40%

60%

80%

100%

 0 50 100 150 200 250 300
0K

10K

20K

30K

40K

50K

60K

70K
E

L
I’
s
 t

h
ro

u
g

h
p

u
t

im
p

ro
v
e

m
e

n
t

in
te

rr
u

p
ts

 /
 s

e
c
o

n
d

computation-I/O ratio (cycles/byte)

improvement
interrupts

Figure 4: Throughput improvement and baseline in-
terrupt rate of modified-Netperf workloads with var-
ious computation-I/O ratios.

thereby both the fraction of time spent in the host (1%–2%)
and the number of world-switches (764–1118) are low.

In baseline device assignment, all interrupts arrive at the
host and are then injected to the guest. The injection rate
is slightly higher than the interrupt rate because the host
injects additional virtual interrupts, such as timer interrupts.
The number of interrupts “handled in host” is very low (103–
207) when ELI is used, because the fraction of the time that
the CPU is running the host is much lower.

Baseline device assignment is further slowed down by “IRQ
window” exits: on bare metal, when a device interrupt occurs
while interrupts are blocked, the interrupt will be delivered
by the LAPIC hardware some time later. But when a guest
is running, an interrupt always causes an immediate exit.
The host wishes to inject this interrupt to the guest (if it is
an interrupt from the assigned device), but if the guest has
interrupts blocked, it cannot. The x86 architecture solution
is to run the guest with an “IRQ window” enabled, requesting
an exit as soon as the guest enables interrupts. We see
7801–9069 of these exits every second in the baseline device
assignment run. ELI mostly eliminates IRQ window overhead,
by eliminating most injections. Consequently, as expected,
ELI slashes the number of exits, from 90506–123134 in the
baseline device assignment runs, to just 764–1118.

5.4 Impact of Interrupt Rate
The benchmarks in the previous section demonstrated

that ELI significantly improves throughput over baseline
device assignment for I/O intensive workloads. But as the
workload spends less of its time on I/O and more of its
time on computation, it seems likely that ELI’s improvement
will be less pronounced. Nonetheless, counterintuitively, we
shall now show that ELI continues to provide relatively large
improvements until we reach some fairly high computation-
per-I/O ratio (and some fairly low throughput). To this end,
we modify the Netperf benchmark to perform a specified
amount of extra computation per byte written to the stream.
This resembles many useful server workloads, where the server
does some computation before sending its response.

A useful measure of the ratio of computation to I/O is
cycles/byte, the number of CPU cycles spent to produce one
byte of output; this ratio is easily measured as the quotient of
CPU frequency (in cycles/second) and workload throughput

0%

20%

40%

60%

80%

100%

120%

10K 20K 30K 40K 50K 60K 70K 80K

E
L

I’
s
 t

h
ro

u
g

h
p

u
t

im
p

ro
v
e

m
e

n
t

Interrupts / second

16

24

32
40485664

72

80

88

96

Figure 5: Throughput improvement and interrupt
rate for Netperf benchmark with different interrupt
coalescing intervals (shown in labels).

(in bytes/second). Note that cycles/byte is inversely propor-
tional to throughput. Figure 4 depicts ELI’s improvement
and the interrupt rate as a function of this ratio. As shown,
until after 60 cycles/byte—which corresponds to throughput
of only 50Mbps–ELI’s improvement stays over 25% and the
interrupt rate remains between 30K–60K, As will be shortly
exemplified, interrupt rates are kept in this range due to the
NIC (which coalesces interrupts) and the Linux driver (which
employs NAPI), and they would have been higher if it were
not for these mechanisms. Since ELI lowers the overhead of
handling interrupts, its benefit is proportional to their rate,
not to throughput, a fact that explains why the improvement
is similar over a range of computation-I/O values.

We now proceed to investigate the dependence of ELI’s
improvement on the amount of coalescing done by the NIC,
which immediately translates to the amount of generated
interrupts. Our NIC imposes a configurable cap on coalescing,
allowing its users to set a time duration T , such that the
NIC will not fire more than one interrupt per Tµs (longer
T implies less interrupts). We set the NIC’s coalescing cap
to the following values: 16µs, 24µs, 32µs, . . ., 96µs. Figure 5
plots the results of the associated experiments (the data along
the curve denotes values of T). Higher interrupt rates imply
higher savings due to ELI. Even with this maximal coalescing
ELI still provides a 10% performance improvement over the
baseline. ELI achieves at least 99% of bare-metal throughput
in all of the experiments described in this subsection.

5.5 Latency
By removing the exits caused by external interrupts, ELI

substantially reduces the time it takes to deliver interrupts to
the guest. This period of time is critical for latency-sensitive
workloads. We measure ELI’s latency improvement using
Netperf UDP request-response, which sends a UDP packet
and waits for a reply before sending the next. To simulate a
busy guest that has work to do alongside a latency-sensitive
application, we run a busy-loop within the guest. As the
results in Table 2 show, baseline device assignment increases
bare metal latency by 8.21µs and that ELI reduces this gap
to only 0.58µs, which is within 98% of bare-metal latency.

6. RECENT DEVELOPMENTS
Since this paper was originally published, both Intel and

Configuration Latency % Overhead
baseline 36.14 µs 29%
ELI 28.51 µs 2%
bare-metal 27.93 µs 0%

Table 2: Latency measured by Netperf UDP request-
response benchmark.

AMD introduced a new “virtual APIC” feature, which allows
virtual interrupts to be delivered and signal their completion
signaled without triggering an exit. To mitigate device as-
signment overheads, hypervisors can redirect the assigned
device interrupts to a certain processor that runs in host
mode, which would then deliver the corresponding virtual
interrupt to the appropriate vCPU. Although such a scheme
eliminates unwarranted guest/host context-switches, it is in-
ferior to ELI, as it (1) requires dedicating core (or cores)
for redirecting guest interrupts; and (2) increases interrupts
delivery latency of interrupts as they are first processed by a
the hypervisor, and only then delivered to the guest.

Despite the superior performance of direct device assign-
ment, paravirtual I/O is often preferred as it simplifies live-
migration and allows the hypervisor to interpose on the guest
I/O. By extending ELI techniques, Har’El et al. [10] intro-
duced ELVIS which improves paravirtual I/O performance
by 1.2x-3x. Yet, to do so ELVIS requires a dedicated core
that would poll interrupts and redirect them to the guest.

7. CONCLUSIONS
The key to high virtualization performance is for the CPU

to spend most of its time in guest mode, running the guest,
and not in the host, handling guest exits. Yet current ap-
proaches to x86 virtualization induce multiple exits by re-
quiring host involvement in the critical interrupt handling
path. The result is that I/O performance suffers. We pro-
pose to eliminate the unwarranted exits by introducing ELI,
an approach that lets guests handle interrupts directly and
securely. Building on many previous efforts to reduce virtual-
ization overhead, ELI finally makes it possible for untrusted
and unmodified virtual machines to reach nearly bare-metal
performance, even for the most I/O-intensive workloads. Con-
sidering, it seems that the next logical step for chip vendors
is extend the posted interrupts architecture so as to sup-
port the ELI paradigm in hardware, thereby simplifying its
implementation.

Acknowledgments
The research leading to the results presented in this paper
is partially supported by the European Community’s Sev-
enth Framework Programme ([FP7/2001-2013]) under grant
agreements #248615 (IOLanes) and #248647 (ENCORE).

8. REFERENCES
[1] K. Adams and O. Agesen. A comparison of software

and hardware techniques for x86 virtualization. In
ACM Architectural Support for Programming Languages
& Operating Systems (ASPLOS), 2006.

[2] O. Agesen, J. Mattson, R. Rugina, and J. Sheldon.
Software techniques for avoiding hardware
virtualization exits. In USENIX Annual Technical
Conference (ATC), pages 373–385, 2012.

[3] I. Ahmad, A. Gulati, and A. Mashtizadeh. vIC:
Interrupt coalescing for virtual machine storage device
IO. In USENIX Annual Technical Conference (ATC),
2011.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen
and the art of virtualization. In ACM Symposium on
Operating Systems Principles (SOSP), 2003.

[5] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor,
N. Har’El, A. Gordon, A. Liguori, O. Wasserman, and
B.-A. Yassour. The Turtles project: Design and
implementation of nested virtualization. In USENIX
Symposium on Operating Systems Design &
Implementation (OSDI), 2010.

[6] E. F. Codd. Advances in Computers, volume 3, pages
77–153. New York: Academic Press, 1962.

[7] Y. Dong, D. Xu, Y. Zhang, and G. Liao. Optimizing
network I/O virtualization with efficient interrupt
coalescing and virtual receive side scaling. In IEEE
International Conference on Cluster Computing
(CLUSTER), 2011.

[8] Y. Dong, X. Yang, X. Li, J. Li, K. Tian, and H. Guan.
High performance network virtualization with SR-IOV.
In IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2010.

[9] C. Dovrolis, B. Thayer, and P. Ramanathan. HIP:
hybrid interrupt-polling for the network interface. ACM
SIGOPS Operating Systems Review (OSR), 35:50–60,
2001.

[10] N. Har’El, A. Gordon, A. Landau, M. Ben-Yehuda,
A. Traeger, and R. Ladelsky. Efficient and scalable
paravirtual i/o system. In USENIX Annual Technical
Conference (ATC), pages 231–242, 2013.

[11] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developer’s Manual, 2014.

[12] E. Keller, J. Szefer, J. Rexford, and R. B. Lee. NoHype:
virtualized cloud infrastructure without the
virtualization. In ACM/IEEE International Symposium
on Computer Architecture (ISCA). ACM, 2010.

[13] J. R. Lange, K. Pedretti, P. Dinda, P. G. Bridges,
C. Bae, P. Soltero, and A. Merritt. Minimal-overhead
virtualization of a large scale supercomputer. In
ACM/USENIX International Conference on Virtual
Execution Environments (VEE), 2011.

[14] S. Larsen, P. Sarangam, R. Huggahalli, and S. Kulkarni.
Architectural breakdown of end-to-end latency in a
TCP/IP network. In International Symposium on
Computer Architecture and High Performance
Computing, 2009.

[15] J. Liu. Evaluating standard-based self-virtualizing
devices: A performance study on 10 GbE NICs with
SR-IOV support. In IEEE International Parallel &
Distributed Processing Symposium (IPDPS), 2010.

[16] J. Liu, W. Huang, B. Abali, and D. K. Panda. High
performance VMM-bypass I/O in virtual machines. In
USENIX Annual Technical Conference (ATC), pages
29–42, 2006.

[17] J. C. Mogul and K. K. Ramakrishnan. Eliminating
receive livelock in an interrupt-driven kernel. ACM
Transactions on Computer Systems (TOCS),
15:217–252, 1997.

[18] H. Raj and K. Schwan. High performance and scalable

I/O virtualization via self-virtualized devices. In
International Symposium on High Performance
Distributed Computer (HPDC), 2007.

[19] K. K. Ram, J. R. Santos, Y. Turner, A. L. Cox, and
S. Rixner. Achieving 10Gbps using safe and
transparent network interface virtualization. In
ACM/USENIX International Conference on Virtual
Execution Environments (VEE), 2009.

[20] K. Salah. To coalesce or not to coalesce. International
Journal of Electronics and Communications,
61(4):215–225, 2007.

[21] K. Salah and A. Qahtan. Boosting throughput of Snort
NIDS under Linux. In International Conference on
Innovations in Information Technology (IIT), 2008.

[22] J. H. Salim, R. Olsson, and A. Kuznetsov. Beyond
Softnet. In Annual Linux Showcase & Conference, 2001.

[23] J. R. Santos, Y. Turner, j. G. Janakiraman, and
I. Pratt. Bridging the gap between software and
hardware techniques for I/O virtualization. In USENIX
Annual Technical Conference (ATC), 2008.

[24] P. Willmann, J. Shafer, D. Carr, A. Menon, S. Rixner,
A. L. Cox, and W. Zwaenepoel. Concurrent direct
network access for virtual machine monitors. In IEEE
International Symposium on High Performance
Computer Architecture (HPCA), 2007.

[25] M. Zec, M. Mikuc, and M. Žagar. Estimating the
Impact of Interrupt Coalescing Delays on Steady State
TCP Throughput. In International Conference on
Software, Telecommunications and Computer Networks
(SoftCOM), 2002.

