
0

An Analysis of Flash Page Reuse with WOM Codes

GALA YADGAR, Computer Science Department, Technion
EITAN YAAKOBI, Computer Science Department, Technion
FABIO MARGAGLIA, Pure Storage
YUE LI, California Institute of Technology
ALEXANDER YUCOVICH, Computer Science Department, Technion
NACHUM BUNDAK, Computer Science Department, Technion
LIOR GILON, Computer Science Department, Technion
NIR YAKOVI, Computer Science Department, Technion
ASSAF SCHUSTER, Computer Science Department, Technion
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Flash memory is prevalent in modern servers and devices. Coupled with the scaling down of flash technology, the popularity
of flash memory motivates the search for methods to increase flash reliability and lifetime. Erasures are the dominant cause
of flash cell wear, but reducing them is challenging because flash is awrite-oncemedium— memory cells must be erased
prior to writing.

An approach that has recently received considerable attention relies onwrite-once memory (WOM)codes, designed to
accommodate additional writes on write-once media. However, the techniques proposed for reusing flash pages with WOM
codes are limited in their scope. Many focus on the coding theory alone, while others suggest FTL designs that are application
specific, or not applicable due to their complexity, overheads, or specific constraints of MLC flash.

This work is the first that addresses all aspects of page reusewithin an end-to-end analysis of a general-purpose FTL on
MLC flash. We use a hardware evaluation setup to directly measure the short and long-term effects of page reuse on SSD
durability and energy consumption, and show that FTL designmust explicitly take them into account. We then provide a
detailed analytical model for deriving the optimal garbagecollection policy for such FTL designs, and for predicting the
benefit from reuse on realistic hardware and workload characteristics.
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1. INTRODUCTION

Flash memories have special characteristics that make themespecially useful for solid-state drives
(SSD). Their short read and write latencies and increasing throughput provide a great performance
improvement compared to traditional hard-disk based drives. However, once a flash cell is written
upon, changing its value from 1 to 0, it must be erased before it can be rewritten. In addition to the
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latency they incur, these erasures wear the cells, degrading their reliability. Thus, flash cells have a
limited lifetime, measured as the number of erasures a blockcan endure.

Multi-level flash cells (MLC), which support four voltage levels, increase available capacity but
have especially short lifetimes, as low as several thousands of erasures. Many methods for reducing
block erasures have been suggested for incorporation in theflash translation layer (FTL), the SSD
management firmware. These include minimizing user and internal write traffic [Colgrove et al.
2015; Gupta et al. 2011; Huang et al. 2013; Kim and Ahn 2008; Ohet al. 2012; Park et al. 2015;
Saxena et al. 2012; Soundararajan et al. 2010; Yang et al. 2013] and distributing erasure costs evenly
across the drive’s blocks [Agrawal et al. 2008; Im and Shin 2010; Jimenez et al. 2014; Kgil et al.
2008].

A promising technique for reducing block erasures is to use write-once memory (WOM) codes.
WOM codes alter the logical data before it is physically written, thus allowing the reuse of cells for
multiple writes. They ensure that, on every consecutive write, ones may be overwritten with zeros,
but not vice versa. Reusing flash cells with this technique might make it possible to increase the
amount of data written to the block before it must be erased.

Flash page reuse is appealing because it is orthogonal to other FTL optimizations. Indeed, the
design of WOM codes and systems that use them has received much attention in recent years.
While the coding theory community focuses on optimizing these codes to reduce their redundancy
and complexity [Burshtein 2015; Burshtein and Strugatski 2013; Cohen et al. 1986; En Gad et al.
2015; Shpilka 2014; Yaakobi et al. 2012b], the storage community focuses on SSD designs that
can offset these overheads and be applied to real systems [Jagmohan et al. 2010; Odeh and Cassuto
2014; Yadgar et al. 2015b].

However, the application of WOM codes to state-of-the-art flash chips is not straightforward.
MLC chips impose additional constraints on modifying theirvoltage levels. Previous studies that
examined page reuse on real hardware identified some limitations on reprogramming MLC flash,
and thus resort to page reuse only on SLC flash [Jagmohan et al.2010], outside an SSD frame-
work [Grupp et al. 2009], or within a limited special-purpose FTL [Margaglia and Brinkmann 2015].

Thus, previous SSD designs that utilize WOM codes have not been implemented on real plat-
forms, and their benefits were analyzed by simulation alone,raising the concern that they could not
be achieved in real world storage systems. In particular, hardware aspects such as possible increase
in cell wear and energy consumption due to the additional writes and higher resulting voltage lev-
els have not been examined before, but may have dramatic implications on the applicability of this
approach.

In this study, we extend the end-to-end evaluation and analysis of flash page reuse from our pre-
liminary study [Margaglia et al. 2016]. The first part of our analysis consists of a low-level evalua-
tion of five state-of-the-art MLC flash chips. We examine the possibility of several reprogramming
schemes for MLC flash and their short and long-term effects onthe chip’s durability, as well as the
difference in energy consumption compared to that of traditional use. We present two alternative
FTL designs that take into account the limitations identified in the low-level analysis and can poten-
tially be implemented on real hardware. Namely, LLH-FTL reuses 50% of each block, but requires
reserving some physical capacity on about-to-be-reused blocks.LHH-FTL does not require such
reservation, but reuses only 25% of each block.

In the second part of our analysis, we present a theoretical framework for optimizing flash page
reuse with WOM codes and for calculating the expected benefitfrom reprogramming. This theoret-
ical model is a generalization of the basic model from our preliminary study [Yaakobi et al. 2015],
and takes into account the physical limitations on page reuse as well as the (possibly non-uniform)
distribution of write requests. From this model, we derive an optimal garbage collection policy, as
well as the expected number of block erasures and its reduction due to reprogramming. Our valida-
tion on representative real-world and synthetic workloadsshows that this model predicts the benefit
from reprogramming with much higher accuracy than previousanalyses [Odeh and Cassuto 2014;
Yadgar et al. 2015b].
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The rest of this paper is organized as follows. Section 2 describes the basic concepts that deter-
mine to what extent it is possible to benefit from flash page reuse. We identify the limitations on
page reuse in MLC flash in Section 3, with the implications on FTL design in Section 4. We present
our theoretical framework in Section 5, and present its validation in Section 6. We survey related
work in Section 7, and conclude in Section 8.

2. PRELIMINARIES

In this section, we introduce the basic concepts that determine the potential benefit from flash page
reuse: WOM codes, MLC flash, and SSD design.

2.1. Write-Once Memory Codes

Write-once memory (WOM) codes were first introduced in 1982 by Rivest and Shamir, for recording
information multiple times on a write-once storage medium [Rivest and Shamir 1982]. They give
a simple WOM code example, presented in Table I. This code enables the recording of two bits of

Table I. WOM code example

Data bits 1st write 2nd write
11 111 000
01 011 100
10 101 010
00 110 001

information in three cells twice, ensuring that in both writes the
cells change their value only from 1 to 0. For example, if the
first message to be stored is 00, then 110 is written, program-
ming only the last cell. If the second message is 10, then 010
is written, programming the first cell as well. Note that with-
out special encoding, 00 cannot be overwritten by 10 without
prior erasure. If the first and second messages are identical, then
the cells do not change their value between the first and second
writes. Thus, before performing a second write, the cell values must beread in order to determine
the correct encoding.

WOM code instances, orconstructions, differ in the number of achievable writes and in the man-
ner in which each successive write is encoded. The applicability of a WOM code construction to
storage depends on three characteristics: (a) thecapacity overhead—the number of extra cells re-
quired to encode the original message, (b) the encoding and decodingefficiency, and (c) thesuccess
rate—the probability of producing an encoded output that can be used for overwriting the chosen
cells. Any two of these characteristics can be optimized at the cost of compromising the third [Sh-
pilka 2013; Yaakobi et al. 2012b; Burshtein and Strugatski 2013].

Consider, for example, the code depicted in Table I, where encoding and decoding are done by
a simple table lookup, and therefore have complexityO(1) and a success rate of 100%. However,
this code incurs a capacity overhead of 50% on each write. This means that (1) only23 of the overall
physical capacity can be utilized for logical data, and (2) every read and write must access 50%
more cells than what is required by the logical data size.

The theoretical lower bound on capacity overhead for two writes is 29% [Rivest and Shamir
1982]. Codes that incur this minimal overhead (capacity achieving) are not suitable for real systems.
They either have exponential and thus inapplicable complexity, or complexity ofn log n (wheren
is the number of encoded bits) but a failure rate that approaches 1 [Burshtein and Strugatski 2013;
En Gad et al. 2015]. Thus, early proposals for rewriting flashpages using WOM codes that were
based on capacity achieving codes were impractical. In addition, they required partially program-
ming additional pages on each write, modifying the physicalpage size [Berman and Birk 2013;
Grupp et al. 2009; Jacobvitz et al. 2012; Luojie et al. 2012; Odeh and Cassuto 2014; Yaakobi et al.
2010], or compressing the logical data prior to encoding [Jagmohan et al. 2010].

Two recently suggested WOM code families, Polar [Burshtein2015; Burshtein and Strugatski
2013] and LDPC [En Gad et al. 2015], have the same complexities as the error correction codes
they are derived from. For these complexities, different constructions incur different capacity over-
heads, and the failure rate decreases as the capacity overhead increases. Of particular interest are
constructions in which the overhead of the first write is 0, i.e., one logical page is written on one
physical page. The data encoded for the second write requires two full physical pages for one logical
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Fig. 1. Normal
programming order
and states of MLC
flash. ER is the
initial (erased)
state.
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page. Such a construction is used in the design of ReusableSSD [Yadgar et al. 2015b], where the
second write is performed by programming pages containing invalid data on two different blocks in
parallel.

2.2. Multi-Level Cell (MLC) Flash

A flash chip is built from floating-gate cells whose state depends on the number of electrons they
retain. Writing is done byprogrammingthe cell, increasing thethreshold voltage (Vth) required to
activate it. Cells are organized in blocks, which are the unit of erasure. Blocks are further divided
into pages, which are the read and program units.

Single-level cells (SLC) support two voltage levels, mapped to either 1 (in the initial state) or
0. Thus, SLC flash is a classic write-once memory, where pagescan be reused by programming
some of their 1’s to 0’s. We refer to programming without prior erasure asreprogramming. Multi-
level cells (MLC) support four voltage levels, mapped to 11 (in the initial state), 01, 00 or 10.
This mapping, in which a single bit is flipped between successive states, minimizes bit errors if the
cell’s voltage level is disturbed. The least and most significant bits represented by the voltage levels
of a multi-level cell are mapped to two separate pages, thelow pageandhigh page, respectively.
These pages can be programmed and read independently. However, programming must be done
in a certain order to ensure that all possible bit combinations can be read correctly. Triple-level
cells (TLC) support eight voltage levels, and can thus storethree bits. Their mapping schemes and
programming constraints are similar to those of MLC flash. Wefocus our discussion on MLC flash,
which is the most common technology in SSDs today.

Figure 1 depicts a normal programming order of the low and high bits in a multi-level cell. The
cell’s initial state is the erased (ER) state corresponding to 11. The low bit is programmed first:
programming 1 leaves the cell in the erased state, while programming 0 raises its level and moves
it to a temporary state.1 Programming the high bit changes the cell’s state accordingto the state it
was in after the low bit was programmed, as shown in the bottompart of the figure. We discuss the
implications of this mapping scheme on page reuse in the following section.

Bit errors occur when the state of the cell changes unintentionally, causing a bit value to flip.
The reliability of a flash block is measured by itsbit error rate (BER)—the average number of bit
errors per page. The high voltage applied to flash cells during repeated program and erase operations
gradually degrades their ability to retain the applied voltage level. This causes the BER to increase
as the block approaches the end of its lifetime, which is measured in program/erase (P/E) cycles.

Bit errors in MLC flash are due mainly toretention errorsandprogram disturbance[Cai et al.
2013]. Retention errors occur when the cell’s voltage levelgradually decreases below the boundaries
of the state it was programmed to. Program disturbance occurs when a cell’s state is altered during
programming of cells in a neighboring page. In the followingsection, we discuss how program
disturbance limits MLC page reuse, and evaluate the effectsof reusing a block’s pages on its BER.

1Partially programming the high bit in the temporary state isdesigned to reduce program disturbance.
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Table II. Evaluated flash chip characteristics

A16 A27 B16 B29 C19 D35
Feature size 16nm 27nm 16nm 29nm 19nm 35nm
Page size 16KB 8KB 16KB 4KB 16KB 8KB
Pages per block 256 256 512 256 256 128
Spare area (%) 10.15 7.81 11.42 5.47 7.81 3.12
Lifetime (T) 3K 5K 10K 10K 3K NA

A, B, C and D represent different manufacturers. The D35 chipwas examined
in a previous study, and is included here for completeness.

Error correction codes(ECC) are used to correct some of the errors described above.The redun-
dant bits of the ECC are stored in each page’sspare area. The number of bit errors an ECC can
correct increases with the number of redundant bits, chosenaccording to the expected BER at the
end of a block’s lifetime [Zhao et al. 2013].

Write requests cannot update the data in the same place it is stored, because the pages must
first be erased. Thus, writes are performedout-of-place: the previous data location is marked as
invalid, and the data is written again on a clean page. Theflash translation layer (FTL)is the
SSD firmware component responsible for mapping logical addresses to physical pages. We discuss
relevant components of the FTL further in Section 4.

3. FLASH RELIABILITY

Flash chips do not support reprogramming via their standardinterfaces. Thus, the implications of
reprogramming on the cells’ state transitions and durability cannot be derived from standard docu-
mentation, and require experimentation with specialized hardware. We performed a series of exper-
iments with several state-of-the-art flash chips to evaluate the limitations on reprogramming MLC
flash pages and the implications of reprogramming on the chip’s lifetime, reliability, and energy
consumption.

3.1. Flash Evaluation Setup

We used five NAND flash chips from three manufacturers and various feature sizes, detailed in
Table II. We also include in our discussion the observationsfrom a previous study on a chip from a
fourth manufacturer [Margaglia and Brinkmann 2015]. Thus,our analysis covers the four existing
flash vendors.

Chip datasheets include the expected lifetime of the chip, which is usually the maximal number
of P/E cycles that can be performed before the average BER reaches10−3. However, cycling the
chips in a lab setup usually wears the cells faster than normal operation because they program and
erase the same block continuously. Thus, the threshold BER is reached after fewer P/E cycles than
expected. In our evaluation, we consider the lifetime (T) of the chips as the minimum of the expected
number of cycles, and the number required to reach a BER of10−3.

Our experiments were conducted using the SigNASII commercial NAND flash tester [Sig 2014].
The tester allows software control of the physically programmed flash blocks and pages within
them. By disabling the ECC hardware we were able to examine the state of each cell, and to count
the bit errors in each page.

Some manufacturers employscramblingwithin their chip, where a random vector is added to the
logical data before it is programmed. Scrambling achieves uniform distribution of the flash cell lev-
els, thus reducing various disturbance effects. In order tocontrol the exact data that is programmed
on each page, we bypass the scrambling mechanism on the chipsthat employ it.

Our evaluation excludes retention errors, which occur whenconsiderable time passes between
programming and reading a page. Reprogramming might increase the probability of retention errors
because it increases the cell’sVth. However, since it is intended primarily for short-lived data, we
believe it will not cause additional retention errors.
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Fig. 2. State transitions in the three reprogramming schemes. A thin arrow represents an attempted transition. A dashed
arrow represents a failed transition, with a bold arrow representing the erroneous transition that takes place instead. Only
LLH reprogramming achieves all the required transitions for page reuse without program disturbance.

3.2. Limitations on reprogramming

Flash cell reprogramming is strictly limited by the constraint thatVth can only increase, unless the
block is erased. At the same time, WOM encoding ensures that reprogramming only attempts to
change the value of each bit from 1 to 0. However, additional limitations are imposed by the scheme
used for mapping voltage levels to bit values, and by the needto avoid additional program distur-
bance. Thus, page reuse must follow areprogramming schemewhich ensures that all reprogrammed
cells reach their desired state.

We use our evaluation setup to examine which state transitions are possible in practice. We include
all “allowed” transitions, including those that are not expected to change the bit value. The reason
is that flash cells are programmed in page granularity, so bits that should not be modified are still
reprogrammed with their existing value. We consider four different reprogramming schemes. In the
first three schemes, a block is fully programmed before beingreprogrammed. In the fourth scheme,
only the low pages of the block are initially programmed. Of these schemes, we identify the two
that are applicable in a practical FTL design.

Let us assume that the entire block’s pages have been programmed before they are reused. Thus,
the states of the cells are as depicted in the bottom row of Figure 1. In thelow-high-low (LHL)repro-
gramming scheme, depicted in Figure 2(a), we attempt to program the low bit from this state. The
thin arrows depict possible desired transitions in this scheme. Two such transitions are impossible,
resulting in an undesired state (depicted by the bold arrow). In thelow-high-high (LHH)reprogram-
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ming scheme, depicted in Figure 2(b), the high page is reprogrammed in a fully used block. Here,
too, two state transitions fail.

A possible reason for the failed transitions in the LHL scheme is that the voltage applied by the
command to program the low bit is not high enough to raiseVth from P1 to P2 and fromER to
P3.2 The transition fromP3 to P2 in the LHH scheme is impossible, because it entails decreasing
Vth. Another problem in the LHH scheme occurs in stateP1 when we attempt to leave the already
programmed high bit untouched. Due to an unknown disturbance, the cell transitions unintentionally
to P2, corrupting the data on the corresponding low page.

Three of these problematic transitions can probably be madepossible with proper manufacturer
support—the transition fromP3 to P2 in the LHH scheme would be possible with a different map-
ping of voltage levels to states, and the two transitions in the LHL scheme could succeed if a higher
voltage was applied during reprogramming. While recent technology trends, such as one-shot pro-
gramming and 3D V-NAND [Im et al. 2015], eliminate some constraints on page programming,
applying such architectural changes to existing MLC flash might amplify program disturbance and
increase the BER. Thus, they require careful investigationand optimization.

The mapping of voltage levels to two-bit values in multi-level cells implies that in some
cases, 0’s may be overwritten by 1’s. Specifically, a transition from P1 or P2 to P3 changes
the high bit from 0 to 1. Motivated by this observation, we examine a third reprogramming

Table III. Modified WOM Code

Data bits 1st write 2nd write
00 000 111
10 100 011
01 010 101
11 001 110

scheme that uses a modified WOM encoding, presented in Ta-
ble III. The initial state of each bit is 1. In the first write, 1’s are
only overwritten by 0’s, according to the original WOM require-
ment. However, in the second write, 0’s are only overwrittenby
1’s. The resulting code is the complement of the code in TableI.
For example, if the first message to be stored is 10, then 100 is
written, programming the second and the last cell. If the second
message is 01, then 101 is written by reprogramming the last
cell to be 1.

Figure 2(c) shows the resultinglow-high-high (LHH) reprogramming scheme. Its first drawback
is that it corrupts the low pages, so a high page can be reused only if the data on the low page is
either invalid, or copied elsewhere prior to reprogramming. Such reprogramming also significantly
increased the BER of the high pages adjacent to the reprogrammed one.This could be a side effect
of the voltage change required for the transition fromP1 to P3, which is higher than that required
for transitioning between adjacent states.Thus, this scheme allows safe reprogramming of only one
out of two high pages. We address this limitation in our FTL design in Section 4.3.

Interestingly, reprogramming the high bits in chips from manufacturer A returned an error code
and did not change their state, regardless of the attempted transition. A possible explanation is that
this manufacturer might block reprogrammingof the high bitby some internal mechanism to prevent
the corruption described above.

The problems with the LHL and LHH schemes motivated the introduction of thelow-low-high
(LLH) reprogramming scheme by Margaglia and Brinkmann [Margaglia and Brinkmann 2015].
Blocks in this scheme are programmed in two rounds. In the first round only the low pages are
programmed. The second round takes place after most of the low pages have been invalidated. All
the pages in the block are programmed in order, i.e., a low page is reprogrammed and then the
corresponding high page is programmed for the first time, before moving on to the next pair of
pages.

We validated the applicability of the LLH scheme on the chipsof manufacturers A and B. Fig-
ure 2(d) depicts the corresponding state transitions of thecells. Since both programming and repro-
gramming of the low bit leave the cell in either the erased or temporary state, there are no limitations
on the programming of the high page in the bottom row. This scheme works well in all the chips we

2The transition fromER to P3 actually succeeded in the older, D35 chip [Margaglia and Brinkmann 2015]. All other
problematic transitions discussed in this section failed in all the chips in Table II.
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Table IV. Expected reduction in lifetime due to increased Vth

Num. of PLLH cycles A16 A27 B16 B29 C19
T (= entire lifetime) 32% 29% 20% 30.5% 36%

0.6 × T 8% 9% 8% 9% 15.7%
0.4 × T 6% 6.5% 6% 6.5% 12.7%
0.2 × T 2% 3% 3% 3.5% 14.2%

examined. However, it has the obvious drawback of leaving half of the block’s capacity unused in
the first round.

The LLH andLHH reprogramming schemes are both applicable on the chips we examined,
demonstrating that page reuse in MLC flash is possible. At thesame time, both schemes can utilize
only half of the pages, each presenting a different tradeoff: theLHH scheme disturbs the high page
adjacent to the reprogrammed one, limiting reuse even further, while the LLH scheme requires that
some of the block’s capacity be reserved in advance. We examine the long term effects of each of
these schemes as well as the implications of their specific limitations on FTL design in the following
sections.

3.3. Average Vth and BER

In analyzing the effects of reprogramming on a chip’s durability, we distinguish betweenshort-term
effects on the BER due to modifications in the current P/E cycle, andlong-termwear on the cell,
which might increase the probability of errors in future cycles. With this distinction, we wish to
identify a safeportion of the chip’s lifetime, during which the resulting BER as well as the long
term wear are kept at an acceptable level.

Reprogramming increases the probability that a cell’s value is 0. Thus, the averageVth of reused
pages is higher than that of pages that have only been programmed once. A higherVth increases
the probability of a bit error. The short-term effects of increasedVth include increased program
disturbance and retention errors, which are a direct resultof the currentVth of the cell and its
neighboring cells. The long-term wear is due to the higher voltage applied during programming and
erasure.

Our first set of experiments evaluated the short-term effects of increasedVth on a block’s BER.
In each chip, we performedT regular P/E cycles writing random data on one block, whereT is the
lifetime of the chip as detailed in Table II. We repeated thisprocess with different distributions of 1
and 0.P0.5, in which the probability of a bit to be 0 is 0.5, is our baseline. WithPLLH the probability
of 0 was 0.75 and 0.5 in the low and high page, respectively. This corresponds to the expected
probabilities after LLH reprogramming. We read the block’scontent and recorded the BER after
every P/E cycle. We repeated each experiment on six blocks, and calculated the average. In all our
experiments, we considerP0.5 as our baseline.

The implication of an increase in BER depends on whether it remains within the error correction
capabilities of the ECC. A small increase in BER at the end of ablock’s lifetime might deem it
unusable, while a large increase in a ‘young’ block has little practical effect. For a chip with lifetime
T, let BERT be the BER of afterT regular P/E cycles, and letT′ be the number of cycles required
to reach aBERT in this experiment. ThenT − T′ is thelifetime reductioncaused by increasingVth.

Our results, summarized in Table IV, were consistent in all the chips we examined.3 Programming
with PLLH, which corresponds to a higher averageVth, shortened the chips’ lifetime considerably,
by 20–36%.

In the next set of experiments, we evaluated the long-term effects ofVth. Each experiment had
two parts: we programmed the block withPLLH in the first part, for a portion of its lifetime, and
with P0.5 in the second part, which consists of the remaining cycles. Thus, the BER in the second
part represents the long-term effect of the biased programming in the first part. We varied the length
of the first part between 20%, 40% and 60% of the block’s lifetime. Figure 3 shows the BER of

3The complete set of graphs for chips from manufacturers A andB in all the experiments described in this section is available
in our technical report [Yadgar et al. 2016].
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Fig. 3. Effects of increasedVth on the A16 chip.
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Fig. 4. Short-term effects of LLH reprogramming on the A16 chip.

Table V. Expected reduction in lifetime due to LLH reprogram-
ming

Num. of LLH cycles A16 A27 B16 B29 C19
T (= entire lifetime) 38% 59.5% 99% 31% 40%

0.6× T 8.5% 8% 7% 8.5% 22%
0.4× T 5.2% 6% 5% 5.5% 20%
0.2× T 1% 2.5% 3% 3% 1%

blocks in the A16 chip (the graphs for the different chips were similar), with the lifetime reduction
of the rest of the chips in Table IV.

Our results show that the long-term effect of increasingVth is modest, though nonnegligible—
increasingVth early in the block’s lifetime shortened it by as much as 3.5%,6.5% and 9%, with
increasedVth during 20%, 40% and 60% of the block’s lifetime, respectively, for the chips from
manufacturers A and B. The lifetime of chip C19 was shortenedconsiderably, by 12%–16%.

3.4. LLH Reprogramming and BER

Reprogramming schemes use blocks differently from regularprogramming. First, they increases the
averageVth of reused pages, the effects of which were demonstrated above. Second, they program
the block’s pages in an order different from the one intendedby the manufacturer. To evaluate the
weight of each effect, we measure the effects of reprogramming and compare them to the effects of
regular programming with increasedVth. In the third set of experiments, we measured the effects
of reprogramming by performingT LLH reprogramming cycles on blocks in each chip. Figure 4
shows the BER results for the A16 chip, and Table V summarizesthe expected lifetime reduction
for the remaining chips.

In all the chips, the BER in the first round of programming the low pages (L1) was extremely low,
thanks to the lack of interference from the high pages. In thesecond round, however, the BER of both
low (L2) and high (H) pages was higher than the baseline, and resulted in a reduction of lifetime
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Fig. 5. Long-term effects of LLH reprogramming on the A16 chip.

greater than that caused by increasingVth. We believe that a major cause of this difference are
optimizations tailored for the regular LH programming order [Park et al. 2008]. These optimizations
are more common in recent chips, such as the B16 chip.

In the fourth set of experiments, we evaluated the long-termeffects of LLH reprogramming. Here,
too, each experiment was composed of two parts: we programmed the block with LLH reprogram-
ming in the first part, and withP0.5 and regular programming in the second part. We varied the
length of the first part between 20%, 40% and 60% of the block’slifetime. Figure 5 shows the BER
results for the A16 chip, and Table V summarizes the expectedlifetime reduction for the remaining
chips.

We observe that the long-term effects of reprogramming are modest, and comparable to the long-
term effects of increasingVth on each chip. This supports our assumption that the additional short-
term increase in BER observed in the previous set of experiments is not a result of the actual re-
programming process, but rather of the mismatch between theprogramming order the chips are
optimized for and the LLH reprogramming scheme. This is especially evident in the B16 chip, in
which the BER during the first part was high above the limit of10−3, but substantially smaller in
the second part of the experiment.

Thus, schemes that reuse flash pages only at the beginning of the block’s lifetime can increase
its utilization without degrading its long-term reliability. Moreover, in all but the B16 chips, LLH
reprogramming in the first 40% of the block’s lifetime resulted in BER that was well within the
error correction capabilities of the ECC. We rely on this observation in our FTL design in Section 4.

We note, however, that the variance between the chips we examined is high, and that short and
long-term effects do not depend only on the feature size. Forexample, the A16 chip is “better”
than the A27 chip, but the B16 chip is “worse” than the B29 chip. Thus, the portion of the block’s
lifetime in which its pages can be reused safely depends on the characteristics of its chip. The FTL
must take into account the long-term implications of reuse on the chips it is designed for.

3.5. LHH Reprogramming and BER

We conducted a similar evaluation of the short and long term effects ofLHH reprogramming. To
fully understand the implications of the disturbance caused by reprogramming the high page, we
define the following variations of theLHH scheme. InLHH-Skip-X reprogramming, the high pages
are reprogrammed, skipping everyX high pages. Thus,LHH-Skip-0 is the basicLHH scheme ex-
amined in Figure 2(c). InLHH-Skip-1 andLHH-Skip-2, reprogramming is applied to one of every
two or three high pages, respectively. Wear leveling withineach block is obtained by alternating
the skipping pattern in subsequent P/E cycles. For example,in LHH-Skip-1, the even and odd high
pages are reprogrammed in even and odd cycles, respectively.

In the fifth set of experiments, we measure the short-term effects of three variations of theLHH
reprogramming scheme. The BER of the high pages in all our experiments was higher than that of
the low pages. In this specific set of experiments, the BER of the high pages was more indicative of
the wear of the block’s cells than the overall BER (of low and high pages combined). The reason is
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Table VI. Expected reduction in lifetime due to LHH reprogramming

LHH cycles LHH-Skip-1 cycles LHH-Skip-2 cycles Baseline B29 C19
T 99.99% 99.96%

T 12.5% 62.7%
T 5% 52.54%

0.8× T 0.2 × T 12.7%
0.6× T 0.4 × T 15% 8.5%
0.4× T 0.6 × T 7.5% 10.2%
0.2× T 0.8 × T 6%

0.8× T 0.2 × T 5% 9.3%
0.6× T 0.4 × T 4.5% 4.2%
0.4× T 0.6 × T 4% 5.1%
0.2× T 0.8 × T 3.4%

0.6× T 0.2× T 0.2 × T 12%
0.4× T 0.4× T 0.2 × T 13.5%
0.2× T 0.6× T 0.2 × T 10.5%
0.2× T 0.4× T 0.4 × T 6%
0.2× T 0.2× T 0.6 × T 4%
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Fig. 6. Effects ofLHH reprogramming variations on the B29 chip.

that during reprogramming, only the high pages hold valid data, while the low pages are inevitably
corrupted. Thus, in the following discussion, the BER of thebaseline is represented by the BER of
its high pages (H), and the BER ofLHH is represented by the BER of the high pages when they are
reprogrammed (H2). The BER ofH2 in each cycle is computed only for the high pages that were
actually reprogrammed in this cycle.

Figure 6 shows the BER ofLHH-Skip-0, LHH-Skip-1, andLHH-Skip-2 on the B29 chip. The
expected lifetime reduction for the B29 and C19 chips are summarized in Table VI. As we expected,
the BER ofLHH-Skip-0 is always higher than10−3—reprogramming each high page significantly
increased the BER of the high page adjacent to it. However, the BER ofLHH-Skip-1 remains below
this threshold for a significant amount of the block’s lifetime—as much as 87% in the B29 chip.
LHH-Skip-2 can be used safely even longer, for up to 95% of theblock’s lifetime, but has the
obvious disadvantage of reusing less of the page’s capacity. The BER ofLHH-Skip-2 is lower than
that of the baseline in the beginning of the chip’s lifetime,because it is measured here only for the
reprogrammed high pages, which are far enough apart to avoidprogram disturbance.

Our sixth set of experiments measures the long term effects of LHH reprogramming. As before,
each experiment was composed of two parts: we programmed theblock withLHH-Skip-1 orLHH-
Skip-2 in the first part, and with regular programming in the second part. We varied the length of
the first part between 20% and 80%, depending on the results ofeach scheme on each chip in the
previous set of experiments. Figure 7 shows the BER results for the B29 chip withLHH-Skip-1 in
the first part, and Table VI summarizes the expected lifetimereduction in the remaining experiments.
These results demonstrate the advantage of theLHH-Skip-X schemes: although at most half of the
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Fig. 8. Long term effects of combinedLHH-Skip-1 andLHH-Skip-2 reprogramming on the B29 chip.

high pages can be reused in each cycle, skipping the remaining pages alleviates the long term wear
caused by reprogramming. As a result, these schemes can be applied for a considerably longer
portion of the block’s lifetime compared to LLH reprogramming.

In the final set of experiments we attempted to maximize the reuse potential of the B29 chip, in
which the difference betweenLHH-Skip-1 andLHH-Skip-2 was substantial. Each experiment was
composed of three parts: we programmed the block withLHH-Skip-1 andLHH-Skip-2 in the first
and second parts, respectively, and with regular programming in the last part. Figure 8 shows the
BER results where the length of the first and second parts was varied and the length of the last part
was fixed at 20%. The expected lifetime reduction for additional combinations is summarized in
Table VI. Comparing figures 7 and 8 demonstrates that the additional LHH-Skip-2 in the second
part of the experiment has only a minor effect on the lifetimereduction.

3.6. Energy consumption

Flash read, write and erase operations consume different amounts of energy, which also depend on
whether the operation is performed on the high page or on the low one, and on its data pattern. We
examined the effect of LLH reprogramming on energy consumption by connecting an oscilloscope
to the SigNAS tester. We calculated the energy consumed by each of the following operations on the
A16 chip: an erasure of a block programmed withPLLH andp=0.5, reading and writing a high and a
low page, reprogramming a low page, and programming a high page on a partially-used block. This
part of our evaluation is restricted to LLH reprogramming because reprogramming the high page is
disabled on chips from manufacturer A.

To account for the transfer overhead of WOM encoded data, ourmeasurements of read, program
and reprogram operations included the I/O transfer to/fromthe registers. Our results, averaged over
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Table VII. Energy consumed by flash operations on
chip A16

Operation Baseline (µ J) LLH (µ J)
Erase 192.79 186.49
Read (L) 50.37 50.37
Read (H) 51.25 51.25
Program (L1) 68.18 68.55
Reprogram (L2) NA 63.04
Program (H) 195.65 180.85
Average logical read 50.81 60.79
Average logical write 132.64 145.71

three independent measurements, are summarized in Table VII. We also present the average energy
consumption per read or write operation with baseline and with LLH reprogramming, taking into
account the size of the programmed data, the reading of used pages for supplying the invalid data as
input to the WOM encoder, and the number of pages that can be written before each erasure.

These results show that page reuse consumes more overall energy than the baseline. This is in
contrast to previous studies showing possible energy savings. These studies assumed that the energy
is proportional to the number of programmedcells, which is equivalent in a first and in a second
write [Grupp et al. 2009; Yadgar et al. 2015b]. However, our hardware evaluation shows that the
number of reprogrammedpagesis the dominant factor in energy consumption. While reprogram-
ming a lower page consumes less energy than the average logical write in the baseline, the use of
WOM encoding entails an extra read and page reprogram for each logical write. The low energy
consumption of the saved erasures does not offset the additional energy consumed by those opera-
tions. We note, however, that when page reuse reduces the internal writes by the FTL, some energy
savings may result.

The possibility of energy savings thus depends strongly on the way reprogramming is applied
within the FTL. The evaluation of an FTL based on LLH reprogramming in our preliminary study
showed that the need to reserve half of the block’s capacity prevented it from reducing the amount
of internal writes [Margaglia et al. 2016]. Examining the energy savings possible withLHH repro-
gramming remains part of our future work. Nevertheless, energy savings could be achieved more
easily by FTLs that do not rely on WOM codes for the correctness of the reprogrammed data [Kaiser
et al. 2013; Margaglia and Brinkmann 2015]. Such special-purpose designs are outside the scope of
this study.

4. FTL DESIGN

Following our lessons from Section 3, we describe the general design principles for areprogram-
ming FTL—an FTL that reuses flash pages using a specified reprogramming scheme. We assume
such an FTL would run on the SSD controller, and utilize the physical page and block operations
supported by the flash controller. Thus, it shares the following basic concepts with the standard FTL
and SSD.

To accommodate out-of-place writes, the physical storage capacity of the drive is larger than its
exported logical capacity. The drive’soverprovisioningis defined asT−U

U , whereT andU represent
the number of physical and logical blocks, respectively [Desnoyers 2013]. Typical values of over-
provisioning are 7% and 28% for consumer and enterprise class SSDs, respectively [Smith 2013].

Whenever the number of clean blocks drops below a certain threshold,garbage collectionis
invoked. Garbage collection is typically performedgreedily, picking the block with the minimum
valid count (the lowest number of valid pages) as the victim forcleaning. The valid pages are
moved—read and copied to another available block, and then the block is erased. These additional
internal writes, referred to aswrite amplification, delay the cleaning process, and require, eventually,
additional erasures. Write amplification does not accurately represent the utilization of drives that
reuse pages for WOM encoded data, since some redundancy mustalways be added to the logical
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data to enable second writes [Yaakobi et al. 2015; Yadgar et al. 2015a]. Thus, instead of deriving the
number of erasures performed by the FTL from its write amplification, we measure them directly.

4.1. Reprogramming FTL

The design of a reprogramming FTL must address three key issues: (1) the specific reprogramming
scheme used, including the resulting block states and the transitions between them, (2) the encod-
ing scheme used for reprogrammed pages, and (3) the decisionof which logical pages are written
as second writes, i.e., reprogrammed on previously writtenphysical pages. We elaborate on the
application of the LLH andLHH schemes to FTL design in the following subsections.

WOM encoding. When WOM codes are employed for reusing flash pages, the FTL isresponsible
for determining whether a logical page is written in a first ora second write, and for recording
the required metadata. The choice of WOM code determines thedata written on clean physical
pages, and the data written on them when they are reprogrammed. The encoding scheme in the
reprogramming FTLs we present below is similar to that of ReusableSSD [Yadgar et al. 2015b].
Data on clean pages is written as is, without storage or encoding overheads. Data written as a second
write on reprogrammed pages is encoded with a Polar WOM code that requires two physical pages
to store the encoded data of one logical page [Burshtein 2015; Burshtein and Strugatski 2013]. This
WOM implementation has a 0.25% encoding failure rate.

We note that the mathematical properties of WOM codes ensurethey can be applied to any
data pattern, including data that was previously scrambledor compressed. In fact, WOM encoding
also ensures an even distribution of zeroes throughout the page, which is one of the objective of
scrambling.

While manufacturers have increased the flash page size (see Table II), the most common size used
by file systems remains 4KB. Our reprogramming FTL design distinguishes between the logical
page used by the host and some larger physical page size. Thus, the FTL maps several logical pages
onto each physical page. This allows it to program the encoded data for a second write on one
physical page. In the rest of this section we assume that the physical page size is exactly twice the
logical page size. We note that the changes required in the design if the physical pages are even
larger are straightforward.

If the physical and logical page sizes are equal, a reprogramming FTL can utilize the multi-plane
command that allows programming two physical pages in parallel on two different blocks, as in the
ReusableSSD design. In both approaches, the latency required for reading or writing an encoded
logical page on a second write is equal to the latency of one flash page write.

As in the design of ReusableSSD [Yadgar et al. 2015b], our reprogramming FTLs address the
0.25% probability of encoding failure by writing the respective logical page as a first write on a
clean block, and prefetch the content of physical pages thatare about to be rewritten to avoid the
latency of an additional read. Pages are reprogrammed only in the safe portion of their block’s
lifetime (the first 40% in all but one of the chips we examined), thus limiting the long-term effect of
reprogramming to an acceptable level.

Hot and cold data separation. Workloads typically exhibit a certain amount of skew, combining
frequently updatedhot data with infrequently writtencold data. Separating hot and cold pages has
been demonstrated as beneficial in several studies [Desnoyers 2014; Im and Shin 2010; Jimenez
et al. 2014; Stoica and Ailamaki 2013]. Previous studies also showed that second writes are most
beneficial for hot pages, minimizing the time in which the capacity of reused blocks is not fully
utilized [Margaglia and Brinkmann 2015; Odeh and Cassuto 2014; Yadgar et al. 2015a; Yadgar
et al. 2015b]. Thus, our reprogramming FTLs separate hot andcold pages into different logical
partitions, as described below.

The classification of hot and cold pages is orthogonal to the design of the FTL, and can be done
using a variety of approaches [Chiao and Chang 2011; Im and Shin 2010; Min et al. 2012; Stoica
and Ailamaki 2013]. We describe the classification schemes used in our evaluations in Section 6.
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Fig. 9. Block life cycle in a Low-Low-High FTL.

4.2. Low-Low-High FTL

Blocks in a Low-Low-High FTL cycle between four states, as depicted in Figure 9. In the initial,
cleanstate all the cells are in the erased state,ER. If all the pages are programmed (write L1 H),
the block reaches theusedstate. Alternatively, if only the low pages are used (write L1), the block
reaches thepartially-usedstate. A partially-used block can be reused, in which case the FTL will
reprogram all or some of the low pages and all the high pages (write L2 H), transitioning the block
to the reusedstate. Alternatively, the FTL can program the high pages andleave the low pages
untouched (write H), thus transitioning the block to the used state. Used and reused blocks return
to the clean state when they are erased.

The choice of state transition is determined by the conditions depicted in Figure 9. The conditions
that determine when topartially use, useor reusea block, as well as the encoding scheme used for
reprogrammed pages, are in turn determined by the specific FTL design. We next describeLLH-
FTL—our Low-Low-High FTL design.

In LLH-FTL, we write hot data on partially-used and reused blocks, and cold data on used blocks.
Hot data on partially-used blocks is invalidated quickly, maximizing the benefit from reusing the low
pages they are written on. Reused blocks store pages in first as well as in second writes. Neverthe-
less, we use them only for hot data, in order to maintain the separation of hot pages from cold
ones.

Partially-use, use and reuse conditions. The number of partially-used blocks greatly affects the
performance of a Low-Low-High FTL. Too few mean that the blocks will be reused too soon, while
they still contain too many valid low pages, thus limiting the benefit from reprogramming. Too many
mean that too many high pages will remain unused, reducing the available overprovisioned space,
which might increase internal page moves. The three conditions in Figure 9 control the number
of partially-used blocks: if the partially-use condition does not hold, a clean block is used with
regular LH programming. In addition, the FTL may define a use condition, which specifies the
circumstances in which a partially-used block is reclaimed, and its high pages will be written without
rewriting the low pages. Finally, the reuse condition ensures efficient reuse of the low pages. The
FTL allows partially-used blocks to accumulate until the reuse condition is met.

LLH-FTL allows accumulation of at mostthresholdpu partially-used blocks. This threshold is
updated in each garbage collection invocation. An increasein the valid count of the victim block
compared to previous garbage collections indicates that the effective overprovisioned space is too
low. In this case the threshold isdecreased. Similarly, a decrease in the valid count indicates that
page reuse is effective in reducing garbage collections, inwhich case the threshold isincreased
to allow more reuse. Thus, the partially-use and reuse conditions simply compare the number of
partially-used blocks to the threshold. To maintain the separation between hot and cold pages, LLH-
FTL does not utilize the use condition.

In our preliminary study [Margaglia et al. 2016], we implemented and evaluated LLH-FTL on the
OpenSSD Jasmine board [Ope 2015] with several synthetic andreal world workloads. The results
of this evaluation are tightly coupled with some additionallimitations imposed by the high level
SSD design. Our analysis in this work is focused on the low-level flash characteristics, and thus we
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Fig. 10. Block life cycle in aLow-High-High FTL.

refer the reader to our earler publication for the detailed results. For completeness, we summarize
below our results and conclusions from the system-level evaluation.

With 28% overprovisioning, LLH-FTL successfully reduced the number of erasures according
to the amount of hot data in the workload. However, with low (7%) overprovisioning, reserving
partially-used blocks for additional writes was not as efficient for reducing erasures, and in some
cases it even increased the number of erasures instead. Thislimitation motivated the design of our
LHH-FTL which does not require any reservation, and is described in the following section.

Our performance measurements showed that even with high overprovisioning, and despite the
considerable reduction in erasures (and thus, garbage collection invocations), the average I/O re-
sponse time was almost unchanged. The reason is the high memory consumption of WOM encoded
logical pages, which reduced the efficiency of the write buffers on the OpenSSD board, and in-
creased the frequency of destaging to flash.When we applied the energy measurements described
in Section 3.6, we observed an increase in energy consumption which was proportional to the re-
duction in erasures. The reduction in erasures did not reduce the amount of internal data copying in
most of the workloads, and thus this reduction was not translated to time or energy savings.

4.3. Low-High-High FTL

Blocks in aLow-High-High FTL cycle between three states, as depicted in Figure 10. The clean and
the used states are equivalent to those states in a Low-Low-High FTL: all the cells of a clean block
are erased, and all the pages in a used page have been programmed once. A used block can be reused,
in which case the FTL will reprogram some of its high pages (write H2, skip X), transitioning the
block to the reused state. Alternatively, the FTL can erase the block, in which case it returns to the
clean state without being reused. Reused blocks return to the clean state when they are erased.

The most important difference compared to a Low-Low-High FTL is that in aLow-High-High
FTL, blocksalwaystransition from the clean to the used state, without going through the partially-
used state. The design is thus simplified to a single condition that determines the time in which a
block is reused. We assume that the skip value,X, is determined by the physical characteristics of
the underlying flash chip, as demonstrated in the previous section. Nevertheless, future advances
in flash technology may justify more complicated FTL designsthat optimize the reprogramming
scheme dynamically according to the condition of the chip and current as well as expected workload.

LHH-FTL—our Low-High-High FTL design—uses a greedy scheme to determinewhich pages
are reprogrammed in a reused block. Like previous designs,LHH-FTL does not move valid pages
from blocks before they are reused [Yadgar et al. 2015b; Margaglia and Brinkmann 2015]. It first
reprograms the first invalid high page whose corresponding low page is also invalid. This will cor-
rupt the low page, and may increase the BER in the adjacent high pages. It then skipsX high pages,
and continues to search for the next available high page, until the last page in the block is reached.
By skippingX pages after each reprogrammed page, and by reprogramming the block only at the
beginning of its lifetime, we ensure that the BER in the reprogrammed and in the skipped pages is
within the error-correction capabilities of the ECC.

Without the need to reserve partially-used blocks,LHH reprogramming is almost orthogonal
to other FTL design choices.LHH-FTL takes advantage of this property. Logical pages inLHH-
FTL are partitioned according to their temperature and written into the hot partition or the cold
one. Garbage collection and block state transitions take place separately within each partition. The
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size of the hot partition (and the cold one, respectively) can be dynamically adjusted by picking
a victim block from one partition and allocating it to the other partitions after it is erased. We
study the optimal allocation of blocks to partitions withinour theoretical framework in Section 5.
Approximating the optimal partitioning online can be done by tracking the update frequency in each
partition and adjusting the partition sizes to one of several sets of predetermined optimal values.

Table VIII. Example

High Low
P0: valid P1: —
P2: ⇐⇒ P3: —
P4: — P5: —
P6: — P7: valid
P8: valid P9: —
P10: valid P11: —
P12: ⇐⇒ P13: —
P14: — P15: valid

The reuse condition should strike a balance between two conflicting ob-
jectives. Reusing as many blocks as possible reduces the number of era-
sures. However, reusing a block that has little reprogramming potential
might harm performance. Consider the illustrative examplein Table VIII,
where a block of 16 pages is reused when 5 of them are still valid. There
is only one pair of high pages,P2 andP12, that can be reprogrammed with
LHH-Skip-1, increasing the valid count of the block from 5 to6. Such a
small increase means that the block is likely to be chosen again as victim
before any of its valid pages is invalidated. Before this block is erased, its
valid pages, including the one that was just reprogrammed, will be copied
to a clean block. This cancels any benefit from reuse, and possibly incurrs additional latency due
to copying. Alternatively, if the block is erased rather than reused, it can accommodate 11 (16-5)
writes before the next garbage collection.

Our theoretical framework provides the means to calculate the benefit, in terms of reduction
in erasures, from reusing blocks in each partition. Thus, the reuse condition should hold only if
this benefit is high enough to justify the potential increasein latency.LHH-FTL applies a simple
heuristic in which the reuse condition holds only in the hot partition, where the valid count of victim
pages is expected to be low.LHH-FTL relies on the theoretical framework also for choosing one
of two options in each garbage collection invocation: either to erase a reused block, or to reuse a
fully used block. This choice is done based on the minimum valid count of blocks in each of the two
states, as explained in detail in Section 5.2.LHH-FTL applies the theoretical results by periodically
adjusting a threshold value to one of several predeterminedoptimal values.

5. THEORETICAL ANALYSIS

In this section we describe a theoretical framework for evaluating the benefit of a general repro-
gramming FTL. Our analysis compares the expected number of erasures with and without repro-
gramming, and is composed of two steps. In the first step, we calculate the number of erasures for
a given garbage collection policy. In the next step, which isformulated as an optimization prob-
lem, we identify the policy that will result in the minimum number of erasures with and without
reprogramming.

Our analysis, like those in previous studies, is based on theconnection between the overprovi-
sioningand the number of block erasures. This connection depends on the garbage collection algo-
rithm used by the FTL and on the probability distribution of the page write requests in the workload.
It may also depend on the number of pages in each block, but we assume that this number is large
enough to avoid such dependency.

In the first part of our analysis, we consider uniform workloads: we assume that requests are
uniformly distributed over all the logical pages. We followthe observation from [Hu and Haas
2010] thatgreedy garbage collection—the policy that always chooses for cleaning the block with
the minimum number of valid pages—is optimal for uniform distribution. We also assume that
greedy garbage collection is invoked whenever there are no more clean blocks, without requiring
a minimum fraction of available blocks. The analysis with and without this requirement is simi-
lar [Desnoyers 2014]. In the second part of our analysis we relax the uniformity assumption, and
show how to apply our results to non-uniform workloads.

We use the following notations throughout this section.

(1) Every block hasZ pages. There areT physical pages in the SSD, andU logical pages, where
bothT andU are a multiple ofZ.
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(2) The overprovisioning isρ = (T −U)/U.α = U/T = 1/(ρ+ 1) is thestorage rate—the ratio
between logical data and physical storage. Our analysis is presented in terms of the storage rate
(α) rather the more commonly used overprovisioning (ρ), to allow for more natural formulation.
Note that the two are easily interchangeable using the definitions above.

(3) The write amplification isWA = P/L, whereL is the number of write requests of logical pages
andP is the number of resulting physical page writes. We also define L/Z to be the number of
logical block writes.

Reprogramming writes a block multiple times before it is erased. Thus, WA is not the right figure
of merit for a reprogramming FTL—it is possible to write morepages and yet erase less. Hence, we
introduce a new measure that better characterizes this behavior.

Definition 5.1. Theerasure factor EF in a flash memory system is the ratio between the number
of block erasuresE and the number of logical block writesL/Z. That is,

EF =
E

L/Z
.

Note that without reprogramming,EF = WA. In the rest of the section, we present an analysis of
the optimal erasure factor (EF) without reprogramming and with various reprogramming schemes.
The erasure factor is closely related towrites per erase(WE), an alternative measure proposed with
similar motivation [Yadgar et al. 2015a].WE is defined as the ratio between the number of logical
page writes and the number of block erasures. Thus, we getWE = L/E = Z/EF. In other words,
writes per erase are the inverse of the erasure factor, multiplied by the number of physical pages per
block.

5.1. Optimal Erasure Factor without Reprogramming

The relation between the write amplification and overprovisioning has received a significant atten-
tion in recent years due to its implication for the lifetime of flash memories, see e.g. [Desnoyers
2014; Hu and Haas 2010; Stoica and Ailamaki 2013]. Of the numerous works in this area, we con-
sider two recent studies which we believe give an accurate model of this analysis [Desnoyers 2014;
Stoica and Ailamaki 2013]. The proof given here is based uponthe analysis in these two studies
and we give it in completeness since its understanding is crucial to the results in the rest of this sec-
tion. We refer to the FTL that uses greedy garbage collectionand no reprogramming as thebaseline
system.

THEOREM 5.2. The number of block erasuresE and the erasure factorEF1(α) of the baseline
system are given by

E =
P

Z
=

L

Z(1 −α′)
, EFB(α) =

1

1 −α′
, (1)

whereα = α ′−1
ln(α ′)

, orα′ = −α · W
(

− 1
α e−1/α

)

, andW(x) is the LambertW function.

PROOF. For 0 ≤ i ≤ Z, let N(i) be a random variable corresponding to the number of blocks
with i valid pages, so∑Z

i=0 N(i) = T/Z. If we denote byY the expected number of valid pages
when a block is erased, then for0 ≤ i ≤ Y − 1, N(i) = 0, andN(Y) is relatively small enough.
We assume that the system is in a steady state and thus the expected value ofN(i) doesn’t change
over time4. According to this assumption, we also get that forY + 1 ≤ i ≤ Z,

iN(i) = C,

4These properties are taken from [Bux and Iliadis 2010; Desnoyers 2014] where this process is modeled as a Markov chain
and the number of blocks with a given number of valid pages is fixed for analysis purposes.
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for some constantC, or N(i) = (Y + 1)N(Y + 1)/i. Therefore, we get5

T/Z =
Z

∑
i=0

N(i) =
Z

∑
i=Y+1

N(i) =
Z

∑
i=Y+1

(Y + 1)N(Y + 1)/i

= (Y + 1)N(Y + 1)
Z

∑
i=Y+1

1

i

≈ (Y + 1)N(Y + 1)(ln(Z)− ln(Y))

= (Y + 1)N(Y + 1) ln(Z/Y).

We also have that

U =
Z

∑
i=0

iN(i) =
Z

∑
i=Y+1

iN(i) = (Z −Y)(Y + 1)N(Y + 1).

Together, we get that

(Y + 1)N(Y + 1) =
T/Z

ln(Z/Y)
=

U

Z −Y
,

or

α =
U

T
=

Z −Y

Z ln(Z/Y)
=

Y/Z − 1

ln(Y/Z)
=

α′ − 1

ln(α′)
.

whereα′ = Y/Z, and is given byα′ = −α · W
(

− 1
α e−1/α

)

.

Now, we deduce that for everyZ − Y logical page writes,Z physical pages are written. Hence,
P = L · Z

Z−Y = L
1−α ′ , and

E =
P

Z
=

L

Z(1 −α′)
, EFB(α) =

E

L/Z
=

1

1 −α′
.

The number of block erasures is simply given byE = L
Z · EF. Thus, for brevity, we will only

discuss the erasure factor.

5.2. Optimal Erasure Factor with Ideal Reprogramming

We begin our analysis of the erasure factor with reprogramming by considering an ideal reprogram-
ming scheme in which all the pages of a used block can be reprogrammed. We assume that the FTL
employs the WOM codes described in Section 4.1 for reusing flash pages. Thus, reprogramming
still requires two used physical pages for writing one logical page, to accommodate the overhead of
the WOM encoding.

This ideal FTL implements the following greedy garbage collection policy. Blocks are managed
in two queues according to their states: used or reused. The FTL is characterized by a parameter
0 ≤ γ1 ≤ 1. Let B1, B2 be the used and reused blocks with the minimum number of validlogical
pages, respectively. If the number of valid pages inB1 is at mostY1 = γ1 · Z then this block is
reused. Otherwise the blockB2 is physically erased and its valid pages are copied and written to an
available block. In other words, the reuse condition in thisFTL is always true, andγ1 determines
whether to pick a victim block for erasure or for reuse.

The value ofγ1 in the greedy policy which optimizes the number of erasures and the correspond-
ing erasure factor is found in the next theorem.

5There are better approximations of the differences betweentwo Harmonic series. However, the one we use here is preferable
for our analysis because it provides expressions that do notdepend on the number of pages per block.
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THEOREM 5.3. For any storage ratioα and greedy garbage collection with parameterγ1, the
erasure factor of the ideal FTL is given by

EF′
1(α,γ1) =

1

3/2 −γ1/2 −γ2
, (2)

whereγ2 satisfies the relation

γ2 = −αW

(

−
1

α
e

ln
(

1+γ1
2γ1

)

+
γ1−3

2α

)

. (3)

The optimal erasure factor is given by

EF1(α) = min
0≤γ1≤1

{

EF′
1 (α,γ1)

}

. (4)

PROOF. Let Y1 = γ1 · Z and let us denote byY2 the expected number of valid pages when a
block on a second write is physically erased and letγ2 = Y2/Z. We will determine the relation
between the values ofY1 andY2. For0 ≤ i ≤ Z, we denote byN1(i), N2(i) the number of blocks
with i valid pages on a first, second write, respectively. Notice first that fori ≤ Y1, N1(i) = 0 and
for i ≤ Y2, N2(i) = 0. Furthermore, when a block is moved from first to second write, it already
containsY1 valid pages. Since every logical page is written into 2 available pages, the total number
of logical pages this block can accommodate is at mostY1 + (Z − Y1)/2 = (Z + Y1)/2 and thus
N2(i) = 0 for i > (Z +Y1)/2.

We follow the same steps of the proof of Theorem 5.2 to have thefollowing equations:

(Y1 + 1)N1(Y1 + 1) = · · · = ZN1(Z)

=(Y2 + 1)N2(Y2 + 1) = · · · =
Z +Y1

2
N2(

Z + Y1

2
).

According to these definitions, a block can accommodateZ page writes on the first write and(Z −
Y1)/2 more page writes on the second write. Furthermore, on every block erasure,Y2 pages were
moved from a previously erased block, so the number of erasures is given by

E =
L + EY2

Z + (Z −Y1)/2

or

E =
L

3Z/2 − Y2 − Y1/2
=

L

Z
·

1

3/2 − γ1/2 − γ2
.

Hence, the erasure factor, as a function of bothγ1 andγ2 is 1/(3/2 −γ1/2 −γ2).
Following the rest of the steps from Theorem 5.2 we get

T/Z =
Z

∑
i=0

(N1(i) + N2(i)) =
Z

∑
i=Y1+1

N1(i) +

Z+Y1
2

∑
i=Y2+1

N2(i)

=
Z

∑
i=Y1+1

(Y1 + 1)N1(Y1 + 1)

i
+

Z+Y1
2

∑
i=Y2+1

(Y1 + 1)N1(Y1 + 1)

i

= (Y1 + 1)N1(Y1 + 1)





Z

∑
i=Y1+1

1

i
+

Z+Y1
2

∑
i=Y2+1

1

i





≈ (Y1 + 1)N1(Y1 + 1)

(

ln

(

Z

Y1

)

+ ln

(

Z + Y1

2Y2

))

= (Y1 + 1)N1(Y1 + 1) ln

(

1 +γ1

2γ1γ2

)

.
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As before, we also have

U =
Z

∑
i=0

iN1(i) +
Z

∑
i=0

iN2(i)

=
Z

∑
i=Y1+1

iN1(i) +

Z+Y1
2

∑
i=Y2+1

iN2(i)

= (3Z/2 −Y1/2 −Y2)(Y1 + 1)N1(Y1 + 1).

Thus we get

(Y1 + 1)N1(Y1 + 1) =
U

3Z/2 − Y1/2 − Y2
=

T/Z

ln
(

1+γ1
2γ1γ2

) ,

or

α =
3/2 −γ1/2 −γ2

ln
(

1+γ1
2γ1γ2

) ,

that is

γ2 = −αW

(

−
1

α
e

ln
(

1+γ1
2γ1

)

+
γ1−3

2α

)

. (5)

Hence, the erasure factor, as a function ofα andγ1 is

EF′
1(α,γ1) =

1

3/2 − γ1/2 − γ2
,

whereγ2 is given by (5). Lastly, since we can choose the thresholdγ1, the valueEF1(α) is achieved
by minimizing the value ofEF′

1(α,γ1) under the condition in (5).

5.3. Optimal Erasure Factor with Partial Reprogramming

Next, we generalize the analysis of the ideal reprogrammingFTL to realistic flash characteristics,
where only a subset of the pages in a block can be reprogrammed. We start by consideringLHH
reprogramming, assuming that all the high pages can be reprogrammed safely, and then consider
the general case of partial reprogramming.

THEOREM 5.4. For any storage ratioα and greedy garbage collection with parameterγ1, the
erasure factor of a reprogramming FTL based on theLHH scheme is given by

EF′
2(α,γ1) =

1

5/4 − γ1/4 − γ2
, (6)

whereγ2 satisfies the relation

γ2 = −αW

(

−
1

α
e

ln
(

1+3γ1
4γ1

)

+
γ1−5

4α

)

. (7)

The optimal erasure factor is given by

EF2(α) = min
0≤γ1≤1

{

EF′
2 (α,γ1)

}

. (8)

The proof is based on the following observation.Y1 out of theZ pages of a used block are
still valid when it is chosen for reuse. Due to the uniformityof the updates, half of these pages
are high. Thus,(Z − Y1)/2 high pages are available for reprogramming, resulting in a total of
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Fig. 11. The expected erasure factor (EF) for uniform workloads with and without reprogramming.

Y1 + (Z − Y1)/4 = (Z + 3Y1)/4 valid pages on the reused block. The proof of Theorem 5.4 is a
special case of Theorem 5.5 below and thus we skip its presentation.

We now consider the general case of partial reprogramming, where only one out of everyS pages
can be reprogrammed. In other words, we require a gap ofS − 1 pages between every two reused
pages, to avoid disturbance and allow safe reprogramming. Thus, for theLHH , LHH-Skip-1, and
LHH-Skip-2 schemes described in Section 3, we getS = 2, S = 4, andS = 6, respectively. We
generalize the results in Theorem 5.4 as follows.

THEOREM 5.5. For any storage ratioα and greedy garbage collection with parameterγ1, the
erasure factor of a reprogramming FTL with parameterS is given by

EF′
S(α,γ1) =

1

1 + 1
2S − γ1

2S − γ2

, (9)

whereγ2 satisfies the relation

γ2 = −αW

(

−
1

α
e

ln
(

1+(2S−1)γ1
2Sγ1

)

+
γ1−(2S+1)

2Sα

)

. (10)

The optimal erasure factor is given by

EFS(α) = min
0≤γ1≤1

{

EF′
S (α,γ1)

}

. (11)

The proof is based on the same observation, that the(Z − Y1) valid pages on the used block
are distributed uniformly. In the general case, we utilize only 1/S of them, resulting in a total of

Y1 + (Z − Y1)/2S = Z+(2S−1)Y1
2S valid pages on the reused block. We give the full proof of

Theorem 5.5 in the Appendix.
Figure 11 illustrates the benefit, in terms of the erasure factor, from the reprogramming schemes

examined in Section 3. These results demonstrate the gap between the theoretical benefit of the
ideal reprogramming scheme and the modest benefit achievable in practical designs that take into
account the limitations of current flash chips. For example,with an overprovisioning of 28%, the
erasure factor of the baseline, the ideal reprogramming andthe LHH-Skip-1 scheme is 2.5, 1.83,
and 2.3, respectively. This corresponds to a theoretical reduction in erasures of 27%, but an expected
practical reduction of only 8%.
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Remark5.6. The analysis of the reprogramming schemes can be extended further, to apply to
even more general restictions on reprogramming. Assume that A pages out of theZ pages in a used
block are available for reuse. Then, following the analysisin the proofs of Theorems 5.3– 5.5, the
erasure factor is given by

EF =
1

1 + A
2Z −γ2

,

and

γ2 = −αW






−

1

α
e

ln

(

γ1+
A

2Z
γ1

)

−
1+ A

2Z
α






.

One can verify that by settingA = Z − Y1 we get the result from Theorem 5.3 and forA = Z−Y1
2S

we get the result from Theorem 5.5.
This formulation allows us to address complex limitations like those implied by theLHH scheme.

With LHH , we can safely reprogram a high page only if its corresponding low page is also invalid.

In this case, the value ofA will be given byA = Z
2 −Y1 +

(

Y1
Z

)2
, and we getA

2Z ≈ 1
4 − γ1

2 . The

resulting erasure factor is slightly higher than the one obtained by Theorem 5.4, and is given by

EF ≈
1

5/4 −γ1/2 −γ2
,

and

γ2 = −αW

(

−
1

α
e

ln
(

1+2γ1
4γ1

)

+
2γ1−3

4α

)

.

5.4. Optimal Erasure Factor with Non-Uniform Workloads

Our assumption in Sections 5.1 and 5.2, that all the logical pages are updated with uniform distri-
bution, does not hold in many real workloads. We apply our theoretical framework to non-uniform
workloads following the approach used in previous studies:pages are grouped into several par-
titions according to theirtemperatures, which represent their update frequency [Desnoyers 2014;
Stoica and Ailamaki 2013]. Namely,hot pages are updated frequently, whilecold pages are rarely
updated. We first consider workloads with only two temperatures, hot and cold, and then generalize
our results for any number of temperatures.

We now assume that theU physical pages are distributed into hot and cold pages, where the
number of hot and cold pages isH = f U andC = (1 − f )U for some0 < f < 1, respectively.
Update requests access hot or cold pages with probabilityp and1 − p, respectively. We assume,
as in previous studies, that within each temperature pages are updated uniformly. Thus, within each
partition, the FTL will use the optimal greedy garbage collection policy obtained from our analysis
above, with the goal of minimizing the total number of block erasures.

TheT physical pages are divided into two partitions, one for the hot pages and the other for the
cold pages. Assume that the number of physical pages allocated for the hot pages isβT, so the
number of physical pages allocated for the cold pages is(1 −β)T. To ensure that in each partition
the number of physical pages is greater than the number of logical pages, we require that

βT > f U, (1−β)T > (1 − f )U,

which implies that

fα < β < 1 − (1 − f )α.

Our analysis provides the means to calculate the optimalβ for a given workload and overprovi-
sioning value.
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Table IX. Parameters for the baseline system with two tempera-
tures

Parameter Hot Partition Cold Partition

# physical pages Th = βT Tc = (1 −β)T
# logical pages Uh = f U Uc = (1 − f )U

# logical page writes Lh = pL Lc = (1 − p)L

storage rate αh = f U
βT = fα

β
αc =

(1− f )α
1−β

overprovisioning ρh =
βT− f U

f U ρc =
(1−β)T−(1− f )U

(1− f )U

erasure factor EFB,h = EFB(αh) EFB,c = EFB(αc)

# block erasures EB,h = Lh
Z · EFB,h EB,c =

Lc
Z · EFB,c

5.4.1. Analysis for The Baseline System. Desnoyers [Desnoyers 2014] provides a thorough anal-
ysis of the optimal partitioning for a workload with two temperatures and no reprogramming. Our
analysis for this special case is similar, and we formulate it here in its completeness in order to ex-
tend it to the general case of multiple partitions and reprogramming. We summarize the parameters
of each partition in Table IX. Our results are formulated as an explicit optimization problem, as in
the previous cases.

THEOREM 5.7. The erasure factor for the baseline system and non-uniform updates with pa-
rametersf and p is given by

EFB(α, f , p) = min
fα<β<1−(1− f )α

{EB(β)} ,

where

EB(β) = p · EFB

(

fα

β

)

+ (1 − p) · EFB

(

(1 − f )α

1 −β

)

.

PROOF. Our goal is to minimize the total number of erasures

EB =EB,h + EB,c =
Lh

Z
· EFB,h +

Lc

Z
· EFB,c

=
L

Z
(pEFB,h + (1 − p)EFB,c) =

L

Z
(pEFB(αh) + (1 − p)EFB(αc)) .

This is equivalent to finding the minimum value of

EB(β) = p · EFB

(

fα

β

)

+ (1 − p) · EFB

(

(1 − f )α

1 −β

)

,

in the rangefα < β < 1 − (1 − f )α.

Thus, the erasure factor within each partition is optimizedin order to reduce the combined erasure
factor. The optimalβ is the one that optimizes the average of the two values, weighted by the
frequency of updates in each partition.

5.4.2. Analysis for Reprogramming FTLs. For the generalization of Theorem 5.7 to reprogram-
ming FTLs we assume, as before, that all the used blocks are reused before they are physically
erased. This assumption contradicts practical experience, that reprogramming should be applied
only to hot data [Margaglia and Brinkmann 2015; Odeh and Cassuto 2014; Yadgar et al. 2015a;
Yadgar et al. 2015b]. However, it does hold when the number oferasures is the only objective,
disregarding the time spent on moving pages from victim blocks. We discuss this limitation of our
analysis further in Section 5.5 below. We summarize the parameters of each partition in Table X.

As in the previous case we get the following result.
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Table X. Parameters for a reprogramming FTL with parameter S with
two temperatures

Parameter Hot Partition Cold Partition

# physical pages Th = βT Tc = (1 − β)T
# logical pages Uh = f U Uc = (1 − f )U

# logical page writes Lh = pL Lc = (1 − p)L

storage rate αh = fα
β

αc =
(1− f )α

1−β

overprovisioning ρh =
βT− f U

f U ρc =
(1−β)T−(1− f )U

(1− f )U

erasure factor EFS,h(αh) = EFS(αh) EFS,c(αc) = EFS(αc)

# block erasures ES,h = Lh
Z · EFS,h(αh) ES,c =

Lc
Z · EFS,c(αc)

THEOREM 5.8. The erasure factor for a reprogramming FTL with parameterS and non-
uniform updates with parametersf and p is given by

EFS(α, f , p) = min
fα<β<1−(1− f )α

{ES(β)} ,

where

ES(β) = p · EFS

(

fα

β

)

+ (1 − p) · EFS

(

(1 − f )α

1 −β

)

.

PROOF. As in the previous case, we seek to find the value ofβ which minimizes the total number
of block erasures

ES =ES,h + ES,c =
Lh · EFS,h(αh)

Z
+

Lc · EFS,c(αc)

Z

=
L

Z
(pEFS,h + (1 − p)EFS,c) .

Hence now we minimize the function

ES(β) = pEFS

(

fα

β

)

+ (1 − p)EFS

(

(1 − f )α

1 −β

)

,

in the rangefα < β < 1 − (1 − f )α.

5.4.3. Analysis for Multiple Temperatures. Characterizing non-uniform workloads by a pair of pa-
rameters,f andp, is an appealing simplification. However, several recent studies showed the poten-
tial benefit of a finer classification of page access frequencies to more than two temperatures [Stoica
and Ailamaki 2013; Yadgar and Gabel 2016]. To address this general case, we now assume that the
logical pages are classified intok groups, each characterized by a pair of parameters,fi andpi, and
stored in a separate partition.

The parameters for theith partition are as follows:

(1) The number of physical pages isTi = βiT,
(2) The number of logical pages isUi = fiU,
(3) The number of logical page writes isLi = piL,

(4) The storage rate isαi =
f iUi
βiT

=
f iα

βi
,

(5) The overprovisioning isρi =
βiT− f iU

f iU
= 1

αi
− 1,

(6) The erasure factor isEFi = EFS(αi),

while the values off1 , . . . , fk andp1, . . . , pk are given and∑k
i=1 fi = ∑k

i=1 pi = 1. Then, the goal
is to find the values ofβ1, . . . ,βk, such that∑k

i=1 βi = 1 and the total erasure factor is minimized.
This optimization problem is formulated in the next theorem.
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Fig. 12. The expected erasure factor (left) and the size of the hot partition (right) for non-uniform workloads
with and without reprogramming. We fix the overprovisioningvalue at 28% and varyp for two values off .

THEOREM 5.9. The erasure factor for a reprogramming FTL with parameterS and non-
uniform updates with parametersf1, . . . , fk and p1, . . . , pk is given by

EFmulti(α, f1, . . . , fk, p1, . . . , pk) = min
β1 ,...,βk

{Emulti(β1, . . . ,βk)} ,

where

Emulti(β1, . . . ,βk) =
k

∑
i=1

piEFS(αi),

andβ1, . . . ,βk satisfy∑k
i=1 βi = 1 and for1 ≤ i ≤ k − 1

fiα < βi < 1 −
i−1

∑
j=1

β j −
k

∑
j=i+1

f jα.

Figure 12 illustrates the effect of the workload parameterson the erasure factor. These results
further demonstrate the gap between the theoretical benefitof the ideal reprogramming scheme and
the achievable benefit in practical designs. Note that the maximal erasure factor is reached when the
frequency of updated to hot pages is equal to their portion ofthe data (p = f ), which corresponds
to a uniform workload. We also note that the benefit from reprogramming increases with the portion
of hot data.

Interestingly, the optimal size of the hot partition (β) depends only on the workload characteris-
tics, p and f , and not on the reprogramming scheme. This property is especially desirable for FTL
designs that dynamically adapt the reprogramming scheme tothe workload characteristics or to the
condition of the underlying flash hardware.

5.5. Discussion

The theoretical framework presented in this section is limited in several aspects. First, it does not
provide an analytical solution to the optimization problems formulated in our theorems. In order
to obtain the optimalγ1 and the corresponding erasure factor we performed an exhaustive search
for 0 ≤ γ1 ≤ 1. We implemented this search with a simple Matlab program thatran for several
minutes.

Our framework is also limited in that the number of erasures is its only objective. Additional
costs of reprogramming, such as possible increase in cell wear, latency and energy consumption,
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Table XI. Trace characteristics of MSR and synthetic workloads. In the MSR workloads, pages can
be accessed as hot and cold in different requests.

Volume Unique pages Hot page ratio Cold page ratio Hot write ratio Total writes
(MB) (∼ f ) (∼ f − 1) (p) (GB)

rsrch 0 300 0.63 0.62 0.95 11
ts 0 550 0.57 0.59 0.94 12
src20 510 0.61 0.66 0.91 10
web 0 730 0.35 0.82 0.87 17
usr 0 660 0.66 0.52 0.86 14
wdev 0 350 0.38 0.77 0.85 7
stg 0 400 0.59 0.77 0.85 16
prxy 0 330 0.81 0.59 0.78 21
hm 0 1700 0.53 0.9 0.7 23
src12 670 0.25 0.9 0.22 45
proj 0 1700 0.31 0.84 0.14 145
zipf(0.9,0.95,1) 1024 0.001 0.999 0.2 10

are not taken into account. This model implies that reprogramming is always beneficial, and blocks
might be reused even if they will only accommodate a single logical page write, and this page will be
immediately moved and written to a clean block in order to erase the reused block. This is illustrated
in the example in Section 4. To avoid such scenarios, the FTL may disable reprogramming in cold
partitions, or whenever the reduction in the erasure factoris too small to justify the possible increase
in additional costs.

6. MODEL VALIDATION

In the following section we validate our theoretical model by answering the following questions:
(1) how useful is the garbage collection policy derived for reprogramming FTLs in this model? (2)
how accurate is the number of erasures derived from the model? and (3) how well does the model
predict the possible benefit from reprogramming?

6.1. Reprogramming FTL Simulator

We build a special purpose simulator that implements the basic FTL functionality and measures the
number of erasures for each workload, system setting, and theoretical parameters. We implement
the baseline system with greedy garbage collection, as wellas theLHH-FTL and its variation with
LHH-Skip-1 andLHH-Skip-2. We compare the number of erasures of each FTL andeach workload,
with and without partitioning the pages according to their temperatures. In other words, when the
FTL uses only one partition, we calculateγ1 according to Theorem 5.5. When the FTL uses two or
more partitions, we calculateβi andγ1 in the i-th partition according to Theorem 5.9. We always
compare the reprogramming FTLs to a baseline system with thesame number of partitions. We
examine two values of overprovisioning (ρ), 7% and 28%, and set the number of pages per block
(Z) to 256. We align the requests in the real workloads to a page size of 4KB. We show only results
for ρ=28%, where the benefit from reprogramming and the properties of our model could be easily
observed.

6.2. Workloads

We used three synthetic workloads with a Zipf distribution with exponential parameterα =
0.9, 0.95 and 1. In these traces, the frequency of access to pagen is proportional to 1

αn . Thus,
we could mark each write request with the temperature of the page it is about to update. We marked
the pages with five different temperatures as follows.

For each Zipf trace we extracted five thresholdsni , 0 < i ≤ 5, such thatn0 = 0, and pages
with logical address betweenni−1 andni were accessed 20% of the time. This divides the logical
address space into five temperatures, such that pages with temperaturei are always colder than
pages with temperature< i. While this classification is impossible in real world settings, it serves
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Fig. 13. Number of erasures withLHH-FTL normalized to that of the baseline system.

for the validation of our theoretical model, and for demonstrating the benefit from page reuse under
optimal conditions.

We also use real world traces from the MSR Cambridge workload[SNI 2014; Narayanan et al.
2008], which contains week-long traces from 36 volumes on 13servers. We used the 16 traces
with the smallest address space, and that include enough write requests for a meaningful analysis.
These traces vary in a wide range of parameters, summarized in Table XI. In these traces, pages
were classified as cold if they were written in a request of size 64KB or larger. This simple online
heuristic was shown to perform well in several previous studies [Chiao and Chang 2011; Im and
Shin 2010; Yadgar et al. 2015b].

The limitation of this heuristic is that pages can be classified as cold and hot simultaneously in
different requests. This can be observed in Table XI, where the sum of the hot page ratio (column 3)
and the cold page ratio (column 4) of the MSR workloads is higher than 1. Similarly, real workloads
often exhibit a dynamic working set, where hot pages gradually become cold and vice versa. Prac-
tical FTL implementations address this behavior by moving logical pages to a different partition
when they are updated and a change in their temperature is detected [Chiao and Chang 2011; Im
and Shin 2010; Stoica and Ailamaki 2013]. In our evaluation,we adhere to the static partitioning
determined by our theoretical framework. Thus, we use the approximate frequency (∼ f ) of access
to hot pages in order to calculateβ, and store in the hot partition all the pages that are marked as
hot in at least one request. We discuss the limitations of this approach below.

The workloads were collected on volumes of different sizes,and access logical pages from a
wide range of address space sizes. However, most of this address space is never updated within the
duration of the trace. The logical pages that are never updated affect the number of erasures because
they inevitably occupy physical pages on blocks that also store hot pages. We chose to omit those
pages from our evaluation, and set the logical capacity,U, as the number of unique pages in each
workload. We note that settingU to the size of the full address space would have forced us to also
use a very large physical device, resulting in a very large overprovisioning space compared to the
size of the working set.

6.3. Simulation Results

We first examine the reduction in erasures achieved by reprogramming. Figure 13 shows the number
of erasures performed by each of theLHH FTLs with 28% overprovisioning,with and without hot
and cold data separation, normalized to that of the baselinesystem. The traces are ordered by the
ratio of requests to hot pages (p), descending, although we note that this is not the dominantfactor
in determining the benefit from reprogramming.Reprogramming reduces the number of erasures by
up to 13%, 7%, and 5%, withLHH-FTL, LHH-Skip-1, andLHH-Skip-2, respectively.
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Fig. 14. Ratio between expected number of erasures and measured erasures.

This reduction is naturally smaller than that achieved by previous FTL designs that did not take
into account the specific limitations of MLC reprogramming.For example, Reusable SSD [Yadgar
et al. 2015b] reduces the number of erasures by up to 33% by reusing all the pages in each repro-
grammed block, which is impossible with MLC flash. The Seal FTL [Margaglia and Brinkmann
2015] eliminates up to 80% of erasures on MLC flash by using LLHreprogramming. However,
Seal FTL is not a general-purpose FTL, as it requires that applications write “overwrite compatible”
data, which allows up to eight reprogramming cycles for eachpage without any WOM encoding
overhead.

Our results show that separating hot and cold data into two partitions always increases the benefit
from reprogramming. They also show that this benefit decreases as the skip value increases. The
results withρ=7% were similar, though the difference between the different schemes was much
smaller. One exception is the proj0 trace, which has a very low ratio of hot requests. With low
overprovisioning, reprogramming increased the number of erasures by 1%-14%, because the high
amount of WOM encoded cold pages reduced the availability ofclean blocks.

The experiments for two of the MSR traces, prxy0 and hm0, with hot and cold data separation
did not complete successfully. This demonstrates the limitation of the static allocation of blocks to
partitions in our simulation. This allocation was based on theβ value obtained from Theorems 5.7
and 5.9 for the baseline andLHH-FTL experiments, respectively. For a given ratio of hotpages in
a workload,f , and assuming that pages are either hot or cold, the givenβ ensures that the size of
each partition can accommodate all the pages that belong to it. However, in these two traces, a large
portion of the pages appeared in both hot and cold requests.Many hot pages were initially classified
as cold and written in the cold partition, which overflowed asa result.

To validate the accuracy of our model, we compare the expected number of erasures in each
experiment with the number measured in the simulation. We calculate the expected number of era-
sures using the erasure factor given by our theoretical model, so thatE = EF · L

Z . Figure 14 shows
the ratio between this expected number and the number of erasures performed by our simulator, for
each FTL and workload. Our model assumes that within each partition pages are updated uniformly.
Thus, as we expected, without hot and cold data separation the difference between the expected and
measured number of erasures is quite high. Addingp and f to the model, reflecting its non-uniform
distribution, increases its accuracy considerably. We observe the highest accuracy in the synthetic
Zipf workloads, where the hot and cold classification was ideal. Even in these cases, the expected
number of erasures was up to 25% higher than the measured one,due to the uniformity assumption
in the large cold partition.

The uniformity assumption affects the accuracy of our modelfor both the baseline and the repro-
gramming FTLs. We next examine how accurate it is in predicting the benefit from reprogramming,

ACM Transactions on Storage, Vol. 0, No. 0, Article 0, Publication date: 2017.



0:30 Yadgar et al.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

rs
rc

h
_

0

ts
_

0

sr
c2

_
0

w
e

b
_

0

u
sr

_
0

w
d

e
v_

0

st
g

_
0

p
rx

y_
0

h
m

_
0

sr
c1

_
2

p
ro

j_
0

zi
p

f
 (

0
.9

)

zi
p

f
 (

0
.9

5
)

zi
p

f
 (

1
)

N
o
rm

al
iz

ed
 E

ra
su

re
s

Expected LHH (hot/cold)
LHH (hot/cold)

Expected LHH-Skip-1 (hot/cold)
LHH-Skip-1 (hot/cold)

Expected LHH-Skip-2 (hot/cold)
LHH-Skip-2 (hot/cold)

Fig. 15. Expected reduction in erasures and measured reduction. Thenumber of erasures is normalized to that
of the baseline system.

in terms of reduction in erasures. Figure 15 depicts this benefit as the number of erasures with re-
programming normalized to that of the baseline. We show the expected benefit, calculated with the
erasure factor obtained from our model, and the observed one. The difference between the expected
and observed benefits was around of 2%, and no more than 5% in all but the two “coldest” traces,
src12 and proj0. The difference withρ=7% was slightly higher, but was below 10% for all but the
src12 and proj0 traces. The measured benefit was lower than expected because of the restriction
on invalid low pages corresponding to the reprogrammed highpages. More accurate prediction can
be obtained by refining our calculation according to Remark 5.6., which is part of our future work.

The accuracy of this model is considerably higher than the best case analysis of Reusab-
leSSD [Yadgar et al. 2015b]. There, an expected reduction of33% was based on the assumption
that all the pages on a reused block have been invalidated andcan be reused without additional
hardware limitations.

6.4. Implications for System Design

The smaller number of garbage collection cycles when using WOM codes and the higher stress
induced by rewriting pages lead to a tradeoff in FTL design. The following model summarizes the
interplay between the physical chip characteristics, the FTL scheme, and the workload. LetE be the
number of erasures incurred byM logical page writes in the baseline FTL, and letE′ be the number
of erasures in a reprogramming FTL for the sameM logical writes. We defineRerasures as E′

E , and
use it to derive the amount of logical data that would incurE erasures in the reprogramming FTL:
M′ = M

Rerasures
. Let Rreduction be the reduction in a chip’s lifetime due to reprogramming.

In realistic scenarios, a reprogramming FTL will reuse blocks only at the beginning of their
lifetime. LetPreuse be the portion of a block’s lifetime in which it is reprogrammed,0 ≤ Preuse ≤ 1.
We calculate the lifetime extension achievable by reprogramming as follows. We assume that the
baseline FTL writes a total ofMtotal logical pages in its entire lifetime. The total number of logical
pages that can be written by a reprogramming FTL is given by

Mreuse = Preuse · M′
total + (1 − Preuse − Rreduction) · Mtotal

= Mtotal · (
Preuse

Rerasures
+ 1 − Preuse − Rreduction),

and the lifetime extension is

Mreuse

Mtotal
− 1 = Preuse · (

1

Rerasures
− 1)− Rreduction.
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Table XII. Lifetime extension in sample reprogramming scenarios.

Reprogramming mode Preuse Rerasures Rreduction Preuse · (
1

Rerasures
− 1)− Rreduction

Reusable SSD on a theoretical device 0.4 0.67 0 0.2→ 20% lifetime increase
LLH-FTL on a B29 chip 0.6 0.84 0.085 0.03→ 3% lifetime increase
LHH-Skip-2 on a C19 chip 0.6 0.95 0.042 -0.01→ 1% lifetime reduction

Table XII summarizes the details of three reprogramming examples. In the first example, we
consider the Reusable SSD, which achieves a reduction of 33%in erasures by reprogramming all
the block’s pages [Yadgar et al. 2015b]. In this example we assume that the increased wear due to
reprogramming does not reduce the chip’s lifetime, and thatreprogramming is limited to 40% of
this lifetime due to ECC constraints. The lifetime extension in this case is 20%.

In the second example, we consider the LLH-FTL on a device using B29 chips, which reuses
blocks in the first 60% of their lifetime. The reduction in erasures is the maximal observed in the
evaluation of LLH-FTL in simulation [Margaglia et al. 2016], and the lifetime reduction is taken
from Table V. The lifetime extension in this case is 3%. In thethird example, we consider aLHH-
Skip-2 FTL on a device using C19 chips. The reduction in erasures is the maximal observed in our
simulations in Figure 13, and the lifetime reduction is taken from Table VI. This use case results in a
lifetime reductionof 1%: the reduction in lifetime due to the increased wear outweighs the lifetime
extension achieved by reprogramming in the first part of the chip’s lifetime.

This analysis demonstrates the sensitivity of the reprogramming approach to the physical char-
acteristics of flash chips and to the characteristics of the workloads. When the workload has a low
percentage of hot writes (like proj0), or when the chip is highly sensitive to increasedVth (like
C19), reprogramming should likely be avoided. The combination of our flash evaluation and theo-
retical model can provide a good indication which reprogramming scheme will be most useful in
increasing a given device’s lifetime.

7. RELATED WORK

Several studies proposed FTL designs that reuse pages to extend SSD lifetime. Some are based on
capacity achieving codes, and bound the resulting capacityloss by limiting second writes to several
blocks [Odeh and Cassuto 2014] or by assuming the logical data has been compressed by the upper
level [Jagmohan et al. 2010]. The overheads and complexities in these designs are addressed in the
design of ReusableSSD [Yadgar et al. 2015b]. However, none of these studies addressed the limita-
tions of reprogramming MLC flash pages. Some of these limitations were addressed in the design
of an overwrite compatible B+-tree data structure, assuming the mapping ofVth to bits can be mod-
ified [Kaiser et al. 2013]. Like the previous approaches, it has been implemented only in simulation.
Extended P/E cycles [Margaglia and Brinkmann 2015] were implemented on real hardware, but the
FTL that uses them relies on the host to supply data that is overwrite compatible. LLH-FTL and
LHH-FTL are the first general-purpose FTLs that addresses all practical limitations of WOM codes
as well as MLC flash. Thus, we were able to demonstrate their strengths and weaknesses on real
hardware and workloads.

BER characterization is important for understanding the limitations of flash and the properties
of noise, which lead to more efficient algorithms to optimizeNAND flash performance. Numer-
ous studies explored the contributors to BER in flash, on a wide variety of chip technologies and
manufacturers. They show the effects of erasures, retention, program disturbance and scaling down
technology on the BER [Cai et al. 2013; Grupp et al. 2009; Mielke et al. 2008; Yaakobi et al. 2012a].
These studies demonstrate a trend of increased BER as flash feature sizes scale down, and the need
for specialized optimizations employed by manufacturers as a result. Thus, we believe that some of
the interference effects observed in our experiments are a result of optimizing the chips for regu-
lar LH programming. Adjusting these optimizations to LLH orLHH reprogramming is a potential
approach to increase the benefit from page reuse.

Several studies examined the possibility of reprogrammingflash cells. Most used either SLC
chips [Jagmohan et al. 2010], or MLC chips as if they were SLC [En Gad et al. 2015]. A thorough
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study on 50nm and 72nm MLC chips demonstrated that after a full use of the block (LH program-
ming), half of the pages are “WOM-safe” [Grupp et al. 2009]. However, they do not present the
exact reprogramming scheme, nor the problems encountered when using other schemes. A recent
study [Margaglia and Brinkmann 2015] mapped all possible state transitions with reprogramming
on a 35nm MLC chip, and proposed the LLH reprogramming scheme. Our results in Section 3 show
that smaller feature sizes impose additional restrictionson reprogramming, but that LLH andLHH
reprogramming are still possible.

Numerous methods have been suggested for improving the applicability of existing WOM codes.
Recent studies have focused on improving their computationefficiency [En Gad et al. 2015], re-
ducing their overhead [Shpilka 2013; 2014; Yaakobi et al. 2012b; Burshtein and Strugatski 2013;
En Gad et al. 2015], and reducing their failure probability [Burshtein and Strugatski 2013; En Gad
et al. 2015]. Most of these codes target the basic model of onebit per cell with the only restric-
tion that zeroes cannot be overwritten by ones. The additional limitations on reprogramming that
were demonstrated in our analysis lay the ground for investigating WOM models that reflect these
limitations.

Previous studies examined the energy consumption of flash chips as a factor of the programmed
pattern and page [Mohan et al. 2013], and suggested methods for reducing the energy consumption
of the flash device [Salajegheh et al. 2011]. To the best of ourknowledge, this study is the first to
measure the effect of reprogramming on the energy consumption of a real flash chip and incorporate
it into the evaluation of the FTL.

Recent trends in flash technologies, such as one-shot programming and 3D V-NAND [Im et al.
2015], eliminate the constraints on the programming order of pages in each block. This may allow
reprogramming pages on a fully used block, and maybe even allow reprogramming of the low and
high pages alike. To understand their implications, these technologies should be examined in an
evaluation similar to ours.

Our theoretical analysis for non-uniform workloads adoptsthe approach of previous studies that
assume pages are partitioned according to their temperature. Desnoyers [Desnoyers 2014] gives and
exact analytical solution for the least recently written (LRW) garbage collection policy as well as
an approximate solution for greedy garbage collection for two temperatures, and presents an ex-
tension to multiple partitions. Van Houdt [Hou 2014] studies the reduction in write amplification
achieved by hot and cold data separation, taking into account false identification and dynamically
changing workloads. Stoica and Ailamaki [Stoica and Ailamaki 2013] study the classification accu-
racy required for minimizing write amplification. Our work complement these results by providing
an analytical model for optimal partitioning and garbage collection for reprogramming FTLs, that
can also be used to predict the benefit from reprogramming under realistic hardware and system
limitations.

8. CONCLUSIONS

Our study is the first to evaluate the possible benefit from reusing flash pages with WOM codes on
real flash chips combined with an end-to-end FTL analysis. Weshowed that page reuse in MLC
flash is possible, but can utilize at most half of the pages in each block, and achieves this maximum
only if some of its capacity has been reserved in advance. While reprogramming is safe for at least
40% of the lifetime of the chips we examined, it incurs additional long-termwear on their blocks.
Thus, even with an impressive 20% reduction inerasures, the increase inlifetimestrongly depends
on chip physical characteristics, and is fairly modest.

Our hardware evaluation exposed a considerable gap betweenthe previously shown benefits of
page reuse, which were based on theoretical analysis and simulations, and those that can be achieved
on current state-of-the-art hardware. Our detailed theoretical model bridges this gap by providing a
framework for maximizing and estimating the benefits of pagereuse with validated accuracy.

While our study demonstrates restrictive limitations on page reuse, it also highlights the poten-
tial benefits and several approaches to achieve them. First,we believe that many limitations can be
addressed with manufacturer support by reevaluating current MLC programming constraints. Sec-
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ond, we expect that WOM codes that are specifically designed for the reprogramming limitations of
NAND flash chips will allow the reuse of more pages in each blocks. Finally, special-purpose FTLs
and data structures that are overwrite compatible will not be limited by WOM encoding overhead
and can thus realize the full potential of page reuse.
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tails: Implementing Flash Page Reuse with WOM Codes. In14th Usenix Conference on File and Storage Technologies
(FAST).

N. Mielke, T. Marquart, Ning Wu, J. Kessenich, H. Belgal, Eric Schares, F. Trivedi, E. Goodness, and L.R. Nevill. 2008. Bit
error rate in NAND Flash memories. InReliability Physics Symposium (IRPS). IEEE International.

Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-Won Lee, andYoung Ik Eom. 2012. SFS: Random write considered
harmful in solid state drives. In10th USENIX Conference on File and Storage Technologies (FAST).

V. Mohan, T. Bunker, L. Grupp, S. Gurumurthi, M.R. Stan, and S. Swanson. 2013. Modeling Power Consumption of NAND
flash Memories Using FlashPower.IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
32, 7 (July 2013), 1031–1044.DOI:http://dx.doi.org/10.1109/TCAD.2013.2249557

Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. 2008. Write Off-loading: Practical
Power Management for Enterprise Storage.Trans. Storage 4, 3, Article 10 (Nov. 2008), 23 pages.
DOI:http://dx.doi.org/10.1145/1416944.1416949

S. Odeh and Y. Cassuto. 2014. NAND flash architectures reducing write amplification through multi-
write codes. In IEEE 30th Symposium on Mass Storage Systems and Technologies (MSST).
DOI:http://dx.doi.org/10.1109/MSST.2014.6855549

Yongseok Oh, Jongmoo Choi, Donghee Lee, and Sam H. Noh. 2012.Caching Less for Better Performance: Balancing
Cache Size and Update Cost of flash Memory Cache in Hybrid Storage Systems. In10th USENIX Conference on File
and Storage Technologies (FAST).

Heejin Park, Jaeho Kim, Jongmoo Choi, Donghee Lee, and S.H. Noh. 2015. Incremental redundancy to reduce data retention
errors in flash-based SSDs. InIEEE 31st Symposium on Mass Storage Systems and Technologies (MSST).

Ki-Tae Park, Myounggon Kang, Doogon Kim, Soon-Wook Hwang, Byung Yong Choi, Yeong-Taek Lee, Changhyun Kim,
and Kinam Kim. 2008. A Zeroing Cell-to-Cell Interference Page Architecture With Temporary LSB Storing and Parallel
MSB Program Scheme for MLC NAND Flash Memories.IEEE Journal of Solid-State Circuits43, 4 (April 2008), 919–
928.

R. L. Rivest and A. Shamir. 1982. How to Reuse a Write-Once Memory. Inform. and Contr.55, 1-3 (Dec. 1982), 1–19.
Mastooreh Salajegheh, Yue Wang, Kevin Fu, Anxiao Jiang, andErik Learned-Miller. 2011. Exploiting Half-wits: Smarter

Storage for Low-power Devices. In9th USENIX Conference on File and Stroage Technologies (FAST).
Mohit Saxena, Michael M. Swift, and Yiying Zhang. 2012. FlashTier: A Lightweight, Consistent and Durable Storage Cache.

In 7th ACM European Conference on Computer Systems (EuroSys).
Amir Shpilka. 2013. New Constructions of WOM Codes Using theWozencraft Ensemble.IEEE Transactions on Information

Theory59, 7 (2013), 4520–4529. http://dblp.uni-trier.de/db/journals/tit/tit59.html#Shpilka13
Amir Shpilka. 2014. Capacity achieving multiwrite WOM codes. IEEE Transactions on Information Theory60, 3 (2014),

1481–1487.
Kent Smith. 2013. Understanding SSD over-provisioning.EDN Network (January 2013). http://www.edn.com/design/

systems-design/4404566/1/Understanding-SSD-over-provisioning
Gokul Soundararajan, Vijayan Prabhakaran, Mahesh Balakrishnan, and Ted Wobber. 2010. Extending SSD Lifetimes with

Disk-based Write Caches. In8th USENIX Conference on File and Storage Technologies (FAST).

ACM Transactions on Storage, Vol. 0, No. 0, Article 0, Publication date: 2017.



An Analysis of Flash Page Reuse with WOM Codes 0:35

Radu Stoica and Anastasia Ailamaki. 2013. Improving Flash Write Performance by Using Update Frequency.Proc. VLDB
Endow.6, 9 (July 2013), 733–744.

E. Yaakobi, L. Grupp, P.H. Siegel, S. Swanson, and J.K. Wolf.2012a. Characterization and error-correcting codes for TLC
flash memories. InInternational Conference on Computing, Networking and Communications (ICNC).

Eitan Yaakobi, Scott Kayser, Paul H. Siegel, Alexander Vardy, and Jack K. Wolf. 2012b. Codes for Write-Once Memories.
IEEE Transactions on Information Theory58, 9 (2012), 5985–5999. http://dblp.uni-trier.de/db/journals/tit/tit58.html#
YaakobiKSVW12

E. Yaakobi, Jing Ma, L. Grupp, P. H. Siegel, S. Swanson, and J.K. Wolf. 2010. Error characterization and coding schemes
for flash memories. InIEEE GLOBECOM Workshops (GC Wkshps).

Eitan Yaakobi, Alexander Yucovich, Gal Maor, and Gala Yadgar. 2015. When Do WOM Codes Improve the Erasure Factor
in Flash Memories?. InIEEE International Symposium on Information Theory (ISIT).

Gala Yadgar and Moshe Gabel. 2016. Avoiding the StreetlightEffect: I/O Workload Analysis with SSDs in Mind. In8th
USENIX Conference on Hot Topics in Storage and File Systems (HotStorage).

Gala Yadgar, Roman Shor, Eitan Yaakobi, and Assaf Schuster.2015a. It’s Not Where Your Data is, It’s How It Got There.
In 7th USENIX Conference on Hot Topics in Storage and File Systems (HotStorage).

Gala Yadgar, Eitan Yaakobi, and Assaf Schuster. 2015b. Write Once, Get 50% Free: Saving SSD Erase Costs Using WOM
Codes. In13th USENIX Conference on File and Storage Technologies (FAST).

Gala Yadgar, Alexander Yucovich, Hila Arobas, Eitan Yaakobi, Yue Li, Fabio Margaglia, André Brinkmann, and Assaf
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APPENDIX

PROOF OFTHEOREM 5.5. As before, we assignY1 = γ1 · Z andY2 = γ1 · Z is the expected
number of valid pages when a reused block is physically erased. We use the same notation from
the previous theorem. In this system, when a block is reused,it hasY1 valid pages and under the
uniformity we assume that half of them are high and the other half are low, and therefore there are
(Z −Y1) high pages which are available for reprogramming, but we reuse only1/S of them. Thus,
the total number of valid pages that the block will have afterit is rewritten isY1 + (Z −Y1)/2S =
Z+(2S−1)Y1

2S . We get the following equations:

(Y1 + 1)N1(Y1 + 1) = · · · = ZN1(Z)

=(Y2 + 1)N2(Y2 + 1) = · · · =
Z + (2S − 1)Y1

2S
N2(

Z + (2S − 1)Y1

2S
).

The number of block erasures is

E =
L + EY2

Z + (Z −Y1)/(2S)

or

E =
L

(1 + 1
2S)Z − Y2 −

Y1
2S

=
L

Z
·

1

1 + 1
2S − γ1

2S −γ2

.

Hence, the erasure factor, as a function of bothγ1 andγ2 is 1
1+ 1

2S−
γ1
2S−γ2

.
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Again as before we have

T/Z = = (Y1 + 1)N1(Y1 + 1)







Z

∑
i=Y1+1

1

i
+

Z+(2S−1)Y1
2S

∑
i=Y2+1

1

i







≈ (Y1 + 1)N1(Y1 + 1)

(

ln

(

Z

Y1

)

+ ln

(

Z + (2S − 1)Y1

2SY2

))

= (Y1 + 1)N1(Y1 + 1) ln

(

1 + (2S − 1)γ1

2Sγ1γ2

)

,

and

U =
Z

∑
i=0

iN1(i) +
Z

∑
i=0

iN2(i)

=
Z

∑
i=Y1+1

iN1(i) +

Z+(2S−1)Y1
2S

∑
i=Y2+1

iN2(i)

=

(

(1 +
1

2S
)Z −

Y1

2S
−Y2

)

(Y1 + 1)N1(Y1 + 1).

Hence

U

(1 + 1
2S )Z − Y1

2S −Y2

=
T/Z

ln
(

1+(2S−1)γ1
2Sγ1γ2

) ,

or

α =
(1 + 1

2S )−
γ1
2S −γ2

ln
(

1+(2S−1)γ1
2Sγ1γ2

) ,

that is

γ2 = −αW

(

−
1

α
e

ln
(

1+(2S−1)γ1
2Sγ1

)

+
γ1−(2S+1)

2Sα

)

. (12)

Hence, the erasure factor, as a function ofα andγ1 is

EF′
S(α,γ1) =

1

1 + 1
2S − γ1

2S − γ2

,

whereγ2 is given by (12). Lastly, since we can choose the thresholdγ1, the valueEFS(α) is
achieved by minimizing the value ofEF′

S(α,γ1) under the condition in (12).
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