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Flash memory is prevalent in modern servers and devicegpl€bwith the scaling down of flash technology, the popufarit
of flash memory motivates the search for methods to increask feliability and lifetime. Erasures are the dominanseau
of flash cell wear, but reducing them is challenging becawsh fis awrite-oncemedium— memory cells must be erased
prior to writing.

An approach that has recently received considerable mtterglies onwrite-once memory (WOMjodes, designed to
accommodate additional writes on write-once media. Howekie techniques proposed for reusing flash pages with WOM
codes are limited in their scope. Many focus on the codingrthalone, while others suggest FTL designs that are apiolica
specific, or not applicable due to their complexity, ovetdssar specific constraints of MLC flash.

This work is the first that addresses all aspects of page reitisie an end-to-end analysis of a general-purpose FTL on
MLC flash. We use a hardware evaluation setup to directly oreahe short and long-term effects of page reuse on SSD
durability and energy consumption, and show that FTL desigist explicitly take them into account. We then provide a
detailed analytical model for deriving the optimal garbag#lection policy for such FTL designs, and for predictirge t
benefit from reuse on realistic hardware and workload cleniatics.
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1. INTRODUCTION

Flash memories have special characteristics that make ¢lspatially useful for solid-state drives
(SSD). Their short read and write latencies and increasiraughput provide a great performance
improvement compared to traditional hard-disk based drik#®wever, once a flash cell is written
upon, changing its value from 1 to 0, it must be erased befaan be rewritten. In addition to the
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latency they incur, these erasures wear the cells, degy#uéir reliability. Thus, flash cells have a
limited lifetime, measured as the number of erasures a hilanlendure.

Multi-level flash cells (MLC), which support four voltagevkds, increase available capacity but
have especially short lifetimes, as low as several thousaherasures. Many methods for reducing
block erasures have been suggested for incorporation iftaste translation layer (FTL), the SSD
management firmware. These include minimizing user andriatevrite traffic [Colgrove et al.
2015; Gupta et al. 2011; Huang et al. 2013; Kim and Ahn 2008e0dl. 2012; Park et al. 2015;
Saxena et al. 2012; Soundararajan et al. 2010; Yang et 8] 204 distributing erasure costs evenly
across the drive’s blocks [Agrawal et al. 2008; Im and Shia@Qimenez et al. 2014; Kgil et al.
2008].

A promising technique for reducing block erasures is to usevonce memory (WOM) codes.
WOM codes alter the logical data before it is physically terit, thus allowing the reuse of cells for
multiple writes. They ensure that, on every consecutivéewanes may be overwritten with zeros,
but not vice versa. Reusing flash cells with this techniqughinimake it possible to increase the
amount of data written to the block before it must be erased.

Flash page reuse is appealing because it is orthogonal ¢éo BTfL optimizations. Indeed, the
design of WOM codes and systems that use them has receiveld attention in recent years.
While the coding theory community focuses on optimizingstheodes to reduce their redundancy
and complexity [Burshtein 2015; Burshtein and Strugatéii®, Cohen et al. 1986; En Gad et al.
2015; Shpilka 2014; Yaakobi et al. 2012b], the storage comtydocuses on SSD designs that
can offset these overheads and be applied to real systegm@dan et al. 2010; Odeh and Cassuto
2014; Yadgar et al. 2015b].

However, the application of WOM codes to state-of-the-astl chips is not straightforward.
MLC chips impose additional constraints on modifying theittage levels. Previous studies that
examined page reuse on real hardware identified some liomtsabn reprogramming MLC flash,
and thus resort to page reuse only on SLC flash [Jagmohan 20H0], outside an SSD frame-
work [Grupp et al. 2009], or within a limited special-puredsT L [Margaglia and Brinkmann 2015].

Thus, previous SSD designs that utilize WOM codes have nen laplemented on real plat-
forms, and their benefits were analyzed by simulation al@ising the concern that they could not
be achieved in real world storage systems. In particuladvaare aspects such as possible increase
in cell wear and energy consumption due to the additionabs@nd higher resulting voltage lev-
els have not been examined before, but may have dramaticcatiphs on the applicability of this
approach.

In this study, we extend the end-to-end evaluation and aisabf flash page reuse from our pre-
liminary study [Margaglia et al. 2016]. The first part of ouvadysis consists of a low-level evalua-
tion of five state-of-the-art MLC flash chips. We examine tbsgibility of several reprogramming
schemes for MLC flash and their short and long-term effectherchip’s durability, as well as the
difference in energy consumption compared to that of tiaud use. We present two alternative
FTL designs that take into account the limitations iderdifiethe low-level analysis and can poten-
tially be implemented on real hardware. Namely, LLH-FTLgesi 50% of each block, but requires
reserving some physical capacity on about-to-be-reusstkbILHH-FTL does not require such
reservation, but reuses only 25% of each block.

In the second part of our analysis, we present a theoretaaddwork for optimizing flash page
reuse with WOM codes and for calculating the expected befinefit reprogramming. This theoret-
ical model is a generalization of the basic model from oulipieary study [Yaakobi et al. 2015],
and takes into account the physical limitations on pageerasswvell as the (possibly non-uniform)
distribution of write requests. From this model, we derineoptimal garbage collection policy, as
well as the expected number of block erasures and its redtudtie to reprogramming. Our valida-
tion on representative real-world and synthetic worklogtasvs that this model predicts the benefit
from reprogramming with much higher accuracy than prevemelyses [Odeh and Cassuto 2014;
Yadgar et al. 2015b].
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The rest of this paper is organized as follows. Section 2riEscthe basic concepts that deter-
mine to what extent it is possible to benefit from flash pagseeWe identify the limitations on
page reuse in MLC flash in Section 3, with the implications @h Hesign in Section 4. We present
our theoretical framework in Section 5, and present itsdedion in Section 6. We survey related
work in Section 7, and conclude in Section 8.

2. PRELIMINARIES

In this section, we introduce the basic concepts that déterthe potential benefit from flash page
reuse: WOM codes, MLC flash, and SSD design.

2.1. Write-Once Memory Codes

Write-once memory (WOM) codes were firstintroduced in 198Rlvest and Shamir, for recording
information multiple times on a write-once storage medilRivgst and Shamir 1982]. They give
a simple WOM code example, presented in Table I. This codblesihe recording of two bits of
information in three cells twice, ensuring that in both esithe

cells change their value only from 1 to 0. For example, if the Table 1. WOM code example

first message to be stored is 00, then 110 is written, program- ryam@ bitg Tstwrite] 2nd wiite
ming only the last cell. If the second message is 10, then 010 | 11 111 000
is written, programming the first cell as well. Note that with 01 011 100
out special encoding, 00 cannot be overwritten by 10 without | 10 101 010
prior erasure. If the first and second messages are ideritieal 00 110 oot

the cells do not change their value between the first and secon
writes. Thus, before performing a second write, the cell®almust beeadin order to determine
the correct encoding.

WOM code instances, @onstructionsdiffer in the number of achievable writes and in the man-
ner in which each successive write is encoded. The appliabf a WOM code construction to
storage depends on three characteristics: (agdpacity overhead—the number of extra cells re-
quired to encode the original message, (b) the encodingecmtéhgefficiencyand (c) thesuccess
rate—the probability of producing an encoded output that candefor overwriting the chosen
cells. Any two of these characteristics can be optimizeti@attbst of compromising the third [Sh-
pilka 2013; Yaakobi et al. 2012b; Burshtein and Strugat&ii3).

Consider, for example, the code depicted in Table I, wheo®ding and decoding are done by
a simple table lookup, and therefore have comple&ifyt) and a success rate of 100%. However,

this code incurs a capacity overhead of 50% on each write. fieians that (1) onI% of the overall
physical capacity can be utilized for logical data, and (&rg read and write must access 50%
more cells than what is required by the logical data size.

The theoretical lower bound on capacity overhead for twdesris 29% [Rivest and Shamir
1982]. Codes that incur this minimal overheadgacity achievingare not suitable for real systems.
They either have exponential and thus inapplicable conitylext complexity ofn log n (wheren
is the number of encoded bits) but a failure rate that appest [Burshtein and Strugatski 2013;
En Gad et al. 2015]. Thus, early proposals for rewriting flaages using WOM codes that were
based on capacity achieving codes were impractical. Intiad¢ihey required partially program-
ming additional pages on each write, modifying the physjEade size [Berman and Birk 2013;
Grupp et al. 2009; Jacobvitz et al. 2012; Luojie et al. 201@el®and Cassuto 2014; Yaakobi et al.
2010], or compressing the logical data prior to encodingifdahan et al. 2010].

Two recently suggested WOM code families, Polar [Bursh28a5; Burshtein and Strugatski
2013] and LDPC [En Gad et al. 2015], have the same complextsethe error correction codes
they are derived from. For these complexities, differemstauctions incur different capacity over-
heads, and the failure rate decreases as the capacity adartaeeases. Of particular interest are
constructions in which the overhead of the first write is €,,ione logical page is written on one
physical page. The data encoded for the second write rexpuicefull physical pages for one logical
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page. Such a construction is used in the design of Reusdblf&@lgar et al. 2015b], where the
second write is performed by programming pages contaimvegid data on two different blocks in
parallel.

1 High bit program

2.2. Multi-Level Cell (MLC) Flash

A flash chip is built from floating-gate cells whose state defseon the number of electrons they
retain. Writing is done byrogrammingthe cell, increasing théhreshold voltage(;;,) required to
activate it. Cells are organized in blocks, which are the aherasure. Blocks are further divided
into pages, which are the read and program units.

Single-level cells (SLC) support two voltage levels, mappe either 1 (in the initial state) or
0. Thus, SLC flash is a classic write-once memory, where pegede reused by programming
some of their 1's to 0’s. We refer to programming without peoasure aseprogrammingMulti-
level cells (MLC) support four voltage levels, mapped to il the initial state), 01, 00 or 10.
This mapping, in which a single bit is flipped between sudeesstates, minimizes bit errors if the
cell's voltage level is disturbed. The least and most sigaift bits represented by the voltage levels
of a multi-level cell are mapped to two separate pageslawepageandhigh page respectively.
These pages can be programmed and read independently. efoyweygramming must be done
in a certain order to ensure that all possible bit combimatican be read correctly. Triple-level
cells (TLC) support eight voltage levels, and can thus stioree bits. Their mapping schemes and
programming constraints are similar to those of MLC flash fedeis our discussion on MLC flash,
which is the most common technology in SSDs today.

Figure 1 depicts a normal programming order of the low anth bigs in a multi-level cell. The
cell's initial state is the erasedR) state corresponding to 11. The low bit is programmed first:
programming 1 leaves the cell in the erased state, whilerprogning O raises its level and moves
it to a temporary staté Programming the high bit changes the cell’s state accoriniige state it
was in after the low bit was programmed, as shown in the boftarhof the figure. We discuss the
implications of this mapping scheme on page reuse in thevihlg section.

Bit errors occur when the state of the cell changes unirdeatiy, causing a bit value to flip.
The reliability of a flash block is measured by it error rate (BER}—the average number of bit
errors per page. The high voltage applied to flash cells dugpeated program and erase operations
gradually degrades their ability to retain the applied agét level. This causes the BER to increase
as the block approaches the end of its lifetime, which is one@kin program/erase (P/E) cycles.

Bit errors in MLC flash are due mainly t@tention errorsandprogram disturbanc¢Cai et al.
2013]. Retention errors occur when the cell’'s voltage lgvatiually decreases below the boundaries
of the state it was programmed to. Program disturbance sedoen a cell's state is altered during
programming of cells in a neighboring page. In the followsegtion, we discuss how program
disturbance limits MLC page reuse, and evaluate the eftdetsusing a block’s pages on its BER.

IPartially programming the high bit in the temporary statedsigned to reduce program disturbance.
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Table Il. Evaluated flash chip characteristics

Al6 A27 B16 B29 C19 D35
Feature size 16nm | 27nm | 16nm | 29nm | 19nm | 35nm
Page size 16KB | 8KB 16KB | 4KB 16KB | 8KB
Pages per block 256 256 512 256 256 128
Spare area (%) | 10.15 | 7.81 | 11.42 | 5.47 7.81 3.12
Lifetime (T) 3K 5K 10K 10K 3K NA

A, B, C and D represent different manufacturers. The D35 alip examined
in a previous study, and is included here for completeness.

Error correction codegECC) are used to correct some of the errors described abbeaedun-
dant bits of the ECC are stored in each pagpare area The number of bit errors an ECC can
correct increases with the number of redundant bits, chaseording to the expected BER at the
end of a block’s lifetime [Zhao et al. 2013].

Write requests cannot update the data in the same placetirisds because the pages must
first be erased. Thus, writes are perfornuaed-of-place the previous data location is marked as
invalid, and the data is written again on a clean page. fldgh translation layer (FTL)s the
SSD firmware component responsible for mapping logical eskirs to physical pages. We discuss
relevant components of the FTL further in Section 4.

3. FLASH RELIABILITY

Flash chips do not support reprogramming via their stantdedfaces. Thus, the implications of
reprogramming on the cells’ state transitions and duitgliknnot be derived from standard docu-
mentation, and require experimentation with specializedvare. We performed a series of exper-
iments with several state-of-the-art flash chips to evaltia limitations on reprogramming MLC
flash pages and the implications of reprogramming on the'shifptime, reliability, and energy
consumption.

3.1. Flash Evaluation Setup

We used five NAND flash chips from three manufacturers ancuarfeature sizes, detailed in
Table Il. We also include in our discussion the observatfoors a previous study on a chip from a
fourth manufacturer [Margaglia and Brinkmann 2015]. Thus, analysis covers the four existing
flash vendors.

Chip datasheets include the expected lifetime of the chip¢hvis usually the maximal number
of P/E cycles that can be performed before the average BEfhest0 3. However, cycling the
chips in a lab setup usually wears the cells faster than naypeation because they program and
erase the same block continuously. Thus, the threshold BE&ached after fewer P/E cycles than
expected. In our evaluation, we consider the lifetifigdf the chips as the minimum of the expected
number of cycles, and the number required to reach a BERof.

Our experiments were conducted using the SigNASII comraeAND flash tester [Sig 2014].
The tester allows software control of the physically prognaed flash blocks and pages within
them. By disabling the ECC hardware we were able to exammettite of each cell, and to count
the bit errors in each page.

Some manufacturers emplegramblingwithin their chip, where a random vector is added to the
logical data before it is programmed. Scrambling achievéf®tm distribution of the flash cell lev-
els, thus reducing various disturbance effects. In ordeoturol the exact data that is programmed
on each page, we bypass the scrambling mechanism on thetichfgsnploy it.

Our evaluation excludes retention errors, which occur wtmmsiderable time passes between
programming and reading a page. Reprogramming might iseréee probability of retention errors
because it increases the celVy,. However, since it is intended primarily for short-livedtaawe
believe it will not cause additional retention errors.
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Fig. 2. State transitions in the three reprogramming schemesinfatinow represents an attempted transition. A dashed
arrow represents a failed transition, with a bold arrow espnting the erroneous transition that takes place insalgt
LLH reprogramming achieves all the required transitionspiage reuse without program disturbance.

3.2. Limitations on reprogramming

Flash cell reprogramming is strictly limited by the consitahatV;;, can only increase, unless the
block is erased. At the same time, WOM encoding ensures ¢épabgramming only attempts to
change the value of each bit from 1 to 0. However, additianatations are imposed by the scheme
used for mapping voltage levels to bit values, and by the needoid additional program distur-
bance. Thus, page reuse must folloreprogramming schemehich ensures that all reprogrammed
cells reach their desired state.

We use our evaluation setup to examine which state transitice possible in practice. We include
all “allowed” transitions, including those that are not egfed to change the bit value. The reason
is that flash cells are programmed in page granularity, sotbhét should not be modified are still
reprogrammed with their existing value. We consider foffedent reprogramming schemes. In the
first three schemes, a block is fully programmed before betpgogrammed. In the fourth scheme,
only the low pages of the block are initially programmed. ége schemes, we identify the two
that are applicable in a practical FTL design.

Let us assume that the entire block’s pages have been progrdimefore they are reused. Thus,
the states of the cells are as depicted in the bottom row afr€ity. In thdow-high-low (LHL)repro-
gramming scheme, depicted in Figure 2(a), we attempt torproghe low bit from this state. The
thin arrows depict possible desired transitions in thisseod. Two such transitions are impossible,
resulting in an undesired state (depicted by the bold arrovihelow-high-high (LHH)reprogram-
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ming scheme, depicted in Figure 2(b), the high page is repromed in a fully used block. Here,
too, two state transitions fail.

A possible reason for the failed transitions in the LHL sckeamthat the voltage applied by the
command to program the low bit is not high enough to raigefrom P1 to P2 and fromER to
P3.2 The transition fromP3 to P2 in the LHH scheme is impossible, because it entails deargasi
V- Another problem in the LHH scheme occurs in stBlewhen we attempt to leave the already
programmed high bit untouched. Due to an unknown disturbahe cell transitions unintentionally
to P2, corrupting the data on the corresponding low page.

Three of these problematic transitions can probably be madsible with proper manufacturer
support—the transition from3 to P2 in the LHH scheme would be possible with a different map-
ping of voltage levels to states, and the two transitionkéltHL scheme could succeed if a higher
voltage was applied during reprogramming. While recerttietogy trends, such as one-shot pro-
gramming and 3D V-NAND [Im et al. 2015], eliminate some coastts on page programming,
applying such architectural changes to existing MLC flasghmamplify program disturbance and
increase the BER. Thus, they require careful investigatimhoptimization.

The mapping of voltage levels to two-bit values in multidéwcells implies that in some
cases, 0's may be overwritten by 1's. Specifically, a trémsifrom P1 or P2 to P3 changes
the high bit from 0 to 1. Motivated by this observation, we mkae a third reprogramming
scheme that uses a modified WOM encoding, presented in Ta-

ble lll. The initial state of each bit is 1. In the first writesre Table I1l. Modified WOM Code
only overwritten by O’s, according to the original WOM rergii Data bits Tstwrite| 2nd wiite
ment. However, in the second write, 0's are only overwritign 00 000 111
1's. The resulting code is the complement of the code in Table 10 100 011
For example, if the first message to be stored is 10, then 100 is| 01 010 101
written, programming the second and the last cell. If thesdc 1 001 | 110

message is 01, then 101 is written by reprogramming the last
cellto be 1.

Figure 2(c) shows the resultingw-high-high (HH) reprogramming scheme. Its first drawback
is that it corrupts the low pages, so a high page can be reudgdf ¢he data on the low page is
either invalid, or copied elsewhere prior to reprogrammfigch reprogramming also significantly
increased the BER of the high pages adjacent to the reprogeamoneThis could be a side effect
of the voltage change required for the transition frBinto P3, which is higher than that required
for transitioning between adjacent stafésus, this scheme allows safe reprogramming of only one
out of two high pages. We address this limitation in our FTkige in Section 4.3.

Interestingly, reprogramming the high bits in chips fromnufacturer A returned an error code
and did not change their state, regardless of the attemyatasition. A possible explanation is that
this manufacturer might block reprogramming of the highblgisome internal mechanism to prevent
the corruption described above.

The problems with the LHL and LHH schemes motivated the ghidion of thelow-low-high
(LLH) reprogramming scheme by Margaglia and Brinkmann [Margagtid Brinkmann 2015].
Blocks in this scheme are programmed in two rounds. In théringnd only the low pages are
programmed. The second round takes place after most ofwhpdges have been invalidated. All
the pages in the block are programmed in order, i.e., a love mgeprogrammed and then the
corresponding high page is programmed for the first timegrgemoving on to the next pair of
pages.

We validated the applicability of the LLH scheme on the ctopsnanufacturers A and B. Fig-
ure 2(d) depicts the corresponding state transitions ofélis. Since both programming and repro-
gramming of the low bit leave the cell in either the erase@nrforary state, there are no limitations
on the programming of the high page in the bottom row. Thigsahworks well in all the chips we

2The transition fromER to P3 actually succeeded in the older, D35 chip [Margaglia anciBriann 2015]. All other
problematic transitions discussed in this section faifedlli the chips in Table II.
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Table IV. Expected reduction in lifetime due to increased V;,

Num. of P cycles | A16 | A27 | B16 B29 C19
T (= entire lifetime) | 32% | 29% | 20% | 30.5% | 36%

0.6 xT 8% 9% 8% 9% 15.7%
04xT 6% | 6.5% | 6% 6.5% | 12.7%
02xT 2% 3% 3% 3.5% | 14.2%

examined. However, it has the obvious drawback of leavinfydidahe block’s capacity unused in
the first round.

The LLH andLHH reprogramming schemes are both applicable on the chipexamined,
demonstrating that page reuse in MLC flash is possible. Aséimee time, both schemes can utilize
only half of the pages, each presenting a different tradéw#f_LHH scheme disturbs the high page
adjacent to the reprogrammed one, limiting reuse evendynithile the LLH scheme requires that
some of the block’s capacity be reserved in advance. We @eathe long term effects of each of
these schemes as well as the implications of their spegifitdiions on FTL design in the following
sections.

3.3. Average V,;, and BER

In analyzing the effects of reprogramming on a chip’s duigbwe distinguish betweeshort-term
effects on the BER due to modifications in the current P/Eegyahdlong-termwear on the cell,
which might increase the probability of errors in future legc With this distinction, we wish to
identify a safeportion of the chip’s lifetime, during which the resultindeR as well as the long
term wear are kept at an acceptable level.

Reprogramming increases the probability that a cell'se@0. Thus, the averadg, of reused
pages is higher than that of pages that have only been progedronce. A higheV/;;, increases
the probability of a bit error. The short-term effects ofre@sedV,;, include increased program
disturbance and retention errors, which are a direct regulhe currentVy, of the cell and its
neighboring cells. The long-term wear is due to the highéiage applied during programming and
erasure.

Ouir first set of experiments evaluated the short-term effetincreased’;;, on a block’s BER.
In each chip, we performeH regular P/E cycles writing random data on one block, wiéigthe
lifetime of the chip as detailed in Table II. We repeated phiscess with different distributions of 1
and 0.P 5, in which the probability of a bit to be 0 is 0.5, is our baselikVith P; ; i the probability
of 0 was 0.75 and 0.5 in the low and high page, respectivelis Thrresponds to the expected
probabilities after LLH reprogramming. We read the bloatéstent and recorded the BER after
every P/E cycle. We repeated each experiment on six blookiscalculated the average. In all our
experiments, we considéy 5 as our baseline.

The implication of an increase in BER depends on whethemias within the error correction
capabilities of the ECC. A small increase in BER at the end bfogk’s lifetime might deem it
unusable, while a large increase in a ‘young’ block haljitlactical effect. For a chip with lifetime
T, let BERT be the BER of aftell” regular P/E cycles, and 181 be the number of cycles required
to reach aBER7 in this experiment. Thell — T’ is thelifetime reductiorcaused by increasing,.

Our results, summarized in Table IV, were consistent irhalldhips we examinetiProgramming
with P;; 4, which corresponds to a higher averdgg, shortened the chips’ lifetime considerably,
by 20-36%.

In the next set of experiments, we evaluated the long-tefetisf of Vy;,. Each experiment had
two parts: we programmed the block with; i in the first part, for a portion of its lifetime, and
with Pj 5 in the second part, which consists of the remaining cyclasisTthe BER in the second
part represents the long-term effect of the biased progiamim the first part. We varied the length
of the first part between 20%, 40% and 60% of the block’s lifeti Figure 3 shows the BER of

3The complete set of graphs for chips from manufacturers ABainchll the experiments described in this section is aviglab
in our technical report [Yadgar et al. 2016].
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Fig. 3. Effects of increased;;, on the A16 chip.
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Fig. 4. Short-term effects of LLH reprogramming on the A16 chip.

Table V. Expected reduction in lifetime due to LLH reprogram-
ming

Num. of LLH cycles | Al6 A27 B16 | B29 | C19
T (= entire lifetime) | 38% | 59.5% | 99% | 31% | 40%

0.6 xT 8.5% 8% 7% | 8.5% | 22%
04xT 5.2% 6% 5% | 5.5% | 20%
02xT 1% 25% | 3% 3% 1%

blocks in the A16 chip (the graphs for the different chipseveimilar), with the lifetime reduction
of the rest of the chips in Table IV.

Our results show that the long-term effect of increadifigis modest, though nonnegligible—
increasingVy;, early in the block’s lifetime shortened it by as much as 3.5%% and 9%, with
increased/y, during 20%, 40% and 60% of the block’s lifetime, respectivér the chips from
manufacturers A and B. The lifetime of chip C19 was shorterwetsiderably, by 12%—-16%.

3.4. LLH Reprogramming and BER

Reprogramming schemes use blocks differently from reqariagramming. First, they increases the
averagéd/y, of reused pages, the effects of which were demonstrateccaBecond, they program
the block’s pages in an order different from the one interolethe manufacturer. To evaluate the
weight of each effect, we measure the effects of reprogrammand compare them to the effects of
regular programming with increaséd;,. In the third set of experiments, we measured the effects
of reprogramming by performin@ LLH reprogramming cycles on blocks in each chip. Figure 4
shows the BER results for the A16 chip, and Table V summatizegxpected lifetime reduction
for the remaining chips.

In all the chips, the BER in the first round of programming the pagesl ) was extremely low,
thanks to the lack of interference from the high pages. liséfo®nd round, however, the BER of both
low (L,) and high {) pages was higher than the baseline, and resulted in a redwdtlifetime
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Fig. 5. Long-term effects of LLH reprogramming on the A16 chip.

greater than that caused by increaslnig. We believe that a major cause of this difference are
optimizations tailored for the regular LH programming arflRark et al. 2008]. These optimizations
are more common in recent chips, such as the B16 chip.

In the fourth set of experiments, we evaluated the long-&dfects of LLH reprogramming. Here,
too, each experiment was composed of two parts: we prograittmeeblock with LLH reprogram-
ming in the first part, and wittP 5 and regular programming in the second part. We varied the
length of the first part between 20%, 40% and 60% of the bldifksme. Figure 5 shows the BER
results for the A16 chip, and Table V summarizes the expédifegiine reduction for the remaining
chips.

We observe that the long-term effects of reprogramming aréest, and comparable to the long-
term effects of increasinyy, on each chip. This supports our assumption that the addit&hort-
term increase in BER observed in the previous set of expeairie not a result of the actual re-
programming process, but rather of the mismatch betweepringramming order the chips are
optimized for and the LLH reprogramming scheme. This is eisilg evident in the B16 chip, in
which the BER during the first part was high above the limii6f3, but substantially smaller in
the second part of the experiment.

Thus, schemes that reuse flash pages only at the beginnihg bfdck’s lifetime can increase
its utilization without degrading its long-term relialyli Moreover, in all but the B16 chips, LLH
reprogramming in the first 40% of the block’s lifetime resdltin BER that was well within the
error correction capabilities of the ECC. We rely on thisefation in our FTL design in Section 4.

We note, however, that the variance between the chips weiegdrs high, and that short and
long-term effects do not depend only on the feature size.ekample, the A16 chip is “better”
than the A27 chip, but the B16 chip is “worse” than the B29 chipus, the portion of the block’s
lifetime in which its pages can be reused safely dependsentthracteristics of its chip. The FTL
must take into account the long-term implications of reuséhe chips it is designed for.

3.5. LHH Reprogramming and BER

We conducted a similar evaluation of the short and long teffects of LHH reprogramming. To
fully understand the implications of the disturbance cdusg reprogramming the high page, we
define the following variations of tHeHH scheme. IlLHH-Skip-X reprogramming, the high pages
are reprogrammed, skipping eveXyhigh pages. Thus,HH-Skip-0 is the basi¢ HH scheme ex-
amined in Figure 2(c). IhHH-Skip-1 andLHH-Skip-2, reprogramming is applied to one of every
two or three high pages, respectively. Wear leveling withéich block is obtained by alternating
the skipping pattern in subsequent P/E cycles. For exarmplg¢dH-Skip-1, the even and odd high
pages are reprogrammed in even and odd cycles, respectively

In the fifth set of experiments, we measure the short-teracedffof three variations of tHeHH
reprogramming scheme. The BER of the high pages in all ouer@xgnts was higher than that of
the low pages. In this specific set of experiments, the BER@htgh pages was more indicative of
the wear of the block’s cells than the overall BER (of low aightpages combined). The reason is
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Table VI. Expected reduction in lifetime due to LHH reprogramming

LHH cycles | LHH-Skip-1 cycles | LHH-Skip-2 cycles | Baseline| B29 Cc19
T 99.99% | 99.96%
T 12.5% 62.7%
T 5% 52.54%
0.8xT 02xT 12.7%
0.6xT 04xT 15% 8.5%
04xT 0.6 xT 7.5% 10.2%
02xT 08xT 6%
0.8xT 02xT 5% 9.3%
06xT 04xT 4.5% 4.2%
04xT 0.6 xT 4% 5.1%
02xT 08xT 3.4%
0.6 xT 02xT 02xT 12%
04xT 04xT 02xT 13.5%
02xT 0.6xT 02xT 10.5%
02xT 04xT 04xT 6%
02xT 02xT 0.6 xT 4%

le-2 T T T T T T T T T

BER

Baseline (H) ——
LHH (H2) —— |
LHH-Skip-1 (H2) ——
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Fig. 6. Effects ofLHH reprogramming variations on the B29 chip.

that during reprogramming, only the high pages hold valichdanhile the low pages are inevitably
corrupted. Thus, in the following discussion, the BER ofltaseline is represented by the BER of
its high pagesK), and the BER of HH is represented by the BER of the high pages when they are
reprogrammedH,). The BER ofH, in each cycle is computed only for the high pages that were
actually reprogrammed in this cycle.

Figure 6 shows the BER dfHH-Skip-0, LHH-Skip-1, andLHH-Skip-2 on the B29 chip. The
expected lifetime reduction for the B29 and C19 chips arersarized in Table VI. As we expected,
the BER ofLHH-Skip-0 is always higher thah0~3—reprogramming each high page significantly
increased the BER of the high page adjacent to it. HoweveBER of LHH-Skip-1 remains below
this threshold for a significant amount of the block’s lifeé—as much as 87% in the B29 chip.
LHH-Skip-2 can be used safely even longer, for up to 95% ofitloek’s lifetime, but has the
obvious disadvantage of reusing less of the page’s capatieyBER of_LHH-Skip-2 is lower than
that of the baseline in the beginning of the chip’s lifetiraecause it is measured here only for the
reprogrammed high pages, which are far enough apart to avogtam disturbance.

Our sixth set of experiments measures the long term effédtglBl reprogramming. As before,
each experiment was composed of two parts: we programmeésiidble with LHH-Skip-1 orLHH-
Skip-2 in the first part, and with regular programming in teeand part. We varied the length of
the first part between 20% and 80%, depending on the resuéiaabf scheme on each chip in the
previous set of experiments. Figure 7 shows the BER resuitthé B29 chip withLHH-SkKip-1 in
the first part, and Table VI summarizes the expected lifetidection in the remaining experiments.
These results demonstrate the advantage dfie-Skip-X schemes: although at most half of the
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Fig. 8. Long term effects of combineldHH-Skip-1 andLHH-Skip-2 reprogramming on the B29 chip.

high pages can be reused in each cycle, skipping the renygiaiges alleviates the long term wear
caused by reprogramming. As a result, these schemes canpbedafor a considerably longer
portion of the block’s lifetime compared to LLH reprogramnmgi

In the final set of experiments we attempted to maximize thsa@otential of the B29 chip, in
which the difference betwedrHH-Skip-1 andLHH-Skip-2 was substantial. Each experiment was
composed of three parts: we programmed the block IHH-Skip-1 andLHH-Skip-2 in the first
and second parts, respectively, and with regular programini the last part. Figure 8 shows the
BER results where the length of the first and second parts a@esdvand the length of the last part
was fixed at 20%. The expected lifetime reduction for add#dlccombinations is summarized in
Table VI. Comparing figures 7 and 8 demonstrates that thetiaddi LHH-Skip-2 in the second
part of the experiment has only a minor effect on the lifetneduction.

3.6. Energy consumption

Flash read, write and erase operations consume differemtiais of energy, which also depend on
whether the operation is performed on the high page or orothe@he, and on its data pattern. We
examined the effect of LLH reprogramming on energy consiongiy connecting an oscilloscope
to the SigNAS tester. We calculated the energy consumeddbyafdhe following operations on the
A16 chip: an erasure of a block programmed with iy andp=0.5, reading and writing a high and a
low page, reprogramming a low page, and programming a high pa a partially-used block. This
part of our evaluation is restricted to LLH reprogrammingdese reprogramming the high page is
disabled on chips from manufacturer A.

To account for the transfer overhead of WOM encoded datapeasurements of read, program
and reprogram operations included the I/O transfer to/fiteerregisters. Our results, averaged over
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Table VII. Energy consumed by flash operations on

chip A16
Operation Baseline (1J) | LLH (u])
Erase 192.79 186.49
Read () 50.37 50.37
Read H) 51.25 51.25
Program (1) 68.18 68.55
Reprogram L) NA 63.04
Program H) 195.65 180.85
Average logical read 50.81 60.79
Average logical write 132.64 145.71

three independent measurements, are summarized in TabM/&/blso present the average energy
consumption per read or write operation with baseline artd WiH reprogramming, taking into
account the size of the programmed data, the reading of wsgsbor supplying the invalid data as
input to the WOM encoder, and the number of pages that canittenvbefore each erasure.

These results show that page reuse consumes more ovengye¢han the baseline. This is in
contrast to previous studies showing possible energy gavirhese studies assumed that the energy
is proportional to the number of programmesglls which is equivalent in a first and in a second
write [Grupp et al. 2009; Yadgar et al. 2015b]. However, oardware evaluation shows that the
number of reprogrammeghgesis the dominant factor in energy consumption. While repaogr
ming a lower page consumes less energy than the averagallegite in the baseline, the use of
WOM encoding entails an extra read and page reprogram fdr legacal write. The low energy
consumption of the saved erasures does not offset the @dalittnergy consumed by those opera-
tions. We note, however, that when page reuse reduces draahtvrites by the FTL, some energy
savings may result.

The possibility of energy savings thus depends stronglyhervtay reprogramming is applied
within the FTL. The evaluation of an FTL based on LLH repragnaing in our preliminary study
showed that the need to reserve half of the block’s capaodygmted it from reducing the amount
of internal writes [Margaglia et al. 2016]. Examining thesegy savings possible withHH repro-
gramming remains part of our future work. Neverthelessrgnsavings could be achieved more
easily by FTLs that do not rely on WOM codes for the correcdreéshe reprogrammed data [Kaiser
et al. 2013; Margaglia and Brinkmann 2015]. Such speciappse designs are outside the scope of
this study.

4. FTL DESIGN

Following our lessons from Section 3, we describe the géwesign principles for aeprogram-
ming FTl—an FTL that reuses flash pages using a specified reprograjscieme. We assume
such an FTL would run on the SSD controller, and utilize thgsital page and block operations
supported by the flash controller. Thus, it shares the faligwasic concepts with the standard FTL
and SSD.

To accommodate out-of-place writes, the physical storagadity of the drive is larger than its
exported logical capacity. The drivadserprovisionings defined a%, whereT andU represent
the number of physical and logical blocks, respectivelydimyers 2013]. Typical values of over-
provisioning are 7% and 28% for consumer and enterprise 88®s, respectively [Smith 2013].

Whenever the number of clean blocks drops below a certagslttmid,garbage collections
invoked. Garbage collection is typically performgekedily, picking the block with the minimum
valid count(the lowest number of valid pages) as the victim éeaning The valid pages are
moved—read and copied to another available block, and then theklidoerased. These additional
internal writes, referred to agrite amplification delay the cleaning process, and require, eventually,
additional erasures. Write amplification does not accilyaspresent the utilization of drives that
reuse pages for WOM encoded data, since some redundancylhwags be added to the logical
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data to enable second writes [Yaakobi et al. 2015; Yadgdr 2045a]. Thus, instead of deriving the
number of erasures performed by the FTL from its write angaltfon, we measure them directly.

4.1. Reprogramming FTL

The design of a reprogramming FTL must address three kegss$ll) the specific reprogramming
scheme used, including the resulting block states and éimsitrons between them, (2) the encod-
ing scheme used for reprogrammed pages, and (3) the deoisiginich logical pages are written
as second writes, i.e., reprogrammed on previously writteysical pages. We elaborate on the
application of the LLH andlHH schemes to FTL design in the following subsections.

WOM encoding. When WOM codes are employed for reusing flash pages, the Fek®nsible
for determining whether a logical page is written in a firstaosecond write, and for recording
the required metadata. The choice of WOM code determinesldtee written on clean physical
pages, and the data written on them when they are reprogrdmrhe encoding scheme in the
reprogramming FTLs we present below is similar to that of S2dleSSD [Yadgar et al. 2015b].
Data on clean pages is written as is, without storage or engaderheads. Data written as a second
write on reprogrammed pages is encoded with a Polar WOM dwted¢quires two physical pages
to store the encoded data of one logical page [Burshtein;®drshtein and Strugatski 2013]. This
WOM implementation has a 0.25% encoding failure rate.

We note that the mathematical properties of WOM codes erthigne can be applied to any
data pattern, including data that was previously scrambtempressed. In fact, WOM encoding
also ensures an even distribution of zeroes throughoutage,pwhich is one of the objective of
scrambling.

While manufacturers have increased the flash page size #bé=IT), the most common size used
by file systems remains 4KB. Our reprogramming FTL desigtirgjsishes between the logical
page used by the host and some larger physical page size.thb#sTL maps several logical pages
onto each physical page. This allows it to program the entatd¢a for a second write on one
physical page. In the rest of this section we assume thatithsiqal page size is exactly twice the
logical page size. We note that the changes required in thigré the physical pages are even
larger are straightforward.

If the physical and logical page sizes are equal, a reprogiaglFTL can utilize the multi-plane
command that allows programming two physical pages in [gdi@h two different blocks, as in the
ReusableSSD design. In both approaches, the latency e€dfair reading or writing an encoded
logical page on a second write is equal to the latency of osa fiage write.

As in the design of ReusableSSD [Yadgar et al. 2015b], owmoggpmming FTLs address the
0.25% probability of encoding failure by writing the respree logical page as a first write on a
clean block, and prefetch the content of physical pagesatteaaibout to be rewritten to avoid the
latency of an additional read. Pages are reprogrammed ortlyei safe portion of their block’s
lifetime (the first 40% in all but one of the chips we examinghlyis limiting the long-term effect of
reprogramming to an acceptable level.

Hot and cold data separ ation. Workloads typically exhibit a certain amount of skew, conibg
frequently updatetiot data with infrequently writtercold data. Separating hot and cold pages has
been demonstrated as beneficial in several studies [Desn@@&4; Im and Shin 2010; Jimenez
et al. 2014; Stoica and Ailamaki 2013]. Previous studies aloowed that second writes are most
beneficial for hot pages, minimizing the time in which the acity of reused blocks is not fully
utilized [Margaglia and Brinkmann 2015; Odeh and Cassutb42(Yadgar et al. 2015a; Yadgar
et al. 2015b]. Thus, our reprogramming FTLs separate hotcail pages into different logical
partitions, as described below.

The classification of hot and cold pages is orthogonal to #ségth of the FTL, and can be done
using a variety of approaches [Chiao and Chang 2011; Im andZ81.0; Min et al. 2012; Stoica
and Ailamaki 2013]. We describe the classification schernsed in our evaluations in Section 6.
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Fig. 9. Block life cycle in a Low-Low-High FTL.

4.2. Low-Low-High FTL

Blocks in a Low-Low-High FTL cycle between four states, apideed in Figure 9. In the initial,
cleanstate all the cells are in the erased st&R, If all the pages are programmedar(te L1 H),
the block reaches thgsedstate. Alternatively, if only the low pages are usedife L), the block
reaches thgartially-usedstate. A partially-used block can be reused, in which casd=tL will
reprogram all or some of the low pages and all the high pagei$d L, H), transitioning the block
to thereusedstate. Alternatively, the FTL can program the high pageslaade the low pages
untouchedrite H), thus transitioning the block to the used state. Used amskgtblocks return
to the clean state when they are erased.

The choice of state transition is determined by the conustaepicted in Figure 9. The conditions
that determine when tpartially use useor reusea block, as well as the encoding scheme used for
reprogrammed pages, are in turn determined by the specificdeSign. We next describlel H-
FTL—our Low-Low-High FTL design.

In LLH-FTL, we write hot data on partially-used and reusealdits, and cold data on used blocks.
Hot data on partially-used blocks is invalidated quicklgximizing the benefit from reusing the low
pages they are written on. Reused blocks store pages indivgtlhas in second writes. Neverthe-
less, we use them only for hot data, in order to maintain tiparsgion of hot pages from cold
ones.

Partially-use, use and reuse conditions. The number of partially-used blocks greatly affects the
performance of a Low-Low-High FTL. Too few mean that the lB®will be reused too soon, while
they still contain too many valid low pages, thus limiting thenefit from reprogramming. Too many
mean that too many high pages will remain unused, reducim@vhilable overprovisioned space,
which might increase internal page moves. The three camditin Figure 9 control the number
of partially-used blocks: if the partially-use conditionas not hold, a clean block is used with
regular LH programming. In addition, the FTL may define a usedition, which specifies the
circumstances in which a partially-used block is reclainaedi its high pages will be written without
rewriting the low pages. Finally, the reuse condition easwefficient reuse of the low pages. The
FTL allows partially-used blocks to accumulate until these condition is met.

LLH-FTL allows accumulation of at mostireshold,, partially-used blocks. This threshold is
updated in each garbage collection invocation. An incréasiee valid count of the victim block
compared to previous garbage collections indicates tleaetiective overprovisioned space is too
low. In this case the threshold decreasedSimilarly, a decrease in the valid count indicates that
page reuse is effective in reducing garbage collectiongyhith case the threshold iscreased
to allow more reuse. Thus, the partially-use and reuse tiondisimply compare the number of
partially-used blocks to the threshold. To maintain theasation between hot and cold pages, LLH-
FTL does not utilize the use condition.

In our preliminary study [Margaglia et al. 2016], we implemted and evaluated LLH-FTL on the
OpenSSD Jasmine board [Ope 2015] with several syntheticesidvorld workloads. The results
of this evaluation are tightly coupled with some additiolmlitations imposed by the high level
SSD design. Our analysis in this work is focused on the lovell#ash characteristics, and thus we

ACM Transactions on Storage, Vol. 0, No. 0, Article 0, Pubiion date: 2017.



0:16 Yadgar et al.

Write LH Write H2 Skip X

[Reuse cond.]

Clg\an Used Reused

Fig. 10. Block life cycle in aLow-High-High FTL.

refer the reader to our earler publication for the detaik=iits. For completeness, we summarize
below our results and conclusions from the system-levdlatian.

With 28% overprovisioning, LLH-FTL successfully reducdathumber of erasures according
to the amount of hot data in the workload. However, with lowbe]7overprovisioning, reserving
partially-used blocks for additional writes was not as éfi¢ for reducing erasures, and in some
cases it even increased the number of erasures insteadinfitégion motivated the design of our
LHH-FTL which does not require any reservation, and is dbscrin the following section.

Our performance measurements showed that even with higiprowesioning, and despite the
considerable reduction in erasures (and thus, garbagectioh invocations), the average 1/O re-
sponse time was almost unchanged. The reason is the highmpeamsumption of WOM encoded
logical pages, which reduced the efficiency of the write éxsffon the OpenSSD board, and in-
creased the frequency of destaging to flagfhen we applied the energy measurements described
in Section 3.6, we observed an increase in energy consumptiacch was proportional to the re-
duction in erasures. The reduction in erasures did not eethecamount of internal data copying in
most of the workloads, and thus this reduction was not ted@dlto time or energy savings.

4.3. Low-High-High FTL

Blocks in aLow-High-High FTL cycle between three states, as depiatdeigure 10. The clean and
the used states are equivalent to those states in a Low-LigivfTL: all the cells of a clean block
are erased, and all the pages in a used page have been praggtamee. A used block can be reused,
in which case the FTL will reprogram some of its high pagesife Hy, skip X), transitioning the
block to the reused state. Alternatively, the FTL can erheédtock, in which case it returns to the
clean state without being reused. Reused blocks returretol¢fan state when they are erased.

The most important difference compared to a Low-Low-High.Kg that in aLow-High-High
FTL, blocksalwaystransition from the clean to the used state, without goimgubh the partially-
used state. The design is thus simplified to a single comdiliat determines the time in which a
block is reused. We assume that the skip vaKieis determined by the physical characteristics of
the underlying flash chip, as demonstrated in the previocisose Nevertheless, future advances
in flash technology may justify more complicated FTL desigres optimize the reprogramming
scheme dynamically according to the condition of the chigb@nrent as well as expected workload.

LHH-FTL—our Low-High-High FTL design—uses a greedy scheme to determvinieh pages
are reprogrammed in a reused block. Like previous deslgaBl-FTL does not move valid pages
from blocks before they are reused [Yadgar et al. 2015b; &gig and Brinkmann 2015]. It first
reprograms the first invalid high page whose correspondiwgplage is also invalid. This will cor-
rupt the low page, and may increase the BER in the adjacenfdziges. It then skipX high pages,
and continues to search for the next available high pagé thetlast page in the block is reached.
By skipping X pages after each reprogrammed page, and by reprogramneittdoitk only at the
beginning of its lifetime, we ensure that the BER in the rgpaosnmed and in the skipped pages is
within the error-correction capabilities of the ECC.

Without the need to reserve partially-used blodksH reprogramming is almost orthogonal
to other FTL design choicetHH-FTL takes advantage of this property. Logical page&H-
FTL are partitioned according to their temperature andtamiinto the hot partition or the cold
one. Garbage collection and block state transitions takeepdeparately within each partition. The
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size of the hot partition (and the cold one, respectively) ba dynamically adjusted by picking
a victim block from one partition and allocating it to the ethpartitions after it is erased. We
study the optimal allocation of blocks to partitions wittgar theoretical framework in Section 5.
Approximating the optimal partitioning online can be dowyeiacking the update frequency in each
partition and adjusting the partition sizes to one of se\s&ts of predetermined optimal values.

The reuse condition should strike a balance between twoictindl ob- Table VIII. Example
jectives. Reusing as many blocks as possible reduces theerwhera- [High Cow
sures. However, reusing a block that has little reprogramgnpiotential [ Py:vaiid | P;: —
might harm performance. Consider the illustrative exanipl&ble VIII, D= | Pyi—
where a block of 16 pages is reused when 5 of them are stitl vahiere | s — Ps: —

is only one pair of high page®, andP;,, that can be reprogrammed with 113‘; — IIZ valid

LHH-Skip-1, increasing the valid count of the block from 5@0Such a [, ~vaig TPy —
small increase means that the block is likely to be chosemagavictim | P, <= | P51 —
before any of its valid pages is invalidated. Before thichkls erased, its | Piai— Py5: valid
valid pages, including the one that was just reprogramméldhevcopied

to a clean block. This cancels any benefit from reuse, andippsscurrs additional latency due
to copying. Alternatively, if the block is erased ratherrnthaused, it can accommodate 11 (16-5)
writes before the next garbage collection.

Our theoretical framework provides the means to calculagektenefit, in terms of reduction
in erasures, from reusing blocks in each partition. Thus,rduse condition should hold only if
this benefit is high enough to justify the potential incremskatency.LHH-FTL applies a simple
heuristic in which the reuse condition holds only in the hatiion, where the valid count of victim
pages is expected to be lobHH-FTL relies on the theoretical framework also for chawsbne
of two options in each garbage collection invocation: eitiocerase a reused block, or to reuse a
fully used block. This choice is done based on the minimungaunt of blocks in each of the two
states, as explained in detail in Section LEH-FTL applies the theoretical results by periodically
adjusting a threshold value to one of several predeternopéchal values.

5. THEORETICAL ANALYSIS

In this section we describe a theoretical framework for estihg the benefit of a general repro-
gramming FTL. Our analysis compares the expected numberagtiees with and without repro-
gramming, and is composed of two steps. In the first step, eellede the number of erasures for
a given garbage collection policy. In the next step, whicfoisnulated as an optimization prob-
lem, we identify the policy that will result in the minimum miber of erasures with and without
reprogramming.

Our analysis, like those in previous studies, is based ordhaection between the overprovi-
sioningand the number of block erasures. This connectipemiis on the garbage collection algo-
rithmused by the FTL and on the probability distribution of the @agite requests in the workload.
It may also depend on the number of pages in each block, bussteree that this number is large
enough to avoid such dependency.

In the first part of our analysis, we consider uniform worklsawe assume that requests are
uniformly distributed over all the logical pages. We folldle observation from [Hu and Haas
2010] thatgreedy garbage collectierthe policy that always chooses for cleaning the block with
the minimum number of valid pages—is optimal for uniformtdiution. We also assume that
greedy garbage collection is invoked whenever there are are tlean blocks, without requiring
a minimum fraction of available blocks. The analysis witldamithout this requirement is simi-
lar [Desnoyers 2014]. In the second part of our analysis Waxrhe uniformity assumption, and
show how to apply our results to non-uniform workloads.

We use the following notations throughout this section.

(1) Every block hasZ pages. There ar€ physical pages in the SSD, abHlogical pages, where
bothT andU are a multiple ofZ.
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(2) The overprovisioningis = (T — U)/U.a = U/T = 1/(p + 1) is thestorage rate-the ratio
between logical data and physical storage. Our analysiesepted in terms of the storage rate
() rather the more commonly used overprovisionipyg (o allow for more natural formulation.
Note that the two are easily interchangeable using the defisiabove.

(3) The write amplification iWA = P/L, whereL is the number of write requests of logical pages
andP is the number of resulting physical page writes. We also défjfZ to be the number of
logical block writes

Reprogramming writes a block multiple times before it isse& Thus, WA is not the right figure
of merit for a reprogramming FTL—it is possible to write m@ages and yet erase less. Hence, we
introduce a new measure that better characterizes thivioeha

Definition 5.1 Theerasurefactor EF in a flash memory system is the ratio between the number
of block erasure& and the number of logical block writds/' Z. That is,

E
L/Z"

Note that without reprogrammin§F = WA. In the rest of the section, we present an analysis of
the optimal erasure factoE £) without reprogramming and with various reprogrammingesobs.
The erasure factor is closely relatedidtes per eras¢ WE), an alternative measure proposed with
similar motivation [Yadgar et al. 2015d)VE is defined as the ratio between the number of logical
page writes and the number of block erasures. Thus, w&det= L/E = Z/EF. In other words,

writes per erase are the inverse of the erasure factor,ptiedtiby the number of physical pages per
block.

EF =

5.1. Optimal Erasure Factor without Reprogramming

The relation between the write amplification and overpriovigig has received a significant atten-
tion in recent years due to its implication for the lifetimeflash memories, see e.g. [Desnoyers
2014; Hu and Haas 2010; Stoica and Ailamaki 2013]. Of the mooseworks in this area, we con-
sider two recent studies which we believe give an accuratdeiad this analysis [Desnoyers 2014;
Stoica and Ailamaki 2013]. The proof given here is based uperanalysis in these two studies
and we give it in completeness since its understanding isaro the results in the rest of this sec-
tion. We refer to the FTL that uses greedy garbage colleatimhno reprogramming as thaseline
system.

THEOREM 5.2. The number of block erasurésand the erasure factof F; («) of the baseline
system are given by

L 1

==, EFgla)=+—7 (1)

E: =
Z(1—-o')’ 1—a

NI =

whereaw = &=L ora’ = —a- W (—1e‘1/"‘), andW(x) is the LambertV function.
n(a’) o
PROOF For0 < i < Z, let N(i) be a random variable corresponding to the number of blocks
with 7 valid pages, S(zizzo N(i) = T/Z. If we denote byY the expected number of valid pages

when a block is erased, then for< i <Y —1, N(i) = 0, andN (Y is relatively small enough.
We assume that the system is in a steady state and thus thetexkpelue ofN (i) doesn’t change

over timé. According to this assumption, we also get that¥or 1 < i < Z,
iN(i) =C,

4These properties are taken from [Bux and lliadis 2010; Dgsrso2014] where this process is modeled as a Markov chain
and the number of blocks with a given number of valid pagexésiffor analysis purposes.
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for some constar@, or N(i) = (Y + 1)N(Y + 1) /i. Therefore, we gét

z z z
T/Z=F N(i)= 5 Ni)= 3 (Y+1N(Y+1)/i
=0 i=Y+1 i=Yr1
Z 1
= (Y+1)N(Y +1) -
i=Y+1 !

~(Y+1)N(Y+1)(In(Z) —In(Y))
=(Y+1)N(Y+1)In(Z/Y).
We also have that
z z

u= Z iN(i) = z iNG)=(Z-=Y)(Y+T1)N(Y+1).
=0 i=Y+1
Together, we get that
Y+DNY+1) = 2 U

nZz/yY) Z-Y
or
u Z-Y Y/Z-1 o —1

X =

T ZIn(Z/Y) In(Y/Z) In(a)

wherea/ = Y/Z, and is given by = —a- W (—%e*l/"‘).
Now, we deduce that for eve¥ — Y logical page writesZ physical pages are written. Hence,

_ Z_ _ _L
P=L 7%y = 1~ and

P L E 1
E=r=— —~ _EFg(a)= —— = — .
AR AT Rl Wy A w,

O

The number of block erasures is simply given by= % - EF. Thus, for brevity, we will only
discuss the erasure factor.

5.2. Optimal Erasure Factor with Ideal Reprogramming

We begin our analysis of the erasure factor with reprogramgrioy considering an ideal reprogram-
ming scheme in which all the pages of a used block can be regoroged. We assume that the FTL
employs the WOM codes described in Section 4.1 for reusirsh fllages. Thus, reprogramming
still requires two used physical pages for writing one lagjgage, to accommodate the overhead of
the WOM encoding.

This ideal FTL implements the following greedy garbageetibn policy. Blocks are managed
in two queues according to their states: used or reused. Thds—characterized by a parameter
0 < y7 < 1. Let By, B, be the used and reused blocks with the minimum number of iadidal
pages, respectively. If the number of valid page$inis at mostY; = vy - Z then this block is
reused. Otherwise the blodk is physically erased and its valid pages are copied andanritt an
available block. In other words, the reuse condition in 4 is always true, ang; determines
whether to pick a victim block for erasure or for reuse.

The value ofy; in the greedy policy which optimizes the number of erasunelsthe correspond-
ing erasure factor is found in the next theorem.

5There are better approximations of the differences betweetdarmonic series. However, the one we use here is prééerab
for our analysis because it provides expressions that ddemeind on the number of pages per block.
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THEOREM 5.3. For any storage ratiax and greedy garbage collection with parametgr, the
erasure factor of the ideal FTL is given by

1

EFi (e, v1) = mr 2)
wherey, satisfies the relation
Yo = —aW (—éeln<%)+llz“_3> . )
The optimal erasure factor is given by
EF(a) = Oényilrél {EF] (e, 1)} . (4)

PROOE LetY; = y; - Z and let us denote by, the expected number of valid pages when a
block on a second write is physically erased andfet= Y, /Z. We will determine the relation
between the values af; andY;. For0 <i < Z, we denote by (i), N> (i) the number of blocks
with i valid pages on a first, second write, respectively. Notic firat fori < Yy, N1(i) = 0 and
fori < Y, Np(i) = 0. Furthermore, when a block is moved from first to second wititelready
containsY; valid pages. Since every logical page is written into 2 adé pages, the total number
of logical pages this block can accommodate is at Mfgst (Z — Y7)/2 = (Z + Y71)/2 and thus
Ny (i) =0fori > (Z+Y71)/2.

We follow the same steps of the proof of Theorem 5.2 to havéalieving equations:

(Y1 +1)N1(Y1 +1) =--- = ZNy(Z)
Z4+Y Z+Y
=(Y2+1)No(Yo +1) =--- = 5 LNy ( > L.

According to these definitions, a block can accommodapage writes on the first write an& —
Y1) /2 more page writes on the second write. Furthermore, on eveck lerasureY, pages were
moved from a previously erased block, so the number of eeassmgiven by

L+ EY,

E=—0—7——"F—+
Z+(Z-Y1)/2

or
L L 1

T3Z2-V,-V/2 Z 32-m/2-7

Hence, the erasure factor, as a function of batlandy, is1/(3/2 — y1/2 — ).
Following the rest of the steps from Theorem 5.2 we get

Z4Y

E

Z Z 2

1/2=5 M@ +N() = 5 N+ § Nl
i= =Y+ =Y+

(Y1 + DN (V1 +1) +Z+2_Y1(Y1+1)N1(Y1+1)

i=Yy+1

VA 1 # 1
=(Y1+1)N1(Y1+1) ' z ?4—‘ z 7
i=Y1+1 i=Yr+1

~ (Y1 + 1Ny (Y1 + 1) (ln (Y%) o (%))

1 —|-)/1>
2v1iva )

=(Y1+1)Ni(Y1+1)In (
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As before, we also have

Z Z
U= gOiN1(i) + ZOI'NZ(i)

1

, zy
2

= Y N+ Y iN(i)

i=Y1+1 i=Yr+1

=(3Z/2—-Y1/2—-Y5) (Y1 +1)N1(Y1 +1).

Thus we get
u T/Z
(Y1 +1)Ni(Y1+1) = = ,
3Z/2-Y1/2-Y, In (21;1?)
or
o 3/2—v1/2 -7
1+y
In (27/1Y12)
that is

1 n(a)4n=3
Y2 = —aW (—Eeln< m )+ 2 ) . (5)

Hence, the erasure factor, as a functioma@ndy is
B 1
3/2—=v1/2—v2’

wherey; is given by (5). Lastly, since we can choose the threshpldhe valueEF; () is achieved
by minimizing the value oEF; («, v1) under the condition in (5). O

EFl/ ((X/ 7/1)

5.3. Optimal Erasure Factor with Partial Reprogramming

Next, we generalize the analysis of the ideal reprogrammiFigto realistic flash characteristics,
where only a subset of the pages in a block can be reprogramiveedtart by consideringHH
reprogramming, assuming that all the high pages can be geproned safely, and then consider
the general case of partial reprogramming.

THEOREM 5.4. For any storage ratiax and greedy garbage collection with parameigr, the
erasure factor of a reprogramming FTL based on t#H scheme is given by

1

EFy(a,y1) = ey r— (6)
wherey, satisfies the relation
Yo = —aW <—ieln(1zilyl>+y}*;5> ) (7
The optimal erasure factor is given by
ER)(a) = ngilrél {EF; (e, 1)} . (8)

The proof is based on the following observatidfy. out of the Z pages of a used block are
still valid when it is chosen for reuse. Due to the uniformitiythe updates, half of these pages
are high. Thus(Z — Y1) /2 high pages are available for reprogramming, resulting intal tof
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----Baseline System
—Ideal WOM
—LHH
wf i —LHH Skip-1
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Erasure Factor
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Fig. 11. The expected erasure fact@H) for uniform workloads with and without reprogramming.

Y1+ (Z—Y1)/4 = (Z +3Y1)/4 valid pages on the reused block. The proof of Theorem 5.4 is a
special case of Theorem 5.5 below and thus we skip its pratsemt

We now consider the general case of partial reprogrammihgreonly one out of every pages
can be reprogrammed. In other words, we require a gap-efl pages between every two reused
pages, to avoid disturbance and allow safe reprogrammimgs,Tor theLHH , LHH-Skip-1, and
LHH-Skip-2 schemes described in Section 3, we $let 2, S = 4, andS = 6, respectively. We
generalize the results in Theorem 5.4 as follows.

THEOREM 5.5. For any storage ratiax and greedy garbage collection with parametgr, the
erasure factor of a reprogramming FTL with parametgis given by

1
1+ -3 -

EPé(“/Yl) = 4 (9)

wherey, satisfies the relation

1+(25-1)y v1—(2541)
Vo = —aW (%eln< 257 ])+ s ) . (10)
The optimal erasure factor is given by
EF = min {EF; . 11
s(a) og‘yﬁ%l{ s (1)} (11)

The proof is based on the same observation, that{ #he- Y;) valid pages on the used block
are distributed uniformly. In the general case, we utilinéyadl /S of them, resulting in a total of

Y|+ (Z—-Y1)/2S = %S—mq valid pages on the reused block. We give the full proof of
Theorem 5.5 in the Appendix.

Figure 11 illustrates the benefit, in terms of the erasurefafrom the reprogramming schemes
examined in Section 3. These results demonstrate the gagdetthe theoretical benefit of the
ideal reprogramming scheme and the modest benefit achéeiraptactical designs that take into
account the limitations of current flash chips. For exampith an overprovisioning of 28%, the
erasure factor of the baseline, the ideal reprogrammingtta@mtdHH-Skip-1 scheme is 2.5, 1.83,
and 2.3, respectively. This corresponds to a theoretidalation in erasures of 27%, but an expected
practical reduction of only 8%.
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Remark5.6. The analysis of the reprogramming schemes can be eddodher, to apply to
even more general restictions on reprogramming. Assunteitipages out of th& pages in a used
block are available for reuse. Then, following the analysithe proofs of Theorems 5.3— 5.5, the
erasure factor is given by

1
EF = ——F—,
1"‘2—'}/2
and

A
1 1n<_”+ﬁ)__“2z
Y1 @
Vo =—aW | ——e¢
o4

One can verify that by setting = Z — Y, we get the result from Theorem 5.3 and for= Zz_syl

we get the result from Theorem 5.5.
This formulation allows us to address complex limitatiake those implied by theHH scheme.
With LHH , we can safely reprogram a high page only if its corresjdoglow page is also invalid.

In this case, the value & will be given by A = % -Y + (%)z and we getziZ ~2 % — % The

resulting erasure factor is slightly higher than the onaitetd by Theorem 5.4, and is given by
1

5/4-71/2-72’

1 142y 2y1-3
Y2 = —aW (——eln( n )+ fa )
[24

5.4. Optimal Erasure Factor with Non-Uniform Workloads

Our assumption in Sections 5.1 and 5.2, that all the logiagep are updated with uniform distri-
bution, does not hold in many real workloads. We apply ouotegcal framework to non-uniform
workloads following the approach used in previous studiegies are grouped into several par-
titions according to theitemperatureswhich represent their update frequency [Desnoyers 2014;
Stoica and Ailamaki 2013]. Namelkipt pages are updated frequently, whileld pages are rarely
updated. We first consider workloads with only two tempeegphot and cold, and then generalize
our results for any number of temperatures.

We now assume that thid physical pages are distributed into hot and cold pages, evtier
number of hot and cold pagesif = fU andC = (1 — f)U for some0 < f < 1, respectively.
Update requests access hot or cold pages with probapiityd1 — p, respectively. We assume,
as in previous studies, that within each temperature pagaguaated uniformly. Thus, within each
partition, the FTL will use the optimal greedy garbage adlten policy obtained from our analysis
above, with the goal of minimizing the total number of block®ures.

The T physical pages are divided into two partitions, one for tbegages and the other for the
cold pages. Assume that the number of physical pages albdat the hot pages i8T, so the
number of physical pages allocated for the cold pagés is 3) T. To ensure that in each partition
the number of physical pages is greater than the number imlgages, we require that

BT > fU,(1-p)T > (1—- fHl,

EF ~

and

which implies that
fa<B<1l—(1-f)a.

Our analysis provides the means to calculate the opthfal a given workload and overprovi-
sioning value.
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Table IX. Parameters for the baseline system with two tempera-
tures

| Parameter | HotPartition | Cold Partition |
# physical pages T, = BT T.=(1-8)T
# logical pages u, = fu U.=(1-fu
# logical page writes L,=pL L.=(1—-p)L
storage rate ay = J[;—LTI = %" A = (11:[3)“
overprovisioning on = BTqu Pec = Wl
erasure factor EFp ), = EFg(ay) EFg. = EFp(a.)
#block erasures | Egj = 2 - EFg), Ep.= % EFg,

5.4.1. Analysis for The Baseline System. Desnoyers [Desnoyers 2014] provides a thorough anal-
ysis of the optimal partitioning for a workload with two teematures and no reprogramming. Our
analysis for this special case is similar, and we formulaieie in its completeness in order to ex-
tend it to the general case of multiple partitions and remogning. We summarize the parameters
of each patrtition in Table IX. Our results are formulated m®®plicit optimization problem, as in
the previous cases.

THEOREM 5.7. The erasure factor for the baseline system and non-unifgrdates with pa-
rametersf andp is given by

EFg(a, f,p) = i E /
(e f,p) f“<ﬁgllgrl(l_f)“{ 5(B)}

where

Ea®) = p-ra (L) + (- p)-2m (S25%).

PrROOFE Our goal is to minimize the total number of erasures

L L
Ep =Egn+Epc = — - EFg)+ - - EFpc

= (PEFgi+ (1— p)EF) = = (PEF(ay,) + (1~ p)EFs(ax)).

This is equivalent to finding the minimum value of

intherangefa < B <1—(1—fla. O

Thus, the erasure factor within each partition is optimimestder to reduce the combined erasure
factor. The optimal3 is the one that optimizes the average of the two values, weighy the
frequency of updates in each patrtition.

5.4.2. Analysis for Reprogramming FTLs. For the generalization of Theorem 5.7 to reprogram-
ming FTLs we assume, as before, that all the used blocks asedebefore they are physically
erased. This assumption contradicts practical experjeéhae reprogramming should be applied
only to hot data [Margaglia and Brinkmann 2015; Odeh and @as2014; Yadgar et al. 2015a;
Yadgar et al. 2015b]. However, it does hold when the numbegra$ures is the only objective,
disregarding the time spent on moving pages from victim kdotVe discuss this limitation of our
analysis further in Section 5.5 below. We summarize therpatars of each partition in Table X.

As in the previous case we get the following result.
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Table X. Parameters for a reprogramming FTL with parameter S with
two temperatures

\ Parameter | Hot Partition | Cold Partition |
# physical pages T, =BT T.=(1-8)T
# logical pages u, = fu U.=1-fu
# logical page writes L, =pL L.=(1-p)L
storage rate ay = %" A = (llif;j)“
i _ BT—fU _ -pT-0-Hu
overprovisioning o= i1 o G0
erasure factor EFs () = EFs(ey;) | EFsc(ac) = EFs(ax)
#block erasures | Egj = 2 - EFgy(ay) | Ese = % - EFs (o)

THEOREM 5.8. The erasure factor for a reprogramming FTL with paramefeand non-
uniform updates with parametefsandp is given by

EFs(afp)=  _ min  {E5()},

min
fa<p<1—(
where

Es(B) = p- EFs <%"‘> +(1-p)-EFs <%> .

PROOFE As inthe previous case, we seek to find the valug which minimizes the total number
of block erasures

Ly, - EFg (o) N Lc- EFs(ac)

Es =Esy+Es,= 7 7
L
=7 (PEFs;+ (1 = p)EFsc) .

Hence now we minimize the function

Es(p) = pers (L) + (- piers (U=5%),

intherangefa < f<1—(1— fla. O

5.4.3. Analysis for Multiple Temperatures. Characterizing non-uniform workloads by a pair of pa-
rametersf andp, is an appealing simplification. However, several recartists showed the poten-
tial benefit of a finer classification of page access frequestoi more than two temperatures [Stoica
and Ailamaki 2013; Yadgar and Gabel 2016]. To address thisigé case, we now assume that the

logical pages are classified int@roups, each characterized by a pair of paramefes)dp;, and
stored in a separate partition.

The parameters for thigh partition are as follows:

(1) The number of physical pagesiis= j3;T,
(2) The number of logical pageslg = f;U,

(3) The number of logical page writeslis = p;L,
(4) The storage rate is; = % = ];;_tjc

(5) The overprovisioning ig; = % = % -1,

(6) The erasure factor BF; = EFs(«;),
while the values of, ..., fy andpy, ..., px are given andzi-‘:l fi= Zi'(:l p; = 1. Then, the goal

is to find the values o1, . . ., Bk, such thatzi-‘:1 B; = 1 and the total erasure factor is minimized.
This optimization problem is formulated in the next theorem

ACM Transactions on Storage, Vol. 0, No. 0, Article 0, Pubiion date: 2017.



0:26 Yadgar et al.

n
)

0.4

—— Baseline System, f=0.05
0.35F | —— Ideal WOM, f=0.05
—— LHH Skip-1, f=0.05
““““ Baseline System, f=0.2
“““ Ideal WOM, f=0.2
 LHH Skip-1, f=0.2

n
>
T

N
N
T

0.3r

N
T

0.251

=
©

=
i
T

Erasure Factor
=
(=)

——Baseline System, f=0.05
t-| —Ideal WOM, f=0.05

— LHH Skip-1, f=0.05

| R Baseline System, f=0.2
“““ Ideal WOM, f=0.2

[| LHH Skip-1, f=0.2

=
[S)

[N

o
©

1 0 0.

0 012 0‘.4 .2 0.4 0.6 0.8
Frequency of hot updates (p)

0.6 0.8
Frequency of hot updates (p)

Fig. 12. The expected erasure factor (left) and the size of the hatipar(right) for non-uniform workloads
with and without reprogramming. We fix the overprovisionirajue at 28% and vary for two values off.

THEOREM 5.9. The erasure factor for a reprogramming FTL with parameteland non-
uniform updates with parametefs, ..., fr andpy, ..., px is given by

Equlti(‘X/flr () rfk/ | AVERRY Pk) = ﬁmll’k {Emulti<ﬁ1/ Ry ﬁk)} ’
1Pk

where

k
Epnutti(B1,- -, Br) = 3 piEFs(a),
=1

andpy, ..., B satisfysk_, g;=landforl <i<k-1
i1

k
fio<Bi<1=3% Bi— 3 fie
= j=r+l

Figure 12 illustrates the effect of the workload parametershe erasure factor. These results
further demonstrate the gap between the theoretical beféfi¢ ideal reprogramming scheme and
the achievable benefit in practical designs. Note that thémed erasure factor is reached when the
frequency of updated to hot pages is equal to their portidch@tata f = f), which corresponds
to a uniform workload. We also note that the benefit from rgprmming increases with the portion
of hot data.

Interestingly, the optimal size of the hot partitigh) depends only on the workload characteris-
tics, p andf, and not on the reprogramming scheme. This property is edjyedesirable for FTL
designs that dynamically adapt the reprogramming schertetavorkload characteristics or to the
condition of the underlying flash hardware.

5.5. Discussion

The theoretical framework presented in this section istéohin several aspects. First, it does not
provide an analytical solution to the optimization prob&efarmulated in our theorems. In order
to obtain the optimal;; and the corresponding erasure factor we performed an etwmssarch
for 0 < 91 < 1. We implemented this search with a simple Matlab programridwatfor several
minutes.

Our framework is also limited in that the number of erasuseis only objective. Additional
costs of reprogramming, such as possible increase in cell,Waency and energy consumption,
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Table XI. Trace characteristics of MSR and synthetic workloads. In the MSR workloads, pages can
be accessed as hot and cold in different requests.

\olume Unique pages| Hot page ratio| Cold page ratio| Hot write ratio | Total writes
(MB) (~f) (~f-1) (1) (GB)
rsrch.0 300 0.63 0.62 0.95 11
ts.0 550 0.57 0.59 0.94 12
src20 510 0.61 0.66 0.91 10
weh 0 730 0.35 0.82 0.87 17
usr.0 660 0.66 0.52 0.86 14
wdev.0 350 0.38 0.77 0.85 7
stg0 400 0.59 0.77 0.85 16
prxy_0 330 0.81 0.59 0.78 21
hm.0 1700 0.53 0.9 0.7 23
srcl2 670 0.25 0.9 0.22 45
proj_0 1700 0.31 0.84 0.14 145
zipf(0.9,0.95,1) 1024 0.001 0.999 0.2 10

are not taken into account. This model implies that repnognéng is always beneficial, and blocks
might be reused even if they will only accommodate a singiechl page write, and this page will be
immediately moved and written to a clean block in order teeithe reused block. This is illustrated
in the example in Section 4. To avoid such scenarios, the Fa&y. disable reprogramming in cold

partitions, or whenever the reduction in the erasure fastimo small to justify the possible increase
in additional costs.

6. MODEL VALIDATION

In the following section we validate our theoretical modgldnswering the following questions:
(1) how useful is the garbage collection policy derived fepnogramming FTLs in this model? (2)
how accurate is the number of erasures derived from the raeael (3) how well does the model
predict the possible benefit from reprogramming?

6.1. Reprogramming FTL Simulator

We build a special purpose simulator that implements theelf&d_ functionality and measures the
number of erasures for each workload, system setting, seatdlical parameters. We implement
the baseline system with greedy garbage collection, asaggtieLHH-FTL and its variation with
LHH-Skip-1 and_HH-Skip-2. We compare the number of erasures of each FTleanH workload,
with and without partitioning the pages according to themperatures. In other words, when the
FTL uses only one partition, we calculagte according to Theorem 5.5. When the FTL uses two or
more partitions, we calculai®; andy; in thei-th partition according to Theorem 5.9. We always
compare the reprogramming FTLs to a baseline system witlsdh@e number of partitions. We
examine two values of overprovisioning)( 7% and 28%, and set the number of pages per block
(Z) to 256. We align the requests in the real workloads to a page$ 4KB. We show only results
for p=28%, where the benefit from reprogramming and the proseofieur model could be easily
observed.

6.2. Workloads

We used three synthetic workloads with a Zipf distributioitrwexponential parametex =
0.9,0.95 and 1. In these traces, the frequency of access to pagge proportional to%. Thus,
we could mark each write request with the temperature of #ge|it is about to update. We marked
the pages with five different temperatures as follows.

For each Zipf trace we extracted five thresholds) < i < 5, such thatrg = 0, and pages
with logical address between_, andn; were accessed 20% of the time. This divides the logical
address space into five temperatures, such that pages wigletaturei are always colder than
pages with temperature i. While this classification is impossible in real world seds, it serves
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Fig. 13. Number of erasures withHH-FTL normalized to that of the baseline system.

for the validation of our theoretical model, and for demeaistg the benefit from page reuse under
optimal conditions.

We also use real world traces from the MSR Cambridge work|8&d 2014; Narayanan et al.
2008], which contains week-long traces from 36 volumes orsdi¥ers. We used the 16 traces
with the smallest address space, and that include enoug reguests for a meaningful analysis.
These traces vary in a wide range of parameters, summarizéabie XI. In these traces, pages
were classified as cold if they were written in a request o §i¢KB or larger. This simple online
heuristic was shown to perform well in several previous igsidChiao and Chang 2011; Im and
Shin 2010; Yadgar et al. 2015b].

The limitation of this heuristic is that pages can be clasgifis cold and hot simultaneously in
different requests. This can be observed in Table XI, wHezestim of the hot page ratio (column 3)
and the cold page ratio (column 4) of the MSR workloads is @ighan 1. Similarly, real workloads
often exhibit a dynamic working set, where hot pages grdgbaicome cold and vice versa. Prac-
tical FTL implementations address this behavior by moviogjdal pages to a different partition
when they are updated and a change in their temperaturedgstedét{Chiao and Chang 2011; Im
and Shin 2010; Stoica and Ailamaki 2013]. In our evaluatiwa,adhere to the static partitioning
determined by our theoretical framework. Thus, we use tipecqimate frequency~ f) of access
to hot pages in order to calculgfe and store in the hot partition all the pages that are marked a
hot in at least one request. We discuss the limitations efapproach below.

The workloads were collected on volumes of different sizeg] access logical pages from a
wide range of address space sizes. However, most of thiesgldpace is never updated within the
duration of the trace. The logical pages that are never egdsdtect the number of erasures because
they inevitably occupy physical pages on blocks that alsmedhot pages. We chose to omit those
pages from our evaluation, and set the logical capatifyas the number of unique pages in each
workload. We note that setting to the size of the full address space would have forced usto al
use a very large physical device, resulting in a very largernovisioning space compared to the
size of the working set.

6.3. Simulation Results

We first examine the reduction in erasures achieved by repnoming. Figure 13 shows the number
of erasures performed by each of tiéH FTLs with 28% overprovisioningyith and without hot
and cold data separation, normalized to that of the basslisem. The traces are ordered by the
ratio of requests to hot pages)( descending, although we note that this is not the domifzanr

in determining the benefit from reprogrammiigprogramming reduces the number of erasures by
up to 13%, 7%, and 5%, withHH-FTL, LHH-Skip-1, and_.HH-Skip-2, respectively.
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This reduction is naturally smaller than that achieved vjmus FTL designs that did not take
into account the specific limitations of MLC reprogrammifgr example, Reusable SSD [Yadgar
et al. 2015b] reduces the number of erasures by up to 33% ksingeall the pages in each repro-
grammed block, which is impossible with MLC flash. The Seal fMargaglia and Brinkmann
2015] eliminates up to 80% of erasures on MLC flash by using lteprogramming. However,
Seal FTL is not a general-purpose FTL, as it requires thatagtjpns write “overwrite compatible”
data, which allows up to eight reprogramming cycles for gaatje without any WOM encoding
overhead.

Our results show that separating hot and cold data into twtitipas always increases the benefit
from reprogramming. They also show that this benefit deeeas the skip value increases. The
results withp=7% were similar, though the difference between the diffesehemes was much
smaller. One exception is the projtrace, which has a very low ratio of hot requests. With low
overprovisioning, reprogramming increased the numberadges by 1%-14%, because the high
amount of WOM encoded cold pages reduced the availabilityezin blocks.

The experiments for two of the MSR traces, p&kand hmoO, with hot and cold data separation
did not complete successfully. This demonstrates thediinih of the static allocation of blocks to
partitions in our simulation. This allocation was basedlom value obtained from Theorems 5.7
and 5.9 for the baseline aidHH-FTL experiments, respectively. For a given ratio of pages in
a workload,f, and assuming that pages are either hot or cold, the givemsures that the size of
each partition can accommodate all the pages that belonhgHowever, in these two traces, a large
portion of the pages appeared in both hot and cold requdatsy hot pages were initially classified
as cold and written in the cold partition, which overflowedasgsult.

To validate the accuracy of our model, we compare the exgeutenber of erasures in each
experiment with the number measured in the simulation. Weutste the expected number of era-
sures using the erasure factor given by our theoretical msd¢hatE = EF - % Figure 14 shows
the ratio between this expected number and the number afresagerformed by our simulator, for
each FTL and workload. Our model assumes that within eadhipampages are updated uniformly.
Thus, as we expected, without hot and cold data separaadiffierence between the expected and
measured number of erasures is quite high. Adgiagd f to the model, reflecting its non-uniform
distribution, increases its accuracy considerably. Weenkesthe highest accuracy in the synthetic
Zipf workloads, where the hot and cold classification wasiidEven in these cases, the expected
number of erasures was up to 25% higher than the measuredw® the uniformity assumption
in the large cold partition.

The uniformity assumption affects the accuracy of our méaigboth the baseline and the repro-
gramming FTLs. We next examine how accurate it is in predictihe benefit from reprogramming,
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Fig. 15. Expected reduction in erasures and measured reductiomurhker of erasures is normalized to that
of the baseline system.

in terms of reduction in erasures. Figure 15 depicts thiefieas the number of erasures with re-
programming normalized to that of the baseline. We show tipe&ted benefit, calculated with the
erasure factor obtained from our model, and the observedldreedifference between the expected
and observed benefits was around of 2%, and no more than 5%t @he two “coldest” traces,
src12 and proj0. The difference witlp=7% was slightly higher, but was below 10% for all but the
src12 and projO0 traces. The measured benefit was lower than expected leeahitle restriction
on invalid low pages corresponding to the reprogrammed pégfes. More accurate prediction can
be obtained by refining our calculation according to Remagk Svhich is part of our future work.

The accuracy of this model is considerably higher than th&t base analysis of Reusab-
leSSD [Yadgar et al. 2015b]. There, an expected reductid3B8f was based on the assumption
that all the pages on a reused block have been invalidated¢damébe reused without additional
hardware limitations.

6.4. Implications for System Design

The smaller number of garbage collection cycles when usit@MAtodes and the higher stress
induced by rewriting pages lead to a tradeoff in FTL desidgre Tollowing model summarizes the
interplay between the physical chip characteristics, fie$cheme, and the workload. LEtbe the
number of erasures incurred by logical page writes in the baseline FTL, andEétbe the number

of erasures in a reprogramming FTL for the saiédogical writes. We defin&,;4syres as%, and
use it to derive the amount of logical data that would inEwgrasures in the reprogramming FTL:

M M__ | et R,equction D€ the reduction in a chip’s lifetime due to reprogramming.

RCI‘HSIJVCS

In realistic scenarios, a reprogramming FTL will reuse kfoonly at the beginning of their
lifetime. Let Py.,5. be the portion of a block’s lifetime in which it is reprograrath0 < P50 < 1.
We calculate the lifetime extension achievable by repnogmang as follows. We assume that the
baseline FTL writes a total a¥;,,,; logical pages in its entire lifetime. The total number ofitad
pages that can be written by a reprogramming FTL is given by

/
Mieuse = Preuse - Mtotal + (1 — Preuse — Rreduction) : Mtotal

Preyse
= Mtotul : (7 + 1 — Preuse — Rreduction)r

RC?‘IZS ures

and the lifetime extension is

Myeuse 1
—1 = Preuse (R - 1) — Ryeduction-
erasures
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Table XII. Lifetime extension in sample reprogramming scenarios.

Reprogramming mode Prcusc RL’}‘HSMF(’S Rreduction Prcusc . (m - l) - Rreduction
Reusable SSD on a theoretical device 0.4 0.67 0 0.2 — 20% lifetime increase
LLH-FTL on a B29 chip 0.6 0.84 0.085 0.03— 3% lifetime increase
LHH-Skip-2 on a C19 chip 0.6 0.95 0.042 -0.01— 1% lifetime reduction

Table Xl summarizes the details of three reprogrammingrextas. In the first example, we
consider the Reusable SSD, which achieves a reduction ofiB¥¥asures by reprogramming all
the block’s pages [Yadgar et al. 2015b]. In this example veeiae that the increased wear due to
reprogramming does not reduce the chip’s lifetime, and tbatogramming is limited to 40% of
this lifetime due to ECC constraints. The lifetime extengiothis case is 20%.

In the second example, we consider the LLH-FTL on a deviceguB29 chips, which reuses
blocks in the first 60% of their lifetime. The reduction in suges is the maximal observed in the
evaluation of LLH-FTL in simulation [Margaglia et al. 201@nd the lifetime reduction is taken
from Table V. The lifetime extension in this case is 3%. In tthied example, we considerlaHH-
Skip-2 FTL on a device using C19 chips. The reduction in eessis the maximal observed in our
simulations in Figure 13, and the lifetime reduction is takem Table VI. This use case results in a
lifetime reductionof 1%: the reduction in lifetime due to the increased weaneighs the lifetime
extension achieved by reprogramming in the first part of thip’s lifetime.

This analysis demonstrates the sensitivity of the reprograng approach to the physical char-
acteristics of flash chips and to the characteristics of thekklwads. When the workload has a low
percentage of hot writes (like prd)), or when the chip is highly sensitive to increadég (like
C19), reprogramming should likely be avoided. The comliamedf our flash evaluation and theo-
retical model can provide a good indication which reprograng scheme will be most useful in
increasing a given device’s lifetime.

7. RELATED WORK

Several studies proposed FTL designs that reuse pagesttdeX8D lifetime. Some are based on
capacity achieving codes, and bound the resulting caplasisyby limiting second writes to several
blocks [Odeh and Cassuto 2014] or by assuming the logicalltk been compressed by the upper
level [Jagmohan et al. 2010]. The overheads and complsxitithese designs are addressed in the
design of ReusableSSD [Yadgar et al. 2015b]. However, nbtiese studies addressed the limita-
tions of reprogramming MLC flash pages. Some of these lifitatwere addressed in the design
of an overwrite compatible B-tree data structure, assuming the mappinggfto bits can be mod-
ified [Kaiser et al. 2013]. Like the previous approachesa#t heen implemented only in simulation.
Extended P/E cycles [Margaglia and Brinkmann 2015] werdemgnted on real hardware, but the
FTL that uses them relies on the host to supply data that isagite compatible. LLH-FTL and
LHH-FTL are the first general-purpose FTLs that addressgsadtical limitations of WOM codes
as well as MLC flash. Thus, we were able to demonstrate theingths and weaknesses on real
hardware and workloads.

BER characterization is important for understanding thatétions of flash and the properties
of noise, which lead to more efficient algorithms to optimi¢&ND flash performance. Numer-
ous studies explored the contributors to BER in flash, on @&watiety of chip technologies and
manufacturers. They show the effects of erasures, retentiogram disturbance and scaling down
technology on the BER [Cai et al. 2013; Grupp et al. 2009; k&gt al. 2008; Yaakobi et al. 2012a].
These studies demonstrate a trend of increased BER as fishefsizes scale down, and the need
for specialized optimizations employed by manufactursra eesult. Thus, we believe that some of
the interference effects observed in our experiments aeswltrof optimizing the chips for regu-
lar LH programming. Adjusting these optimizations to LLHIdAH reprogramming is a potential
approach to increase the benefit from page reuse.

Several studies examined the possibility of reprogramnflegh cells. Most used either SLC
chips [Jagmohan et al. 2010], or MLC chips as if they were SE€ Gad et al. 2015]. A thorough
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study on 50nm and 72nm MLC chips demonstrated that afted agelof the block (LH program-
ming), half of the pages are “WOM-safe” [Grupp et al. 2009hwever, they do not present the
exact reprogramming scheme, nor the problems encountdred using other schemes. A recent
study [Margaglia and Brinkmann 2015] mapped all possikd¢estransitions with reprogramming
on a 35nm MLC chip, and proposed the LLH reprogramming sch@ueresults in Section 3 show
that smaller feature sizes impose additional restrictmmseprogramming, but that LLH aridHH
reprogramming are still possible.

Numerous methods have been suggested for improving thabpitity of existing WOM codes.
Recent studies have focused on improving their computadfficiency [En Gad et al. 2015], re-
ducing their overhead [Shpilka 2013; 2014; Yaakobi et allZA) Burshtein and Strugatski 2013;
En Gad et al. 2015], and reducing their failure probabilByfshtein and Strugatski 2013; En Gad
et al. 2015]. Most of these codes target the basic model ofoinger cell with the only restric-
tion that zeroes cannot be overwritten by ones. The additiimitations on reprogramming that
were demonstrated in our analysis lay the ground for ingattig WOM models that reflect these
limitations.

Previous studies examined the energy consumption of flagls els a factor of the programmed
pattern and page [Mohan et al. 2013], and suggested metborsdiucing the energy consumption
of the flash device [Salajegheh et al. 2011]. To the best oknawledge, this study is the first to
measure the effect of reprogramming on the energy consamgtia real flash chip and incorporate
it into the evaluation of the FTL.

Recent trends in flash technologies, such as one-shot pnagray and 3D V-NAND [Im et al.
2015], eliminate the constraints on the programming ordi@ages in each block. This may allow
reprogramming pages on a fully used block, and maybe evew adiprogramming of the low and
high pages alike. To understand their implications, thes@riologies should be examined in an
evaluation similar to ours.

Our theoretical analysis for non-uniform workloads addp&sapproach of previous studies that
assume pages are partitioned according to their temper&asnoyers [Desnoyers 2014] gives and
exact analytical solution for the least recently writterR{\/) garbage collection policy as well as
an approximate solution for greedy garbage collectioniar temperatures, and presents an ex-
tension to multiple partitions. Van Houdt [Hou 2014] stugltee reduction in write amplification
achieved by hot and cold data separation, taking into addalse identification and dynamically
changing workloads. Stoica and Ailamaki [Stoica and Ailan2®13] study the classification accu-
racy required for minimizing write amplification. Our workmplement these results by providing
an analytical model for optimal partitioning and garbagheabion for reprogramming FTLs, that
can also be used to predict the benefit from reprogrammingrureglistic hardware and system
limitations.

8. CONCLUSIONS

Our study is the first to evaluate the possible benefit fromsirguflash pages with WOM codes on
real flash chips combined with an end-to-end FTL analysisstMved that page reuse in MLC
flash is possible, but can utilize at most half of the pagesaahédlock, and achieves this maximum
only if some of its capacity has been reserved in advanceléi#programming is safe for at least
40% of the lifetime of the chips we examined, it incurs addfitillong-termwear on their blocks.
Thus, even with an impressive 20% reductioriasuresthe increase itifetime strongly depends
on chip physical characteristics, and is fairly modest.

Our hardware evaluation exposed a considerable gap betlwegnreviously shown benefits of
page reuse, which were based on theoretical analysis anthsioms, and those that can be achieved
on current state-of-the-art hardware. Our detailed th@adlenodel bridges this gap by providing a
framework for maximizing and estimating the benefits of paggese with validated accuracy.

While our study demonstrates restrictive limitations oggeeuse, it also highlights the poten-
tial benefits and several approaches to achieve them. Wedbelieve that many limitations can be
addressed with manufacturer support by reevaluating culkl&C programming constraints. Sec-
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ond, we expect that WOM codes that are specifically desigmetthé reprogramming limitations of
NAND flash chips will allow the reuse of more pages in each kdo€inally, special-purpose FTLs
and data structures that are overwrite compatible will reolimnited by WOM encoding overhead
and can thus realize the full potential of page reuse.
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APPENDIX

PROOF OFTHEOREMb.5. As before, we assigry, = y; - Z andY, = y; - Z is the expected
number of valid pages when a reused block is physically drase use the same notation from
the previous theorem. In this system, when a block is reusédsY; valid pages and under the
uniformity we assume that half of them are high and the otlaéfrare low, and therefore there are
(Z — Yq) high pages which are available for reprogramming, but weeeuly1/S of them. Thus,

the total number of valid pages that the block will have aifter rewritten isY; + (Z — Y1) /28 =

w. We get the following equations:

(Y1 +1)N1(Y1 +1) =--- = ZN1(Z)
Z+(25—-1)Y Z+(25—-1)Y
=(Yo4+1)Ny(Yo+1) = = ( )1m( ( )1y
2S 2S
The number of block erasures is
E— L+ EY,

Z+(Z-Y1)/(2S)
or

L L 1

Y. 7 1 :
(I+%)Z-Ya—3t Z 14+5-H-v

Hence, the erasure factor, as a function of batlandy, is H—llyﬁ
25725 12

ACM Transactions on Storage, Vol. 0, No. 0, Article 0, Pubiion date: 2017.



0:36 Yadgar et al.

Again as before we have

Z+(25-1)Y;
Z 1 1
T/Z==(Y1+1)N1(Y1+1) z =+ n
=it i=Yy1 1t

~ (Y1 +1)Ni (Y, +1) <ln (%) +1In <%{21m>)
= (Y1 +1)N1 (Y1 +1)In (M>

25v1v»
and
z z
u= z iN1(i) + z iN, (i)
i=0 i=0
P z+(22551)yl
= ; iN1(i) + Z iN, (i)
i=Y1+1 i=Yp+1
=((+ ! )Z—Yl — Yo ) (Y1 +1)Ny(Y; +1)
= 73 73 2 1 1(Y1 .
Hence
u B T/Z
1y\v7 Y1 B 14+(25—-1 ’
Rz E ()
or
L) By
1+(2S—1)7/1
ln( 257172 )
that is

14+(25-1)y1 y1—(25+1)
Y2 = —aW (—leln( o)+ )
24

Hence, the erasure factor, as a functiom@ndy; is

EFg(a, 1) =

(12)

1
1 4
l+55—3—7
wherevy, is given by (12). Lastly, since we can choose the threshgldthe valueEFs(«) is
achieved by minimizing the value &F(«, y1) under the condition in (12).0
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