
Real-Time Multi-Pattern Detection over Event
Streams

Ilya Kolchinsky

Technion, Israel Institute of Technology

ikolchin@cs.technion.ac.il

Assaf Schuster

Technion, Israel Institute of Technology

assaf@cs.technion.ac.il

ABSTRACT
Rapid advances in data-driven applications over recent years

have intensified the need for efficient mechanisms capable

of monitoring and detecting arbitrarily complex patterns

in massive data streams. This task is usually performed by

complex event processing (CEP) systems. CEP engines are re-

quired to process hundreds or even thousands of user-defined

patterns in parallel under tight real-time constraints. To en-

hance the performance of this crucial operation, multiple

techniques have been developed, utilizing well-known opti-

mization approaches such as pattern rewriting and sharing

common subexpressions. However, the scalability of these

methods is limited by the high computation overhead, and

the quality of the produced plans is compromised by ignoring

significant parts of the solution space.

In this paper, we present a novel framework for real-time

multi-pattern complex event processing. Our approach is

based on formulating the above task as a global optimization

problem and applying a combination of sharing and pattern

reordering techniques to construct an optimal plan satisfy-

ing the problem constraints. To the best of our knowledge,

no such fusion was previously attempted in the field of CEP

optimization. To locate the best possible evaluation plan in

the resulting hyperexponential solution space, we design effi-

cient local search algorithms that utilize the unique problem

structure. An extensive theoretical and empirical analysis of

our system demonstrates its superiority over state-of-the-art

solutions.

CCS CONCEPTS
• Information systems → Stream management; Query
optimization;

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SIGMOD’19, June 2019, Amsterdam, The Netherlands
© 2019 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

KEYWORDS
Complex Event Processing, Multi-Query Optimization

ACM Reference Format:
Ilya Kolchinsky and Assaf Schuster. 2019. Real-Time Multi-Pattern

Detection over Event Streams. In Proceedings of ACM SIGMOD
Conference (SIGMOD’19). ACM, New York, NY, USA, 18 pages. https:

//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Complex event processing (CEP) methods are widely em-

ployed in applications where arbitrarily complex combina-

tions (patterns) of data itemsmust be promptly and efficiently

detected in massive data streams. Examples of such areas

include financial services [22], electronic health record sys-

tems [14], sensor networks [32], and more recently IoT [66].

CEP systems treat data items as events arriving from event

sources. As new events are detected, they are combined into

higher-level complex events matching the user-specified pat-

terns. An active area of academic research [5, 6, 19, 22, 49, 62],

CEP functionality is also provided by multiple commercial

data analysis platforms [9, 15, 29, 53].

Modern CEP engines are typically required to support

efficient simultaneous tracking of hundreds to thousands

of patterns in multiple high-speed input streams of events.

We will refer to systems possessing this functionality as

multi-pattern complex event processing (MCEP) systems.
As an example, consider a security system monitoring a

corporate building. Every room entrance is equipped with a

sensor that emits a signal to the main controller whenever

any large object passes through the doorway. We are inter-

ested in detecting a scenario in which an intruder is detected

near doorway A, then immediately passes through entrance

B, and finally enters doorway C. This pattern can be for-

mulated as a sequence of three events, each corresponding

to getting a signal from sensors A, B, and C respectively.

A real-life MCEP system could define multiple ‘abnormal’

paths inside the building and specify a dedicated pattern for

each path.

Pattern matches in CEP systems are detected using an

evaluation mechanism. One of the most prominent evaluation

mechanisms is the non-deterministic finite automaton (NFA)

[6, 23, 62]. Figure 1(a) presents an example of a NFA for

detecting the sequenceA → B → C of sensor signals. A state

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SIGMOD’19, June 2019, Amsterdam, The Netherlands Ilya Kolchinsky and Assaf Schuster

(a)

(b)

Figure 1: Evaluation mechanisms for a sequence of
events from streams A,B,C: (a) NFA without reorder-
ing; (b) NFA with reordering.

is defined for each prefix of a valid match. Every ‘accepting’

transition between states is associated with some event type.

The detection is triggered by the arrival of a signal from

sensor A. For each accepted signal, the stream of events from

sensor B is probed. If a new signal is subsequently received

from B, we wait for a corresponding event from sensor C.

During evaluation, a NFA keeps track of partial matches,
that is, already detected subsets of a potential pattern match.

A newly arrived event is combined with all currently stored

partial matches corresponding to the state accepting this

event. For instance, an event of type C will be matched with

pairs of A’s and B’s. This architecture leads to the worst-

case exponential (in the pattern size) processing time and

memory consumption. Thus, maximizing pattern detection

performance is crucial in a MCEP system.

Multiple research efforts have targeted various possibili-

ties for creating efficient evaluation mechanisms. Two of the

most popular optimization strategies are pattern rewriting
and pattern sharing [33].

Pattern rewriting methods [7, 40, 49, 52, 57] exploit the sta-

tistical properties of the event data to replace the evaluation

mechanismwith an equivalent yet more efficient one. Pattern
reordering is a more specific technique within this category,

focused on modifying the order in which the events are pro-

cessed. For example, let us assume that sensor C generates

significantly fewer signals than A and B do. Then, instead

of following the order A → B → C specified by the pattern,

it would be beneficial to first wait for a signal from C, then

examine the local history for previous signals received from

sensors B and A. This way, fewer partial matches would be

created, resulting in better memory utilization and faster

processing of incoming events [42]. Figure 1(b) depicts a

NFA constructed according to this improved plan.

Pattern sharing methods [7, 22, 45, 54, 64] utilize the

structural similarities between different patterns to unify

the processing of common subexpressions. Figure 2 illus-

trates this principle. For presentational purposes, we omit

(a) (b)

Figure 2: NFA sharing example for event sequences
A,B,C and A,B,D: (a) no sharing; (b) prefix sharing is
applied.

(a) (b)

(c) (d)

Figure 3: NFA optimization example for event se-
quencesA,B,C,D andA,E,C,F : (a) no sharing or reorder-
ing; (b) reordering without sharing; (c) sharing with-
out reordering; (d) a combination of reordering and
sharing.

‘ignore’ edges and ‘accept’ labels from now on. We are re-

quired to monitor a pair of patterns P1 : A → B → C and

P2 : A → B → D. Instead of processing them independently

(Figure 2(a)), the system can merge the first three states of

the respective NFAs to produce a joint automaton (Figure

2(b)). This optimization avoids duplicate instantiating and

storing of partial matches.

Pattern reordering and pattern sharing are generally con-

sidered as orthogonal techniques and cover different aspects

of CEP performance optimization. This also implies that each

of the twomethods overlooks certain opportunities exploited

by the other. Consequently, their fusion could discover eval-

uation plans that would not be considered otherwise.

We will illustrate the above using the following example.

The system is given two patterns depicted in Figure 3(a). Re-

ordering the patterns by the ascending order of event arrival

rates might result in a pair of locally optimal NFAs (Figure

3(b)). Alternatively, a global shared plan shown in Figure 3(c)

can be obtained by sharing the first two states. Now consider

a combined application of the above techniques, where the

NFAs are first reordered to maximize the common prefix

length, and then this newly created subpattern is shared. Fig-

ure 3(d) shows the resulting plan. This plan would never be

created if only one of the two optimizations was employed,

or if they were used independently.

Real-Time Multi-Pattern Detection over Event Streams SIGMOD’19, June 2019, Amsterdam, The Netherlands

Despite the benefits of combining pattern sharing with

rewriting for MCEP optimization, surprisingly little work

has been done in this direction. The only related publica-

tions known to the authors either limit the discussion to a

single shared subpattern [7] or consider a restricted model

for pattern decomposition without reordering [64].

In this paper, we present a novel framework for large-scale

MCEP. Rather than merely maximize the sharing degree or

create locally optimal plans, we aim to produce a globally

optimal plan for the given workload of patterns using a

mixture of the two. At the core of our framework lies the

optimizer that uses sharing and reordering techniques to

generate candidate evaluation plans. This fusion allows us to

take advantage of subexpressions not normally considered

for sharing. To traverse the hyperexponential space of plans,

we incorporate a method based on the local search paradigm

[3]. As opposed to the traditional MCEP optimizers, our

system can operate under arbitrarily tight time constraints

due to the inherent balance between optimization time and

solution quality. To the best of our knowledge, no existing

work discusses this optimization strategy in a MCEP context.

Our contributions can thus be summarized as follows:

• We present a novel approach for optimizing large-scale

MCEP systems by combining the power of state-of-

the-art pattern sharing and reordering techniques.

• We design a set of algorithms for efficiently searching

the solution space. Our algorithms are highly precise

and their execution time can be arbitrarily limited.

• We implement a MCEP engine utilizing the plans cre-

ated by our optimizer for efficient pattern detection.

• We empirically validate the performance of our solu-

tion, demonstrating its scalability and superiority over

existing state-of-the-art approaches.

The remainder of this paper is organized as follows. Section

2 introduces the notations used throughout the paper. In Sec-

tion 3 we describe our system design and present a limited

version of our optimization mechanism, restricted to prefix

sharing. Section 4 presents the algorithmic framework for

selecting the best evaluation plan from the solution space.

Section 5 extends the method from Section 3 to consider

sharing of arbitrary subsets. We report the results of our ex-

perimental study in Section 6. Section 7 discusses the related

work. Section 8 summarizes the paper.

2 BACKGROUND AND TERMINOLOGY
Formally, a MCEP system accepts three parameters: an input

data stream I , a pattern workloadWL, and a statistics col-

lection Stat . The input stream I = {e1, e2, · · · } is an ordered,

possibly infinite temporal sequence of primitive events, or
simply events. We define I as a “logical” input source, possi-
bly encapsulating multiple merged substreams. Each event ei

is represented by a well-defined type and a set of attributes,

including the occurrence timestamp. In the example from

Section 1, the event type is specified by the origin sensor ID,

and the attribute set may include the movement speed of an

intruder or the direction of passing.

The workloadWL = {P1, · · · , Pn} contains a finite num-

ber of patterns the system is requested to detect. Each pat-

tern is defined by the tuple Pi = (Ei , Si ,Ci ,Wi), where Ei ={
E1, · · · ,Emi

}
is the set of event types participating in Pi , Si

denotes the structure of Pi (which will be defined shortly),Ci
is the condition set specifying the constraints on the attribute

values of the events, andWi is the time window defined for

this pattern, that is, the maximal allowed time difference

between the timestamps of a pair of events in a match.

The structure Si specifies how the events requested by the

pattern are to be assembled to form a match. It is defined by

a combination of event types and operators. In this paper,

we will consider the most common operators such as AND,

SEQ, and OR. The AND operator requires the occurrence of

all events specified in the pattern. The SEQ operator also

expects the events to appear in a predefined temporal order.

The OR operator corresponds to the appearance of any event

out of those specified. Two additional important operators

are the negation (NOT), requiring the absence of an event

from some position in the match, and the Kleene closure

(KL), accepting one or more instances of an event.

To illustrate the above, the structure of the pattern from

Figure 1 could be summarized as SEQ (A,B,C), with E =

{A,B,C}. If the order of receiving the signals was not im-

portant, the pattern would be formulated as AND (A,B,C).
In addition, assume that a signal arriving from the sensor

D indicates the arrival of a security guard to the area, in

which case no alarm should be set. Then, the structure of

our pattern would become SEQ (AND (A,B,C) ,NOT (D)).
In the general case, Si is an arbitrary expression over the

above operators. As discussed in previous work [40, 41],

such patterns can be simplified by the transition to DNF

form. From the standpoint of a MCEP system, every clause

of the resulting DNF expression can be considered as a sepa-

rate pattern in a workload. In addition, a clause containing

multiple AND/SEQ operators can be flattened to a simple

expression featuring a single AND or SEQwith possible NEG

and KL applied on single events [41]. Therefore, we will only

consider patterns of this simplified form from now on.

Stat is a set of statistical data properties that are used by

the MCEP engine during evaluation plan generation. In the

example above, Stat contains the arrival rates of all event
types (that is, of signals from each sensor). In addition, we

will consider as members in Stat the selectivities of the con-
ditions defined by the patterns. The selectivity of a condition

is defined as the probability of the input tuple to successfully

pass the condition. More formally,

SIGMOD’19, June 2019, Amsterdam, The Netherlands Ilya Kolchinsky and Assaf Schuster

Figure 4: General structure of a MCEP system.

Stat = {rx |∃Pi ∈WL : Ex ∈ Ei } ∪{
selCix,y |∃Pi ∈WL : Ex ,Ey ∈ Ei

}
,

where rx is the arrival rate of the event type Ex , and sel
C
x,y ∈

[0, 1] is the selectivity of a mutual condition between Ex
and Ey in some condition set C (we set selCx,y = 1 if no

condition is defined between the event types). Our results

can be trivially extended to additional parameters, such as

inter-event dependencies and costs of predicate evaluation,

by modifying the cost model (see below).

The general architecture of a MCEP system is depicted

in Figure 4. The evaluation mechanism is responsible for

the actual processing of the input stream I . An evaluation

mechanism of choice in Figures 1-3 is a NFA. Various works

describe different variations of NFAs [6, 19, 22, 62]. In this

paper, we exclusively use the ‘lazy NFA’ introduced in [42].

A lazy NFA (Figure 1(b)) can be configured to follow any

execution order regardless of the actual order requested by

the pattern. Since NFAs discussed in previous works are only

capable of tracking a single pattern, an extension for multiple

patterns will be presented in Section 3. A different evaluation

mechanism will be introduced in Section 5.

At runtime, the evaluation mechanism follows an evalua-
tion plan supplied by the optimizer. We distinguish between

local evaluation plans applicable for single-pattern evaluation
mechanisms only, and global evaluation plans that consider
a workload of patterns. For example, the plans applied by

the NFAs in Figures 1(a) and 1(b) are local evaluation plans,

whereas Figures 2 and 3 illustrate global evaluation plans.

Different evaluation mechanisms support different types

of evaluation plans. Creating a lazy chain-structured NFA

(Figure 1) for a single pattern requires an order-based lo-

cal evaluation plan. For a pattern P over the event types

E1, · · · ,Em , the order-based evaluation plan is an ordering

O =
(
Eq1
, · · · ,Eqm

)
, where q1, · · · ,qm is a permutation of

[1, · · · ,m]. As described in [41], any pattern using the opera-

tors defined earlier in this section (with the exception of OR)

can be detected by such NFA. We will discuss the structure

of global order-based evaluation plans later in the paper.

The task of the optimizer is to create a global evalua-

tion plan upon system initialization. The resulting plan is

then transferred to the evaluation mechanism, which subse-

quently launches the detection process on a stream I . The
optimizer typically uses a predefined cost function to measure

the quality of a plan subject to the given workloadWL and

the statistics collection Stat . We will define this function as

Cost : P ×W × STAT → R, where P,W,STAT are the sets

of all global evaluation plans, workloads, and statistics col-

lections, respectively. The cost assigned by this function may

reflect performance metrics such as throughput, detection

latency, communication cost, and more.

Our analysis below assumes the values in Stat to be con-

stant and known in advance. However, in real-life scenarios

this information is rarely obtained in advance and is sub-

ject to rapid fluctuations over time. To overcome this prob-

lem, our system employs standard adaptivity mechanisms

[39, 42, 49], continuously estimating the up-to-date statistics

and relaunching the optimizer when a significant change is

detected.

3 MULTI-PATTERN CEP WITH PREFIX
SHARING

In this section, we present the core principles and algorithms

behind our MCEP system. For presentational purposes, we

describe a limited version of our method, only considering

prefix sharing opportunities between patterns. In Section 5,

we extend our framework to support arbitrary subexpression

sharing. The experimental study in Section 6 is conducted

solely on this extended system.

3.1 Multi-Pattern NFA Evaluation
Our framework processes all patterns in a workload using

a single NFA, which we denote as the multi-pattern NFA. It
is organized in a tree-like topology formed by merging the

common prefixes of the chain-structured NFAs correspond-

ing to each pattern in the workload. The root of the tree is

shared between all patterns and serves as the initial state of

the automaton. Each internal node can be shared between

two or more patterns.

Since different patterns may have different time windows,

we augment each state of the multi-pattern NFA with a spe-

cial time window attribute, set to the largest time window

among the patterns sharing the state. The system uses this

attribute to decide whether a partial match has expired.

Real-Time Multi-Pattern Detection over Event Streams SIGMOD’19, June 2019, Amsterdam, The Netherlands

(a) (b) (c)

Figure 5: Multi-pattern trees for a workload consist-
ing of SEQ(A,B,C) and SEQ(A,B,D): (a) evaluation orders
A,B,C and A,B,D (maximal sharing); (b) evaluation or-
ders B,C,A and B,A,D; (c) evaluation orders C,B,A and
A,D,B (minimal sharing).

Figure 5 depicts three of the possible multi-pattern NFAs

for a workload of two patterns, P1 : SEQ (A,B,C) and P2 :

SEQ (A,B,D), with W1 = 10 and W2 = 20. As discussed

in Section 1, some NFAs have more shared states, while

others contain more states in total but provide more efficient

evaluation paths for individual patterns.

For each pattern in a workload, a dedicated final state is
defined. When the final state corresponding to some pattern

is reached, a match is reported. Note that while final states

are typically the leaves of the tree, this is not always the case.

For example, in a workload consisting of SEQ (A,B,C) and
SEQ (A,B), the final state for SEQ (A,B) is an internal node.

The evaluation process for multiple patterns is similar to

the one presented in [42] for single-pattern detection. As

a new event e of type T enters the system, it is evaluated

against existing NFA instances. An instance is defined by a

combination of a unique state identifier and a partial match.

The system starts with a single instance associated with

the initial state and an empty match. All instances associ-

ated with states containing an outgoing transition for T are

matched with e . For every instance satisfying the conditions

between the events (including e), a new instance is created

containing the new match resulting from e’s addition and

associated with the state to which the transition leads. When

an instance corresponding to some final state is created, its

match is reported to the end users. An instance exceeding

the time window specified by its associated state is removed

from the system.

Since the number of instances in a system processing a

large workload may be huge, traversing all of them on every

event arrival is impractical. Instead, for each event typeT we

define a list lT to contain all stateswith an outgoing transition

accepting T . The size of lT can never exceed the number of

patterns in a workload containing T in their specification

and will be substantially lower under an efficient sharing

strategy that aims to merge states that process interleaving

event types. At runtime, NFA instances are stored in a hash

table according to their associated state, and the arrival of

an event of type T only triggers the traversal of instances

associated with states in lT . For example, the state lists of

a multi-pattern NFA in Figure 5(b) are lA = {q2.q3} , lB =
{q1} , lC = {q2} , lD = {q4}.

3.2 Multi-Pattern Tree
Global evaluation plans utilized by multi-pattern NFAs are

similarly structured in a tree-like manner. We will refer to

this plan type as the multi-pattern tree (MPT). Given a MPT,

a multi-tree NFA is constructed by simply copying the struc-

ture of the former.

As described in Section 2, a MPT is created by the opti-

mizer. As we will see in Section 4, our optimizer proceeds by

creating an initial MPT and repeatedly modifying it. Hence,

efficient creation and modification operations are crucial for

minimizing the optimization cost. In implementing these

operations, the core principle of MPT behavior is to uncon-

ditionally share all shareable prefixes of the supplied local

evaluation plans (orders). To add an evaluation orderO to an

existing MPT, we iterate over O and only create a new node

if no equivalent one exists. Two nodes are considered equiv-

alent if and only if they correspond to identical sequences of

event types, and if their edges specify identical conditions.

Similarly, a plan is removed by iterating over the respective

order and only deleting states that are not shared with other

patterns.

Figure 6 illustrates an addition and a removal of a plan

from a MPT. The complexity of both operations is O (m),

wherem is the length of the evaluation order.

Creating a MPT from a set of orders {O1, · · · ,On} is imple-

mented by iteratively adding the orders to an initially empty

tree. This operation requiresO (n ·max (mi)) time and space,

wheremi is the length of Oi .

Since MPTs merge all common prefixes, we can uniquely

define a MPT by the tuple (O1, · · · ,On). Forcing some nodes

not to be shared is only possible by modifying the individual

evaluation orders. This way, careful selection of local evalu-

ation plans by the optimizer can achieve the perfect balance

between sharing degree and local evaluation plan quality.

3.3 Runtime Complexity and
Multi-Pattern Cost Model

We will now analyze the runtime complexity of the MCEP

evaluation process described above and derive the cost func-

tion definition for multi-pattern trees.

SIGMOD’19, June 2019, Amsterdam, The Netherlands Ilya Kolchinsky and Assaf Schuster

(a) (b) (c)

Figure 6: MPT modification example: (a) a MPT from
Figure 5(a) and a local plan for a pattern SEQ(A,C,E); (b)
the MPT following the addition of the new evaluation
plan (the path corresponding to the newly added plan
is highlighted); (c) the MPT after the local evaluation
plan for SEQ(A,B,C) is removed.

The total cost associated with processing a single event

e of type T is the sum of two components: 1) the cost of

combining e with the existing partial matches and creating

new instances as a result of successful matching; 2) the cost

of purging the instances created as a result of e’s arrival upon
their expiration. We will denote the former as CP (T) and
the latter as CR (T).
Both functions depend on the expected number of in-

stances active at the time of an event arrival. Reducing the

number of instances (or, more generally, the size of inter-

mediate results) is a common optimization goal in multiple

fields, including database query optimization [18, 58, 61] and

complex event processing [42, 49, 57]. In [40], a cost model

was developed to estimate this metric for single-pattern lazy

NFA evaluation. For an order-based planO =
(
Eq1
, · · · ,Eqm

)
detecting a pattern P = (E, S,C,W), this cost function is de-

fined as:

Costord (O, P , Stat) =

|E |∑
k=1

Costkord (O, P , Stat) ,

where Costkord is the cost of the kth state in the chain-based

NFA following O , calculated as follows:

Costkord (O, P , Stat) =W
k ·

k∏
i=1

rqi ·
∏

i, j≤k ;i≤j

selCqi ,qj ,

where ri ; i ∈ [1,m] and selCi, j ; i, j ∈ [1,n] are as defined in

Section 2.
1

1
The presented function is the basic version of Costord and it only applies

when no negation or Kleene closure operator appears in the pattern. The

reader is referred to [40] for the full definition of the cost function.

We will use the above definition to calculate the expected

number of instances existing simultaneously at any given

moment during MPT-based multi-pattern evaluation. Given

a node N , let PN denote the path from the root of the MPT

to N (by definition of a tree, there is always exactly one

such path). For the root, we set PR = ∅. The total number

of instances is the sum of numbers of instances associated

with each NFA state (and hence with the corresponding MPT

node), calculated as follows:

#inst (MPT ,WL, Stat) =
∑

N ∈MPT

Cost |PN |

ord (PN ,WL, Stat) .

Thus, to calculate the number of instances to be traversed

upon arrival of an event of type T , we need to sum the

instances associated with the states in lT :

#instT (MPT ,WL, Stat) =
∑
S ∈lT

Cost
|PN (S) |
ord

(
PN (S),WL, Stat

)
,

where N (S) denotes a node corresponding to S inMPT .
The processing cost per event is now derived as follows.

LetCa be the cost of accessing an instance,Cn the cost of cre-

ating a new instance and inserting it into the data structure,

and Cr the cost of removing an instance from the system.

In addition, let Cv (T ,PN) denote the cost of verifying the

conditions between a new event of type T and the events

preceding T in PN , and let Selv (T ,PN) denote the total

selectivity of the above conditions. To make Cv and Selv
well-defined, we set Cv = Selv = 0 if T < PN . Then, the

expected cost of processing a single event of type T is:

CP (T) =
∑
S ∈lT

(
Cost

|PN (S) |
ord

(
PN (S),WL, Stat

)
·(

Ca +Cv
(
T ,PN (S)

)
+ Selv

(
T ,PN (S)

)
·Cn

))
.

To calculate the cost of removing the expired instances,

we observe that the expected number of instances created

in state S after processing a new event of type T is equal to

Selv
(
T ,PN (S)

)
. Thus, the cost of eventually removing these

instances upon their expiration is:

CR (T) =
∑
S ∈lT

Cost
|PN (S) |
ord

(
PN (S),WL, Stat

)
·Selv

(
T ,PN (S)

)
·Cr .

The above analysis emphasizes two main performance

objectives of a MCEP system attempting to minimize the

processing cost per event. First, the sharing degree needs to

be maximized to reduce the sizes of the state lists lT . Second,
the cost of the local evaluation plans in terms of the expected

number of simultaneously existing instances has to be as

low as possible. As illustrated in Figure 3, there might be a

conflict between these two objectives, which we will solve

by defining an optimization problem later on.

Real-Time Multi-Pattern Detection over Event Streams SIGMOD’19, June 2019, Amsterdam, The Netherlands

The extended formula for the expected number of in-

stances represents the same parameter dependencies as does

the expression CP (T) +CR (T). Hence, we will use it as our
cost function for measuring the quality of MPTs:

Costmulti
ord (MPT ,WL, Stat) = #inst (MPT ,WL, Stat) .

3.4 MCEP Optimization Problem
We will now formally define the problem to be solved by the

MCEP optimizer. Given an order-based plan O for a pattern

P and a multi-pattern tree MPT , we say that O ∈ MPT if

and only ifMPT contains a path P of length |O |, starting at

the root and ending at some final state, such that the event

types and the conditions specified on the transitions in P are

identical to those of a NFA detecting P according to O . For
example, a MPT in Figure 6(b) satisfiesO3 = (A,C,E) ∈ MPT .
Also, we will denote byORDP the set of all valid order-based

evaluation plans for P . For a pattern of sizem, |ORDP | =m!.

We are now ready to define our optimization problem.

Tree-based MCEP optimization problem (T-MCEP).
Given a workloadWL of n patterns and a statistics collection

Stat , find a multi-pattern treeMPT minimizing the value of

the cost function Costmulti
ord (MPT ,WL, Stat) subject to

∀Pi , 1 ≤ i ≤ n : ∃O ∈ ORDP s.t.O ∈ MPT .

We will denote the path in the MPT corresponding to the

evaluation order of a pattern Pi as Pi .

We will now discuss the complexity of T-MCEP. It can

be noted that for n = 1 our problem is equivalent to the

single-pattern CEP optimization problem (SCEP), thoroughly

discussed in previous work [40, 49, 52, 57]. In particular, it

was shown in [40] that SCEP is NP-complete by reducing

it to the problem of join evaluation order generation. The

NP-completeness of this latter problem was in turn proven

by [18, 37] through a reduction to the maximum clique prob-

lem. The maximum clique problem is not only known to be

NP-complete, but is also hard to approximate. It was demon-

strated in [31] that, unless NP = ZPP , no polynomial-time

algorithm exists that approximates the problem within the

factor of n1−ε
, where n is the size of the graph. By correct-

ness of the reductions, this result applies also to the SCEP

problem, and, by generalization, to T-MCEP.

4 OPTIMIZATION FRAMEWORK FOR
T-MCEP

T-MCEP is a computationally hard optimization problem,

characterized by an enormously large solution space and

multiple local minima. Therefore, advanced techniques are

needed in order to produce a high-quality solution under

tight restrictions common for real-time MCEP systems.

The algorithms employed by our optimizer to achieve

this goal implement the local search paradigm [3, 36]. Local

search is a well-known approach for finding approximate

solutions for hard optimization problems, based on execut-

ing heuristically guided random walks in the solution space

and searching for the cheapest solution subject to a prede-

fined cost function. Local search methods are successfully

applied for solving a wide range of problems, from the classic

traveling salesman problem to code design and VLSI layout

synthesis [3].

To the best of our knowledge, no prior work attempted to

represent the task of stream or event processing optimization

as a local search problem. Instead, related research efforts

focused on utilizing heuristic approaches [56], dynamic pro-

gramming [7, 49], local-ratio approximation algorithms [54],

and branch-and-bound methods [28, 64] for similar optimiza-

tion problems with hyperexponential solution spaces.

Local search methods present several important benefits

for real-time streaming applications, and in particular for

MCEP. Most importantly, they offer a tradeoff between the

quality of the returned solution and the running time of the

search. Since the local search procedure keeps a “current

best” solution at any point of its execution, it can always be

interrupted due to expired time limit and will return a valid

solution, albeit not necessarily the cheapest. This property

makes local search methods an attractive choice for target-

ing the MCEP optimization problem under tight real-time

constraints.

We start this section by describing a data structure for

managing inter-pattern sharing opportunities, which we

denote as a multi-pattern graph (MPG). We then present a

set of algorithms utilizing the MPG and implementing the

local search paradigm to solve T-MCEP.

4.1 Multi-Pattern Graph
We will start with some preliminary definitions. Let πX (Y)
denote a projection of an expression Y on a set of variables

X. Y can be either a pattern structure or a condition set as

defined in Section 2. For example, π {B,D } (SEQ (A,B,C,D)) =
SEQ (B,D). Given a pattern P = (E, S,C,W), we will say

that another pattern P ′ = (E ′, S ′,C ′,W ′) is a subpattern of

P (marked as P ′ ⊆ P) if E ′ ⊆ E, S ′ = πE′ (S), C ′ = πE′ (C),
andW ′ ≤W .

A common subpattern Pi j =
(
Ei j , Si j ,Ci j ,Wi j

)
of two pat-

terns Pi , Pj is a pattern satisfying

(
Pi j ⊆ Pi

)
∧

(
Pi j ⊆ Pj

)
,

such thatWi j = min
(
Wi ,Wj

)
. A maximal common subpat-

tern of Pi , Pj is a common subpattern Pi j , such that no other

common subpattern P ′
i j satisfies Pi j ⊆ P ′

i j . We will denote

it by MPi j from now on. In addition, we will denote by Γi j
the set of all subsets ofMPi j , that is, all common subpatterns

of Pi and Pj . Obviously, Γi j = Γji for each i, j. The above

definitions are trivially extended to an arbitrary number of

intersecting patterns.

SIGMOD’19, June 2019, Amsterdam, The Netherlands Ilya Kolchinsky and Assaf Schuster

Figure 7: A multi-pattern graph for a workload of 6
patterns. Edges corresponding to maximal common
subpatterns of size 1 are not shown. The triplet P1, P2

and P3 shares a maximal common pattern SEQ(A,C).
P3 and P4 have two distinct maximal common subpat-
terns. P6 is fully contained in P5.

To illustrate the above notations, let P1 : SEQ (A,B,C,D)
and P2 : SEQ (A,E,C,D). Assume that both patterns have

no conditions and W1 = 10,W2 = 20. Then, SEQ (A,D),
SEQ (C,D), and SEQ (A,C)withW = 10 are common subpat-

terns of P1 and P2, while SEQ (C,A) is a subpattern of neither,
since it has a conflicting structure. The maximal common

subpattern is SEQ (A,C,D).
The multi-pattern graph MPG = (V ,E) is a data struc-

ture capable of efficiently collecting, maintaining, and re-

trieving the information regarding the mutual subpatterns

of P1, · · · , Pn . For each pattern Pi , MPG contains a vertex

vi ∈ V . For each pair of distinct patterns Pi , Pj with non-

empty intersection (i.e., satisfying Γi j , ∅), an undirected

edge ei j =
(
vi ,vj , Γi j

)
∈ E is defined.

Figure 7 depicts a MPG for a workload of 6 patterns. For

presentation clarity, edges withmaximal common subpattern

of size 1 are not shown.

In the general case, a MPG is an arbitrary, not necessarily

connected graph. However, it can be noted that any algo-

rithm solving T-MCEP can be activated separately on each

connected component, and the results can then be combined

to produce the final plan. Not only does this observation

allow us to solve the problem much more efficiently in the

presence of multiple components, but it also makes it possi-

ble to limit the discussion below to connected graphs.

To guarantee an efficient local search procedure, the MPG

has to occupy small space. Moreover, addition and removal

operations must be fast and low-cost, and likewise for the

retrieval of pattern intersection information. By utilizing

compact graph representation and advanced optimizations,

we are able to guarantee near constant cost of retrieval and

worst-case linear cost of addition and deletion with near

linear space complexity. The techniques for optimizing MPG

performance are described in detail in Appendix A.

4.2 Local Search Algorithms for T-MCEP
A local search problem is specified by a pair (φ, f), where
φ is a set of feasible problem solutions and f : φ → R is a

cost function. The goal is then to find an optimal solution s∗
such that f (s∗) ≤ f (s) for all s ∈ φ. In the case of T-MCEP,

φ consists of all possible MPTs and f ≡ Costmulti
ord .

The search starts from some initial solution sinit . Local
search algorithms traverse the search space by exploring

the neighborhood of the current solution. A domain-specific

neighborhood function N : φ → 2
φ
maps a solution to a set

of its neighbors, i.e., solutions that can be obtained by per-

forming a slight modification. The strategy for performing

the search is determined by themeta-heuristic in use. A local

search algorithm for a given problem can be uniquely defined

by a combination of a meta-heuristic and a neighborhood

function. When a predefined stopping criterion is satisfied,

the search terminates and the cheapest observed solution is

returned.

The local search algorithms employed by our optimizer

for solving T-MCEP utilize two well-known meta-heuristics,

simulated annealing and Tabu search. Appendix B provides

the background on these methods and outlines our imple-

mentation choices. The remainder of this section focuses on

our problem-specific neighborhood functions utilizing the

information in the MPG to create candidate solutions.

It can be noted that the solution space of our problem

is enormously large. For a workload of size n, there are∏n
i=1

|Pi |! possible MPTs, where |Pi | denotes the number

of event types in the ith pattern. Fortunately, closer analysis

of the solution space will allow us to immediately discard

the overwhelming majority of the subplan combinations.

We can observe the following regarding the possible local

evaluation orders for a pattern Pi in the shared workload.

If no subset of Pi can be shared with other patterns, it only

makes sense to select the most efficient evaluation order.

Otherwise, for every shareable subpattern P ′ ⊆ P , we have
to consider an order that starts with the best order O ′

for

P ′
, then continues with the best order for the remainder of

the pattern given O ′
as the prefix. Note that not only the

maximal common subpatterns but also their subsets must be

considered, including the empty subset (which is equivalent

to the case when no such P ′
exists).

We will formally state the above in the following theorem.

Theorem 4.1. Let MPTopt be the optimal multi-pattern
tree for some workloadW . Then, for each path Pi inMPTopt
corresponding to the pattern Pi at least one of the following
holds: (1) Pi is the optimal evaluation order for Pi ; (2) Pi can
be divided into a non-empty prefix Pre fi that is shared with
at least one additional pattern and a non-shared suffix Su f fi ,
and it is the most efficient local evaluation order for Pi out of
those starting with Pre fi .

Real-Time Multi-Pattern Detection over Event Streams SIGMOD’19, June 2019, Amsterdam, The Netherlands

The proof is straightforward by assuming that neither (1)

nor (2) hold and showing thatMPTopt can be improved by

modifying Su f fi to make Pi the most efficient order start-

ing with Pre fi , which contradicts the optimality ofMPTopt .
Since Su f fi is not shared by definition, improving it neces-

sarily leads to an improvement ofMPTopt .
Theorem 4.1 reduces the maximal number of potential

orders for a single pattern from |Pi |! to
∑n

j=1

��Γi j ��. However, to
apply the above strategy, an algorithm is required to calculate

local evaluation plans as described above.Wewill assume the

existence of a deterministic local plan generation algorithm
A, capable of the following functionality:

(1) Given a pattern P and the statistical event characteris-

tics Stat , return the cheapest local order-based evalua-

tion plan O subject to Costord .
(2) Given a pattern P , its subpattern P ′

, an evaluation plan

O ′
for P ′

, and the statistics collection Stat , return the

cheapest (subject to Costord) local order-based evalua-

tion plan O starting with prefix O ′
.

Many algorithms answering the above requirements have

been proposed [7, 40, 42]. In particular, any greedy algorithm

or an algorithm based on dynamic programming satisfies

both conditions. While most algorithms are not guaranteed

to produce an optimal result due to the NP-hardness of local

evaluation plan generation [40], they provide empirically

accurate approximations. In the example that we discussed

in Section 1, A is an algorithm arranging the event types in

the ascending order of their expected arrival frequencies.

With the above observation in mind, we will now define

neighborhood functions for T-MCEP. The first function pro-

duces a neighboring solution by selecting a random edge(
vi ,vj

)
in the MPG and a common subpattern P ∈ Γi j . We

restrict P to be different from the subpattern that is shared

between Pi and Pj in the current MPT (however, its subpat-

terns are allowed). A neighbor will be generated by invoking

A to create new evaluation ordersOi ,O j sharing a common

prefixOP , and replacing Pi ,Pj with the resulting orders. We

will denote this neighborhood as an edge-based neighborhood
and use the notation Nedдe to refer to it. Nedдe (MPT) will
denote the set of all solutions that can be obtained by the

above procedure. The size of the neighborhood produced by

Nedдe is
1

2
·
∑n

i=1

∑n
j=1;j,i

��Γi j ��.
The main drawback of Nedдe is that it can only attempt

pairwise sharing. In many real-life scenarios, a single subex-

pression might be shared between patterns comprising a

large fraction of the workload. While sharing such subex-

pression between all involved patterns may dramatically

increase the performance, only considering two of them may

fail to produce an improvement over the plan not sharing

the expression at all. As a result, the sharing opportunity

may be missed.

To overcome this limitation, we define vertex-based neigh-
borhood Nver tex as follows. LetVi =

⋃
(vi ,vj)∈E Pi j be called

the vicinity of vi . Instead of an edge, the neighborhood func-

tionwill select a vertexvi and a subpattern P in the vicinity of

vi . Then, let ΓP denote a set of all patterns containing P . This
set can be efficiently retrieved from the MPG as described

in Appendix A. We will selectmin (k, |ΓP |) patterns, where
k ≥ 2 is a predefined parameter. Then, A will be invoked to

generate new evaluation orders sharing a common prefixOP .

We will denote the variation of Nver tex using a particular

value for k as Nk
ver tex . Note that N

2

ver tex is equivalent to

Nedдe . The size of the neighborhood of Nk
ver tex is bounded

by

∑n
i=1

∑
P ∈Vi

(
|ΓP |
k

)
.

The per-step complexity of the neighborhood functions

Nedдe and Nk
ver tex is O

(∑n
i=1

mi · O
)
, where O is the com-

plexity of A. A step is defined as a single selection of a

neighbor and evaluating its cost.

In all algorithms, the initial state is set to theMPT in which

all patterns are evaluated according to the best possible local

evaluation orders, that is, Pi = A (Pi , Stat) for all i .

5 MCEP WITH ARBITRARY
SUBEXPRESSION SHARING

The multi-pattern plan generation method in Section 3 only

considers prefix sharing. This introduces a significant lim-

itation, since the optimizer is required to move common

subpatterns to the MPT root in order to share their compu-

tation. This mechanism also prevents a pattern from sharing

multiple distinct subexpressions with other patterns. As an

example, consider a workload consisting of patterns P1 :

SEQ (A,B,C,D), P2 : SEQ (A,E,C, F), P3 : SEQ (G,B,H ,D).
In order to share the subpattern SEQ (A,C) with P2, the eval-

uation order of P1 must start with (A,C) or (C,A). On the

other hand, it has to start with (B,D) or with (D,B) to share

the subpattern SEQ (B,D) with P3. The optimizer will have

to refrain from sharing one of the subpatterns in this case.

In this section, we extend our optimization framework

to arbitrary subexpression sharing. To that end, we replace

the local order-based plans with tree-based plans, shaped as

binary trees. Tree-based plans, first described in [49], specify

the structure for tree-based single-pattern evaluation mech-

anisms. A leaf is defined for each event type, and the root

of the tree serves as a final state. The evaluation proceeds

from the leaves towards the root, with each internal node re-

sponsible for a subpattern consisting of the event types in its

subtree. Figure 8 presents three possible tree-based plans for

a pattern SEQ (A,B,C). Tree-based evaluation mechanisms

were shown by multiple studies to be more expressive and

perform better than NFAs [39, 40, 49].

SIGMOD’19, June 2019, Amsterdam, The Netherlands Ilya Kolchinsky and Assaf Schuster

(a) (b) (c)

Figure 8: Tree-based plans for a pattern SEQ(A,B,C).

Figure 9: A multi-pattern multitree for a shared work-
load of patterns P1 : SEQ(A,B,C,D), P2 : SEQ(A,E,C, F),
and P3 : SEQ(G,B,H ,D).

The tree-based evaluation process is similar to the one

described for NFAs. As a new event arrives, an instance is

created containing this event. Every instance corresponds

to some subtree s of the tree-based plan. A new instance I
is combined with previously created “siblings”, that is, in-

stances associated with a node sharing the parent with the

node of I . As a result, another instance containing the unified
subtree is generated. This process continues iteratively until

the root of the tree is reached or no siblings are found.

Similarly toMPT,we define amulti-patternmultitree (MPM)
as the global plan consisting of multiple shared tree-based

plans. Each pattern in a MPM has a dedicated root, and all

leaves corresponding to the same event type are shared re-

gardless of the plan in use. Figure 9 depicts a possible MPM

for the example above. Note that the displayed plan success-

fully shares both subpatterns of P1 with P2 and P3, a result

that could not be achieved using an order-based approach.

Themultitree-basedMCEP optimization problem (M-MCEP)

will be defined similarly to T-MCEP. The formal definitions of

M-MCEP, the new cost functionsCosttr ee andCost
multi
tr ee , and

the corresponding extension of Theorem 4.1 can be found in

Appendix C.

The MPM is created and modified similarly to the MPT.

The complexity of the operations is not altered by switching

to tree-based plans, as the number of nodes in a local tree-

based plan is still linear in the number of the participating

event types. In addition, the existence of a subtreeT in aMPM

can be tested in constant time (and an additionalO
(∑n

i=1
mi

)
space) by hashing the subtrees upon creation. The complexity

analysis of runtime evaluation from Section 3.3 also remains

unchanged for the multitree model, with the exception of

the cost function Costmulti
ord being replaced with Costmulti

tr ee .

The local search process for MPMs functions as described

for MPTs in Section 4.2. However, now it is possible for a

pattern to share multiple disjoint subtrees. Consider a situa-

tion where one such subpattern P̂1 is already shared, and the

optimizer attempts to share the second subpattern P̂2 during

the local search step. In this case, we would like to consider

two separate options: 1) the most efficient tree containing P̂2

regardless of the existing sharing of P̂1; 2) the most efficient

tree containing both P̂1 and P̂2. This case can be generalized

to sharing q subtrees and considering the (q + 1)th one. Due

to this extension, A is required to support multiple subtrees.

More formally, we require A to be capable of the following:

(1) Given a pattern P and the statistical event characteris-

tics Stat , return the cheapest local tree-based evalua-

tion plan T subject to Costtr ee .
(2) Given a pattern P , a set of tree-based plans ϒ for some

subpatterns of P , and the statistics collection Stat , re-
turn the cheapest (subject toCosttr ee) local tree-based
evaluation plan T containing all trees in ϒ as subtrees.

Algorithms for tree-based plan generation satisfying the

above requirements are discussed in [40, 49].

When selecting the next state to be returned, our neigh-

borhood functions will randomly choose whether existing

shared subtrees should be preserved for the patterns involved.

For Nk
ver tex , this decision will be performed independently

for each of the k patterns sharing a common subpattern. To

apply this modification, we need to store sharing informa-

tion for each pattern in the MPG, which adds a memory

requirement ofO (n ·maxi (|Ei |)). No further changes to the

structure and the operations of the MPG are necessary for

the tree-based evaluation model.

6 EXPERIMENTAL EVALUATION
In this section, we report the results of our experimental eval-

uation. We assess the overall system performance achieved

by our approach as compared to the state-of-the-art methods

for MCEP, and analyze the impact of the various parameters

on the quality of the generated global plans.

6.1 Experimental Setup
Two independent datasets were used in the experiments. The

first was taken from the NASDAQ stock market historical

records [1]. Each data record represents a single update to

the price of a stock, spanning a 1-year period and covering

over 2100 stock identifiers with prices periodically updated.

Our input stream contained 80,509,033 primitive events, each

consisting of a stock identifier, a timestamp, and a current

price. We also augmented the event format with the precalcu-

lated difference between the current and the previous price

of each stock. We considered updates of each stock identifier

as events belonging to a separate type.

Real-Time Multi-Pattern Detection over Event Streams SIGMOD’19, June 2019, Amsterdam, The Netherlands

The structure of the patterns in the workloads generated

for this dataset was motivated by the problem of monitoring

the relative changes in stock prices. Each pattern represented

either a sequence or a conjunction of a number of event

types and included a number of predicates, roughly equal

to half the pattern size, comparing the difference attributes
of two of the involved event types. In addition, about 20%

of the patterns contained either a negation or a Kleene clo-

sure operator on some event type. As discussed in Section

2, the aforementioned combinations of pattern operators

are sufficient to cover the whole spectrum of pattern struc-

tures. For example, a typical sequence pattern of size 3 is

as follows: P1 : SEQ (MSFT ,Kleene (GOOG) ,APPL) ;C1 =

{MSFT .di f f < APPL.di f f }.
The second dataset contains the vehicle traffic sensor data,

provided by the city of Aarhus, Denmark [8] and collected

over a period of 4 months from 449 observation points, with

13,577,132 primitive events overall. Each event represents an

observation of traffic at the given point. The attributes of an

event include, among others, the point ID, the average ob-

served speed, and the total number of observed vehicles dur-

ing the last 5 minutes. The patterns created for this dataset

followed the rules specified above and were motivated by

normal driving behavior, where the average speed tends to

decrease with the increase in the number of vehicles on the

road. We requested to detect the violations of this model, that

is, combinations of three or more observations with either

an increase or a decline in both the number of vehicles and

the average speed.

Unless stated otherwise, all arrival rates and predicate

selectivities were calculated in advance during the prepro-

cessing stage. The measured arrival rates varied between 2

and 47 events per second, and the selectivities ranged from

0.003 to 0.92.

The workloads were created by grouping the patterns

generated as described above based on a set of parameters,

including the number of patterns in a workload, average

pattern size (number of event types in a pattern), and pattern

time window. Unless stated otherwise, the default values

were set to 100 patterns per workload, an average pattern

size of 5 event types, and the time window of 15 minutes. Ex-

periments considering two additional parameters of interest

are discussed in Appendix D.

Unless stated otherwise, all experiments were conducted

on the full version of our MCEP optimizer presented in Sec-

tion 5. The default local search time limit for all algorithms

was set to 180 seconds. We used the algorithm based on

dynamic programming described in [40] as our local plan

generation algorithm A.

We selected throughput, defined as the number of events

processed per second during pattern detection, as our main

performance metric. We believe that similar results could

be obtained for algorithms targeting any other optimization

goal, such as minimizing latency, power consumption, or

communication cost.

All experiments were repeated on 10 independently gener-

ated workloads, and the displayed results were averaged

among all trials. All models and algorithms were imple-

mented in Java. The experiments were run on a machine

with 2.20 Ghz CPU and 16.0 GB RAM.

6.2 Experimental Results
6.2.1 Impact of Input Parameters on System Performance.
In our first experiment, we evaluated the performance of

the local search algorithms described in Section 4 as a func-

tion of the workload size (Figure 10). Here and in all subse-

quent experiments, the graphs show the relative throughput

gain over the trivial global evaluation plan, utilizing no shar-

ing and no rewriting techniques. The neighborhoods Nedдe ,

N 4

ver tex , and N 8

ver tex were tested in conjunction with sim-

ulated annealing and Tabu search meta-heuristics on stock

(Figures 10(a)-10(b)) and traffic (Figures 10(c)-10(d)) datasets.

For Nedдe alone, the prefix-only version of our framework

(Section 3) was evaluated in addition to the default arbitrary-

subset version.

Overall, all combinations demonstrated more significant

throughput gains for larger workloads, ranging from a factor

of 21 to over 72. Despite being the simplest,Nedдe neighbor-

hood showed the best results, finding evaluation plans that

outperformed the trivial plan by a factor of up to 72.7 for the

stock dataset and up to 50.7 for the traffic dataset. This can be

explained by the overwhelming size of the neighbor spaces

explored by N 4

ver tex and N 8

ver tex . Tight time constraints

prevent the system from locating the best optimization op-

portunities in huge neighborhoods. Thus, although Nver tex
neighborhoods contain all of the moves in Nedдe , the bet-

ter moves are statistically harder to reach before the time

expires. Comparable performance was observed for both

meta-heuristics, with simulated annealing slightly outper-

forming Tabu search for the stock dataset and vice versa for

the traffic dataset.

The choice of a subexpression sharing strategy was found

to have a major impact on the system performance. When

the optimizer was restricted to only consider sharing pre-

fixes, applying the generated plans resulted in up to 5 times

lower throughput (marked as ‘EDGE-PREFIX’ in all graphs)

as compared to the plans produced using an identical setup

without the above limitation (marked as ‘EDGE’). This ob-

servation fully matches our prior analysis. As we discussed

in Section 5, a prefix-only approach ignores a significant

fraction of the space of possible optimizations and limits a

pattern to only sharing a single subexpression by utilizing

order-based local plans as opposed to tree-based ones.

SIGMOD’19, June 2019, Amsterdam, The Netherlands Ilya Kolchinsky and Assaf Schuster

(a) (b) (c) (d)

Figure 10: Throughput gain as a function of the workload size for different combinations of a meta-heuristic, a
neighborhood function, a subexpression sharing strategy, and a dataset: (a) stocks dataset, simulated annealing;
(b) stocks dataset, Tabu search; (c) traffic dataset, simulated annealing; (d) traffic dataset, Tabu search.

(a) (b) (c) (d)

Figure 11: Throughput gain of the local search algorithms as a function of: (a) average pattern size; (b) local search
running time; (c) pattern timestamp-based window; (d) pattern count-based window.

We further assessed the scalability of our optimizer sub-

ject to various parameters (Figure 11). Simulated annealing

(marked as ‘SA’ in the graph) and Tabu search (marked as

‘TS’) were again evaluated on both datasets in conjunction

with the best-performing neighborhood Nedдe . Figure 11(a)

depicts the throughput gain as a function of the average

length of a pattern in a workload. Our approach seems to im-

prove even more for longer patterns, speeding up the event

processing by up to two orders of magnitude. This is not

surprising, as longer patterns introduce more optimization

opportunities. We also observed that in most cases the simu-

lated annealing meta-heuristic achieved better performance

than Tabu search.

Unsurprisingly, the output plan quality also improves with

increased time limit of the local search algorithm (Figure

11(b)). Interestingly, the performance of simulated annealing

seems to converge to a constant value, while Tabu search

keeps improving for longer time limits. This can be explained

by the distinctive behavior of the former after a large num-

ber of iterations, when the current threshold becomes small

enough for the algorithm to converge to a local minimum.

The results obtained for different time window sizes (Fig-

ure 11(c)) demonstrate similar trends. Since our cost function

and the overall system throughput strictly depend on this

parameter, increasing it leads to bigger differences in plan

qualities, both calculated and empirically observed.

Finally, we experimented with patterns utilizing count-
based windows. As opposed to specifications based on time-
based windows that we defined in Section 2, count-based

patterns require a match to appear within the lastW arrived

events rather than within W time units.

Figure 11(d) presents the results. For the stock dataset,

even bigger performance boost was observed for larger win-

dows as compared to the time-based scenario. This can be

explained by the highly fluctuating event arrival rates exhib-

ited by this dataset. When time-based windows are used, the

peak load is only experienced during brief ‘bursts’, whereas

large count-based windows cause the system to be constantly

overloaded. Since the performance gain achieved by an effi-

cient evaluation plan is proportional to the average system

load, the latter case demonstrates a more significant increase

in total throughput. In contrast, the results for the traffic

Real-Time Multi-Pattern Detection over Event Streams SIGMOD’19, June 2019, Amsterdam, The Netherlands

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12: Throughput gain of the state-of-the-art and the local search algorithms applied on the stock dataset
((a)-(d)) and on the traffic dataset ((e)-(h)) as a function of: (a),(e) workload size; (b),(f) average pattern size; (c),(g)
pattern time window; (d),(h) pattern count-based window.

dataset were extremely similar to those obtained for time-

based windows due to much less skew in event distribution

over the input stream.

6.2.2 State-of-the-art Comparison. We repeated the experi-

ments summarized in Figures 10 and 11 for the basic sharing

and the basic reordering methods, as well as for two recent

state-of-the-art MCEP methods [54, 64].

The basic sharing method (SH) refers to the maximal

subexpression sharing technique mentioned in Section 3.2

and used in many previous studies (e.g., [7, 22, 24, 35]). The

basic reordering method (RE) greedily rebuilds the event

sequence by picking the event type maximizing the cost

function at each step [40].

SPASS [54] selects the subpatterns to share according to

a metric called ‘redundancy ratio’. This metric represents

the potential gain in sharing its computation. Each subex-

pression is assigned a score, and the winners are chosen

by approximating the well-known minimal substring cover

problem. MOTTO [64] utilizes a combination of techniques

referred to as MST (merge sharing technique), DST (decom-

position sharing technique), and OTT (operator transfor-

mation technique). The system solves the directed Steiner

minimum tree problem to select the best global plan pro-

duced using the above techniques.

Figure 12 presents the results. The redundancy ratiomethod

and the merge-decomposition technique are marked as SH-

RR and SH-MDT respectively. While both SH-RR and SH-

MDT scale well with growing workload size (Figures 12(a)

and 12(e)) and average pattern length (Figures 12(f) and

12(f)), our optimizer achieves the best overall speedup, in

some cases up to three times better than that of the runner-

up solution. This result follows from utilizing the reordering

opportunities, which were shown to drastically boost CEP

evaluation [42]. On the other hand, our approach also at-

tempts to exploit sharing opportunities when possible, which

allows it to outperform the pure reordering algorithm (RE)

for large pattern sizes. The gaps were closer for time win-

dow evaluation (Figures 12(c) and 12(g)), with SA-EDGE still

achieving an advantage of at least 25% over the second-best

method. The results for count-based windows (Figures 12(d)

and 12(h)) strictly follow the trends described for Figure 11.

6.2.3 Adaptive System Behavior. We evaluated the perfor-

mance of our system in the presence of a dynamically chang-

ing input stream. For this experiment alone, semi-synthetic

input was used. We implemented a component that accepts

a parameter x and randomly and independently transforms

every x incoming events before they are received by the

evaluation mechanism. A transformation is performed by

SIGMOD’19, June 2019, Amsterdam, The Netherlands Ilya Kolchinsky and Assaf Schuster

(a) (b)

Figure 13: Throughput gain as a function of the num-
ber of arrival rate reshufflings per 1000 incoming
events: (a) stock dataset; (b) traffic dataset.

randomly picking y event types, creating their random per-

mutation P and then replacing the type attribute of every

affected event with the one following its value in P . This
modification allows us to simulate rapid and drastic changes

in the arrival rates of all types of events.

We repeated the experiment for y = 5 and x ranging be-

tween 10 and 1000 on the static and the dynamic version of

our framework. In the static case, an evaluation plan was

created on startup and used exclusively regardless of input

changes. The dynamic version utilized the adaptive approach

introduced in [49], restarting the plan calculation process

when a drastic change in the statistics is detected. The results

are depicted in Figure 13. Unsurprisingly, the initially gener-

ated plan fails to perform adequately when the input char-

acteristics overcome on-the-fly changes. While extremely

frequent input changes clearly reduce system performance,

the adaptive method still leads to at least 10 times higher

throughput.

7 RELATEDWORK
Complex event processing systems. Scalable solutions

for real-time complex event detection have been the focus

of much research in recent years [20, 21, 27]. Following the

success of earlier data stream management systems [4, 10,

16, 17], a plethora of general purpose CEP frameworks were

developed, including SASE/SASE+ [6, 62], CEDR [13], T-Rex

[19], Amit [5] and ZStream [49]. Multiple CEP libraries are

available, such as Esper [2], Siddhi [60], and Cayuga [22].

Moreover, large-scale CEP engines are on the rise, such as

System S [9], TIBCO [15], WSO2 CEP [53], and CHAOS [29].

Single-pattern optimization. CEP systems implement

a broad variety of optimization techniques aimed at minimiz-

ing processing time and resource consumption of a single

pattern [19, 22, 25, 33, 50, 62, 63]. Multiple works focused

exclusively on pattern rewriting. In [52], a rewriting frame-

work based on unifying and splitting patterns is presented.

ZStream [49] presents a dynamic programming algorithm

for tree-based plan generation, utilizing a cost model similar

to ours. NextCEP [57] assigns a cost to every candidate plan

and utilizes a search algorithm to select the lowest cost eval-

uation scheme. In [7], events are processed in an ascending

order of their arrival rates to optimize distributed CEP.

Multi-query optimization techniques.Multi-query op-

timization (MQO) is a well-known problem in database query

processing [59]. Various methods have been proposed for

sharing common subexpressions between queries in a work-

load. Notable examples include Volcano [56], MQJoin [47],

and Monet [48]. Multi-query sharing techniques were in-

corporated in large-scale engines, such as SPARQL [43] and

Microsoft SQL Server [65]. SWO [28] is the closest in spirit

to our work. Rather than searching for common subexpres-

sions, the global plan is calculated using an optimization

algorithm that employs the branch-and-bound method.

Query sharingmechanismswere also developed for stream

processing [11, 26, 30, 35, 38]. NiagaraCQ [17] is a large-

scale system for processing multiple continuous queries over

streams. Its supported features include dynamic workload

modification. TelegraphCQ [16] is remarkable for introduc-

ing CACQ [46], a technique based on per-tuple dynamic

routing [12] for inter-query sharing. MQO solutions were

also proposed for processing XML streams [24, 34].

Pattern sharing techniques for complex event processing

are being actively researched. Numerous advanced methods

have been proposed for intra-pattern (sharing of subexpres-

sions inside a nested pattern) [44, 55] and inter-pattern sce-

narios (sharing between different patterns) [7, 22, 45, 54, 64].

Some solutions consider aggregations [51].

To the best of our knowledge, PB-CED [7] and MOTTO

[64] are the only CEP systems to consider a combination

of sharing and pattern rewriting techniques. However, the

solution provided by [7] only considers a single shared sub-

pattern. In [64], arbitrary subset sharing is achieved by trans-

forming a sequence pattern to a conjunction (rather than by

reordering methods), which is known to severely diminish

the performance of NFA-based event detection [41, 49].

8 CONCLUSIONS AND FUTUREWORK
In this paper, we studied the problem of optimizing multi-

pattern CEP performance using a combination of sharing and

pattern reordering techniques. We formally defined the re-

spective optimization problem and presented an optimization

framework for solving this computationally hard problem un-

der tight real-time conditions. Our experimental evaluation

demonstrated a significant performance boost as compared

to state-of-the-art MCEP techniques. Our future research

will further address additional challenges of MCEP, such as

SLA support and dynamic workload modification.

Real-Time Multi-Pattern Detection over Event Streams SIGMOD’19, June 2019, Amsterdam, The Netherlands

REFERENCES
[1] http://www.eoddata.com.

[2] http://www.espertech.com.

[3] E. Aarts and J. Lenstra, editors. Local Search in Combinatorial Opti-
mization. John Wiley & Sons, Inc., New York, NY, USA, 1st edition,

1997.

[4] D. J. Abadi, Y. Ahmad, M. Balazinska, M. Cherniack, J. Hwang, W. Lind-

ner, A. S. Maskey, E. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik.

The design of the Borealis stream processing engine. In CIDR, pages
277–289, 2005.

[5] A. Adi and O. Etzion. Amit - the situation manager. The VLDB Journal,
13(2):177–203, 2004.

[6] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. Efficient pattern

matching over event streams. In Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’08, pages

147–160, New York, NY, USA, 2008. ACM.

[7] M. Akdere, U. Çetintemel, and N. Tatbul. Plan-based complex event

detection across distributed sources. Proc. VLDB Endow., 1(1):66–77,
2008.

[8] M. Ali, F. Gao, and A. Mileo. Citybench: A configurable benchmark

to evaluate rsp engines using smart city datasets. In Proceedings of
ISWC 2015 - 14th International SemanticWeb Conference, pages 374–389,
Bethlehem, PA, USA, 2015. W3C.

[9] L. Amini, H. Andrade, R. Bhagwan, F. Eskesen, R. King, P. Selo, Y. Park,

and C. Venkatramani. SPC: A distributed, scalable platform for data

mining. In Proceedings of the 4th International Workshop on Data
Mining Standards, Services and Platforms, pages 27–37, New York, NY,

USA, 2006. ACM.

[10] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Mot-

wani, U. Srivastava, and J. Widom. STREAM: The Stanford Data Stream
Management System, pages 317–336. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2016.

[11] A. Arasu and J. Widom. Resource sharing in continuous sliding-

window aggregates. In Proceedings of the Thirtieth International Con-
ference on Very Large Data Bases - Volume 30, VLDB ’04, pages 336–347.

VLDB Endowment, 2004.

[12] R. Avnur and J. Hellerstein. Eddies: Continuously adaptive query

processing. SIGMOD Rec., 29(2):261–272, May 2000.

[13] R. S. Barga, J. Goldstein, M. H. Ali, and M. Hong. Consistent streaming

through time: A vision for event stream processing. In CIDR, pages
363–374, 2007.

[14] M. Blount, M. Ebling, J. Eklund, A. James, C. Mcgregor, N. Percival,

K. Smith, and D. Sow. Real-time analysis for intensive care: Develop-

ment and deployment of the Artemis analytic system. 29:110–8, 05

2010.

[15] P. Brown. Architecting Complex-Event Processing Solutions with TIBCO.
Addison-Wesley Professional, 1st edition, 2013.

[16] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.

Hellerstein, W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss,

and M. A. Shah. Telegraphcq: Continuous dataflow processing for an

uncertain world. In CIDR, 2003.
[17] J. Chen, D. J. DeWitt, F. Tian, and Y.Wang. Niagaracq: A scalable contin-

uous query system for internet databases. SIGMOD Rec., 29(2):379–390,
2000.

[18] S. Cluet and G. Moerkotte. On the complexity of generating optimal

left-deep processing trees with cross products. In Proceedings of the 5th
International Conference on Database Theory, ICDT ’95, pages 54–67,

London, UK, 1995. Springer-Verlag.

[19] G. Cugola and A. Margara. Complex event processing with T-REX. J.
Syst. Softw., 85(8):1709–1728, 2012.

[20] G. Cugola and A. Margara. Processing flows of information: From data

stream to complex event processing. ACM Comput. Surv., 44(3):15:1–
15:62, 2012.

[21] M. Dayarathna and S. Perera. Recent advancements in event processing.

ACM Comput. Surv., 51(2):33:1–33:36, February 2018.

[22] A. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. White. To-

wards expressive publish/subscribe systems. In Proceedings of the 10th
International Conference on Advances in Database Technology, pages
627–644. Springer-Verlag.

[23] A. Demers, J. Gehrke, B. Panda, M. Riedewald, V. Sharma, andW.White.

Cayuga: A general purpose event monitoring system. In CIDR, pages
412–422, 2007.

[24] Y. Diao, M. Altinel, M. Franklin, H. Zhang, and P. Fischer. Path sharing

and predicate evaluation for high-performance xml filtering. ACM
Trans. Database Syst., 28(4):467–516, December 2003.

[25] L. Ding, S. Chen, E. A. Rundensteiner, J. Tatemura, W. P. Hsiung, and

K. S. Candan. Runtime semantic query optimization for event stream

processing. IEEE 24th International Conference on Data Engineering
(ICDE), 0:676–685, 2008.

[26] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi. Sketch-based

multi-query processing over data streams. InData StreamManagement,
Data-Centric Systems and Applications, pages 241–261. Springer, 2016.

[27] I. Flouris, N. Giatrakos, A. Deligiannakis, M. Garofalakis, M. Kamp, and

M. Mock. Issues in complex event processing: Status and prospects in

the big data era. Journal of Systems and Software, 127:217 – 236, 2017.

[28] G. Giannikis, D. Makreshanski, G. Alonso, and D. Kossmann. Shared

workload optimization. Proc. VLDB Endow., 7(6):429–440, 2014.
[29] C. Gupta, S. Wang, I. Ari, M. Hao, U. Dayal, A. Mehta, M. Marwah, and

R. Sharma. Chaos: A data stream analysis architecture for enterprise

applications. In 2009 IEEE Conference on Commerce and Enterprise
Computing, pages 33–40, July 2009.

[30] M. Hammad, M. Franklin, W. Aref, and A. Elmagarmid. Scheduling

for shared window joins over data streams. In Proceedings of the 29th
International Conference on Very Large Data Bases - Volume 29, VLDB
’03, pages 297–308. VLDB Endowment, 2003.

[31] J. Håstad. Clique is hard to approximate within n1−ϵ
. In Proceedings

of 37th Ann. IEEE Symp. on Foundations of Computer Science, pages
627–636. IEEE Computer Society, 1996.

[32] M. Hill, M. Campbell, Y. C. Chang, and V. Iyengar. Event detection in

sensor networks for modern oil fields. In DEBS, volume 332 of ACM
International Conference Proceeding Series, pages 95–102. ACM, 2008.

[33] M. Hirzel, R. Soulé, S. Schneider, B. Gedik, and R. Grimm. A catalog of

stream processing optimizations. ACM Comput. Surv., 46(4):46:1–46:34,
March 2014.

[34] M. Hong, A. Demers, J. Gehrke, C. Koch, M. Riedewald, and W. White.

Massively multi-query join processing in publish/subscribe systems.

In Proceedings of the 2007 ACM SIGMOD International Conference on
Management of Data, pages 761–772, New York, NY, USA, 2007. ACM.

[35] M. Hong, M. Riedewald, C. Koch, J. Gehrke, and A. Demers. Rule-

based multi-query optimization. In Proceedings of the 12th International
Conference on Extending Database Technology: Advances in Database
Technology, EDBT ’09, pages 120–131, New York, NY, USA, 2009. ACM.

[36] H. Hoos and T. Stützle. Stochastic Local Search: Foundations & Appli-
cations. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

2004.

[37] T. Ibaraki and T. Kameda. On the optimal nesting order for computing

n-relational joins. ACM Trans. Database Syst., 9(3):482–502, 1984.
[38] P. Jovanovic, O. Romero, A. Simitsis, and A. Abello. Incremental

consolidation of data-intensive multi-flows. IEEE Transactions on
Knowledge and Data Engineering, 28(5):1203–1216, May 2016.

[39] I. Kolchinsky and A. Schuster. Efficient adaptive detection of complex

event patterns. PVLDB, 11(11):1346–1359, 2018.

SIGMOD’19, June 2019, Amsterdam, The Netherlands Ilya Kolchinsky and Assaf Schuster

[40] I. Kolchinsky and A. Schuster. Join query optimization techniques

for complex event processing applications. PVLDB, 11(11):1332–1345,
2018.

[41] I. Kolchinsky, A. Schuster, and D. Keren. Efficient detection of complex

event patterns using lazy chain automata. CoRR, abs/1612.05110, 2016.
[42] I. Kolchinsky, I. Sharfman, and A. Schuster. Lazy evaluation methods

for detecting complex events. In DEBS, pages 34–45. ACM, 2015.

[43] W. Le, A. Kementsietsidis, S. Duan, and F. Li. Scalable multi-query op-

timization for sparql. In Proceedings of the 2012 IEEE 28th International
Conference on Data Engineering, ICDE ’12, pages 666–677, Washington,

DC, USA, 2012. IEEE Computer Society.

[44] M. Liu, E. Rundensteiner, D. Dougherty, C. Gupta, S. Wang, I. Ari, and

A. Mehta. High-performance nested CEP query processing over event

streams. In Proceedings of the 27th International Conference on Data
Engineering, ICDE 2011, pages 123–134.

[45] M. Liu, E. Rundensteiner, K. Greenfield, C. Gupta, S. Wang, I. Ari, and

A. Mehta. E-cube: Multi-dimensional event sequence analysis using

hierarchical pattern query sharing. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of Data, SIGMOD

’11, pages 889–900, New York, NY, USA, 2011. ACM.

[46] S. Madden, M. Shah, J. Hellerstein, and V. Raman. Continuously adap-

tive continuous queries over streams. In Proceedings of the 2002 ACM
SIGMOD International Conference on Management of Data, pages 49–60,
New York, NY, USA, 2002. ACM.

[47] D. Makreshanski, G. Giannikis, G. Alonso, and D. Kossmann. Mqjoin:

Efficient shared execution of main-memory joins. Proc. VLDB Endow.,
9(6):480–491, January 2016.

[48] S. Manegold, A. Pellenkoft, and M. Kersten. A multi-query optimizer

for monet. In Proceedings of the 17th British National Conferenc on
Databases: Advances in Databases, BNCOD 17, pages 36–50, London,

UK, UK, 2000. Springer-Verlag.

[49] Y. Mei and S. Madden. ZStream: a cost-based query processor for

adaptively detecting composite events. In SIGMOD Conference, pages
193–206. ACM, 2009.

[50] O. Poppe, C. Lei, S. Ahmed, and E. Rundensteiner. Complete event

trend detection in high-rate event streams. In Proceedings of the 2017
ACM International Conference on Management of Data, SIGMOD ’17,

pages 109–124, New York, NY, USA, 2017. ACM.

[51] Y. Qi, L. Cao, M. Ray, and E. Rundensteiner. Complex event analytics:

Online aggregation of stream sequence patterns. In Proceedings of the
2014 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’14, pages 229–240, New York, NY, USA, 2014. ACM.

[52] E. Rabinovich, O. Etzion, and A. Gal. Pattern rewriting framework

for event processing optimization. In Proceedings of the 5th ACM
International Conference on Distributed Event-based Systems, pages
101–112. ACM, 2011.

[53] S. Ravindra and M. Dayarathna. Distributed scal-

ing of wso2 complex event processor. 2015.

https://wso2.com/library/articles/2015/12/article-distributed-

scaling-of-wso2-complex-event-processor/.

[54] M. Ray, C. Lei, and E. A. Rundensteiner. Scalable pattern sharing on

event streams. In Proceedings of the 2016 International Conference on
Management of Data, pages 495–510, New York, NY, USA, 2016. ACM.

[55] M. Ray, E. Rundensteiner, M. Liu, C. Gupta, S. Wang, and I. Ari. High-

performance complex event processing using continuous sliding views.

In Proceedings of the 16th International Conference on Extending Data-
base Technology, pages 525–536, New York, NY, USA, 2013. ACM.

[56] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and extensible

algorithms formulti query optimization. In Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data, SIGMOD

’00, pages 249–260, New York, NY, USA, 2000. ACM.

[57] N. P. Schultz-Møller, M. M., and P. R. Pietzuch. Distributed complex

event processing with query rewriting. In DEBS. ACM, 2009.

[58] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price. Ac-

cess path selection in a relational database management system. In

Proceedings of the 1979 ACM SIGMOD Conference, pages 23–34, 1979.
[59] T. K. Sellis. Multiple-query optimization. ACM Trans. Database Syst.,

13(1):23–52, March 1988.

[60] S. Suhothayan, K. Gajasinghe, I. L. Narangoda, S. Chaturanga, S. Per-

era, and V. Nanayakkara. Siddhi: A second look at complex event

processing architectures. In Proceedings of the 2011 ACM Workshop on
Gateway Computing Environments, GCE ’11, pages 43–50, New York,

NY, USA, 2011. ACM.

[61] A. Swami. Optimization of large join queries: Combining heuristics

and combinatorial techniques. SIGMOD Rec., 18(2):367–376, 1989.
[62] E. Wu, Y. Diao, and S. Rizvi. High-performance complex event pro-

cessing over streams. In SIGMOD Conference, pages 407–418. ACM,

2006.

[63] H. Zhang, Y. Diao, and N. Immerman. On complexity and optimization

of expensive queries in complex event processing. In SIGMOD, pages
217–228, 2014.

[64] S. Zhang, H. T. Vo, D. Dahlmeier, and B. He. Multi-query optimization

for complex event processing in SAP ESP. In 33rd IEEE International
Conference on Data Engineering, ICDE 2017, San Diego, CA, USA, April
19-22, 2017, pages 1213–1224, 2017.

[65] J. Zhou, P. Larson, J. Freytag, and W. Lehner. Efficient exploitation

of similar subexpressions for query processing. In Proceedings of the
2007 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’07, pages 533–544, New York, NY, USA, 2007. ACM.

[66] Q. Zhou, Y. Simmhan, and V. K. Prasanna. Incorporating semantic

knowledge into dynamic data processing for smart power grids. In

International Semantic Web Conference (2), volume 7650 of Lecture
Notes in Computer Science, pages 257–273. Springer, 2012.

A EFFICIENT IMPLEMENTATION OF
THE MULTI-PATTERN GRAPH

As presented in Section 4.1, the multi-pattern graph for the

workloadWL = {P1, · · · , Pn} is defined as MPG = (V ,E),
where E =

{
ei =

(
vi ,vj , Γi j

)
|vi ,vj ∈ V , Γi j , ∅

}
and V =

{vi |Pi ∈WL}.
This formulation introduces potential performance issues.

First, explicitly storing the set of common subpatterns Γi j
requires O (2s) memory, where s is the size of the maximal

common subpattern. This can be solved by only storing the

MPi j instead, as the rest of the common subpatterns can be

inferred from it. Second, whenm patterns share the same

subpattern, the MPG will contain

(
m
2

)
edges representing

the same subpattern set. Consequently, directly instantiating

the MPG in memory would be extremely inefficient.

We address this shortcoming by compact graph repre-

sentation. Rather than explicitly store the vertices and the

edges, for every distinct maximal common subpattern MP
of some set of patterns Γ, we keep Γ in a hash table with

MP as a key. In addition, a second hash table maps a single

pattern P to a list of maximal common subpatterns with

its peers in MPG. This data structure still contains all the

Real-Time Multi-Pattern Detection over Event Streams SIGMOD’19, June 2019, Amsterdam, The Netherlands

necessary information, additionally providing near constant

cost of retrieval and worst case linear cost of addition and

deletion of patterns. The space occupied by both hash tables

is O (n · γ), where γ is the total number of distinct maximal

common subpatterns in the workload. While the value of γ
can reach n2

in the worst case (and even exceed it in some

cases that we describe shortly), the way in which the hash

tables are constructed makes it extremely unlikely for the

space complexity to surpass O
(
n2
)
.

Another potential performance bottleneck associated with

the MPG is the resource-consuming operation of calculating

the maximal common subpatterns for all pairs of patterns.

We will utilize the following simple and efficient implemen-

tation. Given Pi = (Ei , Si ,Ci ,Wi) and Pj =
(
Ej , S j ,Cj ,Wj

)
,

first a simple set intersection Ei j of Ei and Ej is calculated.

Then, we project the conditions in Ci and Cj on Si j and
compare the resulting condition sets. If the sets are not

equal, we calculate their intersection and reduce Ei j ac-

cordingly. The same procedure is then performed for Si and
S j . Overall, the worst-case complexity of this operation is

O
(
max

(
|Ei | ,

��Ej
��) +max

(
|Ci | ,

��Cj
��))

.

For example, consider the above calculation for the work-

load consisting of P1 : AND (A,B,C) ;C1 = {A.x < 10} and

P2 : AND (A,D,C) ;C2 = {A.x ≥ 10}. The intersection of

event types in this case is E12 = {A,B}. In addition, due

to the conflicting conditions on A, the maximal common

subpattern is reduced to AND (B).
Note that multiple maximal common subpatterns may

exist. For example, both SEQ (A,B) and SEQ (A,C) are the
maximal intersections of the sequences SEQ (A,B,C) and
SEQ (A,C,B). In this case, the MPG will store a list of maxi-

mal common subpatterns.

The worst-case complexity of computing all maximal com-

mon subpatterns is then O
(
n2 · (smax + cmax)

)
, where smax

and cmax denote the maximum sizes of a pattern in terms of

events and conditions, respectively.

B LOCAL SEARCH META-HEURISTICS
This appendix provides a brief description of the most widely

used local search meta-heuristics, simulated annealing and

Tabu search. The reader is referred to [3, 36] for more details.

Simulated annealing extends the functionality of iterative

improvement by also allowing limited non-improving moves.

A threshold ck is defined for each step. When a better neigh-

bor solution is selected, it is chosen to replace the current

solution, in a manner similar to the iterative improvement

algorithm. If the neighbor solution is more expensive, it is

accepted with probability exp
(
−

△f
ck

)
, where △ f is the differ-

ence between the costs of the old and the new solutions. The

thresholds are chosen such that ck = α ·ck−1,α < 1. The algo-

rithm starts with a sufficiently large c0 and terminates when

a predefined small value c ¯k is reached. Before the start of

the actual search, c0 is set to the largest difference observed

during evaluation of I neighbors of sinit . In our experiments

in Section 6, we used α = 0.99 and I = 10
3
neighbors for

setting the initial threshold.

Tabu search explores L random neighbors during each

step and moves to the cheapest of them. Visiting the same

state twice is prohibited. To enforce that, previously visited

solutions are stored in a dedicated tabu list. The tabu list

has a finite capacity C : when the number of stored solutions

reachesC , oldest stored solutions are removed. The best solu-

tion s∗ observed during the run of the algorithm is returned.

We used a memory list of capacity C = 10
4
and L = 100

during our experimental evaluation.

Both algorithms stop after reaching a predefined number

of steps since the last improvement to s∗ or when the time

expires. To study the tradeoff between evaluation time and

solution quality, we only implemented the timestamp-based

stop condition.

C FORMAL DEFINITION OF M-MCEP
In this appendix, we formally define the cost function and

the optimization problem of multitree-based MCEP.

We start with extending the cost function. Let Ti denote a
local tree-based evaluation plan for a pattern Pi . We borrow

the cost function definition for tree-based plans from [40].

For a plan Ti , we define Costtr ee (T) =
∑

N ∈nodes(T)C (N) ,
where

C (N) =

Wi · r j N is a lea f representinд Ej

C (L) ·C (R) · selL,R N is an internal node with

child nodes L and R.

Here, selL,R denotes the total selectivity of all conditions

defined between the event types in L and R.
The extension ofCosttr ee for multitrees will be defined by

counting the individual costs of all nodes in a multitree:

Costmulti
tr ee (MPM) =

∑
N ∈nodes(MPM)

C (N) .

Given a tree-based plan T and a multi-pattern multitree

MPM , we will say that T ∈ MPM if and only if MPM con-

tains a subtree identical toT . We will denote a subtree of the

MPM corresponding to a pattern pi as Ti . In addition, we will

denote by TREEP the set of all tree-based plans of a pattern

P . The extended optimization problem will be subsequently

defined as follows.

Multitree-basedmulti-patternCEPoptimizationprob-
lem (M-MCEP). Given a workloadWL of n patterns and a

statistics collection Stat , find a multi-pattern multitreeMPM
minimizing the value of Costmulti

tr ee (MPM,WL, Stat) subject
to ∀Pi , 1 ≤ i ≤ n : ∃T ∈ TREEP s.t.T ∈ MPM .

SIGMOD’19, June 2019, Amsterdam, The Netherlands Ilya Kolchinsky and Assaf Schuster

(a) (b) (c) (d)

Figure 14: Throughput gain of the local search algorithms as a function of workload statistical properties: (a)
stock dataset, sharing sensitivity; (b) traffic dataset, sharing sensitivity; (c) stock dataset, reordering sensitivity;
(d) traffic dataset, reordering sensitivity.

Since T-MCEP can be viewed as a particular case of M-

MCEP (restricted to left-deep trees as local plans), the com-

plexity results obtained for T-MCEP in Section 3.4 hold for

M-MCEP by generalization.

To justify the use of Nedдe and Nk
ver tex for MPM-based

solution space, we utilize an observation similar to the one

presented in Theorem 4.1.

Theorem C.1. Let MPMopt be the optimal multi-pattern
multitree for some workloadW . For each tree Ti in MPMopt
corresponding to the pattern Pi , let Si denote the set of subtrees
that are shared with other patterns inMPMopt . Then, Ti is the
most efficient local tree-based plan for Pi out of those containing
all the subtrees in Si .

D ADDITIONAL EXPERIMENTS
In this appendix, we experimentally study the influence of

the workload statistical characteristics on the performance

of our optimizer. Only the best performing (according to the

results presented in Section 6.2) combinations SA-EDGE and

TS-EDGE were evaluated.

We control the statistical characteristics of workload gen-

eration using a pair of configurable parameters,multi-pattern
graph density and normalized arrival rate difference. The
multi-pattern graph density is defined as an average rel-

ative number of neighbors of a given pattern in a MPG. For

example, in a workload of 100 patterns with MPG density

equal to 0.5, each pattern will have 50 neighbors on average.

This parameter is used to control the sharing sensitivity of a

workload.

The arrival rate difference, defined as the maximal dif-

ference in rates of two event types within a single pattern,

allows us to manipulate the reordering sensitivity of a work-

load. For example, for an unconditional conjunction of 5

event types arriving at an identical rate, each of the possible

5! evaluation orders will have the same cost. However, if

one of the types appears 100 times more frequently than the

rest, the gain obtained by postponing the costly event type

to the last state is considerably high. Patterns with varying

degrees of reordering sensitivity are produced by limiting

the selection of the event types for a pattern accordingly.

The values of this parameter were normalized with respect

to the maximal observed difference of 45.

Figure 14 depicts the achieved throughput gain as a func-

tion of the sharing sensitivity (Figures 14(a) and 14(b)) and

the reordering sensitivity (Figures 14(c) and 14(d)) of the

workload. The plots also show the performance of the basic

reordering (RE) and the basic sharing (SH)methods discussed

in Section 6.2.

The high gains of the local search methods do not exhibit

dominant dependencies on either of the two parameters.

While larger graph densities and rate difference limits in-

troduce more sharing and reordering opportunities, they

also increase the search space size and the number of poten-

tial local minima. Nevertheless, our approach consistently

outperforms the better of SH and RE for every attempted ex-

perimental configuration. At the extremes, local search tends

to resort to an almost pure sharing plan for low arrival rate

differences (since virtually no improvement can be achieved

by reordering), whereas for sparse multi-pattern graphs the

solution assigning the best local plan to all patterns is often

preferred.

The basic reordering method becomes more efficient with

increasing differences in arrival rate and is almost unaffected

by the changes in graph density. The performance of the basic

sharing method increases monotonically with graph density.

It also decreases with the rate difference due to the smaller

number of participating event types in more restricted work-

loads. Given a pair of workloads of the same size containing

patterns of the same length, the workload with fewer event

types will have more events of the same type on average,

and is expected to offer more sharing opportunities.

	Abstract
	1 Introduction
	2 Background and Terminology
	3 Multi-Pattern CEP with Prefix Sharing
	3.1 Multi-Pattern NFA Evaluation
	3.2 Multi-Pattern Tree
	3.3 Runtime Complexity and Multi-Pattern Cost Model
	3.4 MCEP Optimization Problem

	4 Optimization Framework for T-MCEP
	4.1 Multi-Pattern Graph
	4.2 Local Search Algorithms for T-MCEP

	5 MCEP with Arbitrary Subexpression Sharing
	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Experimental Results
	6.2.1 Impact of Input Parameters on System Performance
	6.2.2 State-of-the-art Comparison
	6.2.3 Adaptive System Behavior

	7 Related Work
	8 Conclusions and Future Work
	References
	A Efficient Implementation of the Multi-Pattern Graph
	B Local Search Meta-Heuristics
	C Formal Definition of M-MCEP
	D Additional Experiments

