
Stochastic Resource Allocation
Liran Funaro

Technion—Israel Institute of
Technology
Haifa, Israel

funaro@cs.technion.ac.il

Orna Agmon Ben-Yehuda
Technion—Israel Institute of

Technology
Haifa, Israel

ladypine@cs.technion.ac.il

Assaf Schuster
Technion—Israel Institute of

Technology
Haifa, Israel

assaf@cs.technion.ac.il

Abstract
Suboptimal resource utilization among public and private
cloud providers prevents them from maximizing their eco-
nomic potential. Long-term allocated resources are often
idle when they might have been subleased for a short period.
Alternatively, arbitrary resource overcommitment may lead
to unpredictable client performance.

We propose a mechanism for fixed availability (traditional)
resource allocation alongside stochastic resource allocation
in the form of shares. We show its benefit for private and
public cloud providers and for a wide range of clients. Our
simulations show that our mechanism can increase server
consolidation by 5.6 times on average compared with selling
only fixed performance resources, and by 1.7 times com-
pared with burstable instances, which is the most prevalent
flexible allocation method. Our mechanism also yields bet-
ter performance (i.e., higher revenues) or a lower cost than
burstable instances for a wide range of clients, making it
more profitable for them.

CCS Concepts • Social and professional topics→ Pric-
ing and resource allocation; • Computing methodolo-
gies→ Simulation evaluation; •Computer systems or-
ganization→ Cloud computing; • Software and its en-
gineering → Scheduling;

Keywords Cloud, Resource-Allocation, Pricing, Scheduler

ACM Reference Format:
Liran Funaro, Orna Agmon Ben-Yehuda, and Assaf Schuster. 2019.
Stochastic Resource Allocation. In Proceedings of the 15th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution En-
vironments (VEE ’19), April 14, 2019, Providence, RI, USA. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3313808.3313815

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
VEE ’19, April 14, 2019, Providence, RI, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6020-3/19/04. . . $15.00
https://doi.org/10.1145/3313808.3313815

1 Introduction
Most cloud provider costs result from purchased servers,
power requirements, and infrastructure (power and cooling
systems) [30, 54, 79]. Hence, most of these costs are propor-
tional to the number of servers. Although the CPUs on active
servers are underutilized [13, 42], these servers still draw
most of the power they would draw if their CPUs were fully
utilized [61]. Further client consolidation would increase the
revenues per server without increasing the costs [14].

CPU underutilization originates from the provider’s obli-
gation to provide its clients with their contracted quality
of service (QoS) according to their service-level agreement
(SLA) [1]. Infrastructure as a Service (IaaS) and Container
as a Service (CaaS) clients rent a bundle of resources in the
form of a virtual machine (VM) or an OS container. Even
though clients may choose a fixed instance contract (e.g., a
fixed performance instance on Amazon EC2), with a bundle
that meets their load needs, they will not use their resources
all the time. Moreover, because the proportion of resources
in the bundle, e.g. the ratio of RAM to CPUs, is determined
by the provider, it is not always optimal for the client. There-
fore, most resources will generally have unused margins [56].
Suboptimal utilization might still be a problem even with
less rigid services such as Application as a Service (AaaS)
and serverless computing, where the client does not nec-
essarily rent a bundle of resources but rather a black-box
execution environment. Under such models, providers still
set resources aside to handle unexpected loads [21] or cater
to preferred clients requiring resources on short notice [39].
Providers lose money on these contingency plans because
they do not maximize resource utilization. Maximizing re-
source utilization will enable providers to consolidate more
clients on each machine, increase the income per machine,
and reduce the pressure to expand their infrastructure.

How should providers allocate unutilized resources resid-
ing in a single physical machine among their clients in a
manner that will increase the revenues of the former and
incentivize the latter to agree to this allocation scheme?
A simple method for utilizing momentarily available re-

sources in a single physical machine is to divide them among
the clients/services that reside on that server: either evenly or
proportionally to the amount of fixed resources they rented.
Without an additional billing mechanism, the provider has
no direct benefit from this approach. Moreover, if this is an
ongoing state of affairs, the clients might take the higher

https://doi.org/10.1145/3313808.3313815
https://doi.org/10.1145/3313808.3313815

VEE ’19, April 14, 2019, Providence, RI, USA Liran Funaro, Orna Agmon Ben-Yehuda, and Assaf Schuster

QoS for granted, and be disappointed when it decreases to
the fixed (paid for) level.
The most popular approach for utilizing momentarily

available resources is burstable performance [8, 19, 27, 49, 55].
On Amazon [8] and Azure [49], for example, a client gains
credits periodically, at an even rate. The client either con-
sumes credits by using the resource or hoards the credits and
“bursts” later, using more resources than its periodic credits
allow. If the client runs out of credits, it must wait for the
next period to use the resource again. The credit mechanism
limits the client to a certain average resource consumption
according to its credit allocation rate.
We assume a client that consumes resources at an even

rate, in line with its credits, is guaranteed never to be starved.
This assumption requires the provider to prioritize clients
that have not yet consumed the credits of the current period
over clients that are currently “bursting”. To never starve a
non-bursting client, the provider must reserve for each such
client a resource amount that equals the client’s credit rate.

Both these quantities, the average resource consumption
and the reserved resource quantity, are defined by the same
number—the credit rate. This coupling is the main draw-
back of burstable instances. It induces two limitations: First,
it forces a client that can function well without reserved
resources to rent a bundle that offers them, just to get an
average consumption rate. This requires that the provider
reserve these resources, which in turn limits the number of
clients per server. Second, this coupling limits each client’s
average utilization (over a period) to its reserved allocation.
The sum of reserved resources in a server thereby serves as
an upper limit on the server’s total resource utilization. Re-
sources not reserved for clients (e.g., the provider’s reserves)
cannot contribute to the total average utilization. Clients that
did not reach their average utilization limit further reduce
the total average utilization.
In unlimited burstable instances, the provider allows the

client to exceed its average consumption rate, and charges
a fixed (higher) price for the surplus average consumption
during a billing period1. This overcomes the utilization limit
but does not increase the number of clients per server.
In this paper, we show that decoupling the reserved re-

source quantity from the average consumption rate allows
clients to explicitly reserve only the resources they truly re-
quire. In turn, this allows the provider to increase the number
of clients per server.

Our contribution is twofold. First, we introduce a Sto-
chastic Allocation (SA) mechanism that allows the provider to
sell reserved resources alongside an additional stochastic al-
location. We compare this mechanism to other mechanisms
using simulations (Section 5) that cover a wide range of
clients (Section 4). For over 56% of these clients, our mech-
anism is more profitable than the burstable performance

1A day in Amazon [8], 5 minutes in CloudSigma [19].

mechanism. We show a 1.7 times increase in the number of
clients per server compared with burstable instances (Sec-
tion 7). We further show that such a mechanism can increase
the provider’s overall profits by 28%–44%, depending on our
assumptions about the provider’s profit margins. Moreover,
we show that a private cloud provider can utilize this mech-
anism to increase its clients’ aggregated economic benefit,
while reducing the provider’s costs.

Second, we present the Stochastic Allocation Simulator
(SAS), a validated infrastructure for cloud simulations. This
infrastructure can generate a large dataset of realistic clients
with different behaviors and simulate their rational bundle
selection given a known distribution of available resources.
It then simulates the load on a server using these clients
(using a completely fair scheduler (CFS) [52]) and yields
highly detailed statistical information. SAS is published as
an open-source project along with the code to replicate our
simulations and their data2.

2 Allocation Mechanisms and Incentives
A resource allocationmechanism is useful only if it is incentive-
compatible for clients and providers. In other words, they
must all gain from participating. In this section we classify
clients by their requirements, discuss providers’ goals, and
then review a number of allocation mechanisms in view of
the parties’ incentives.

2.1 Client Requirements
Most client requirements range between long-term require-
ments and immediate requirements. A long-term requirements
client may have non-interactive workloads. It might value
finishing the workload by or before a deadline [20], but it
might not value getting partial results ahead of time. It only
cares about long-term promises that guarantee meeting dead-
lines with high probability.
At the other end of the spectrum is the immediate re-

quirements client. It runs brief independent workloads or an
interactive workload, and sleeps the rest of the time. The fail-
ure or fulfillment of one workload does not affect the client’s
future requirements. It only cares for instant gratification.
Such a client may not wish to rent a full (usually underuti-
lized) machine, which might guarantee each workload is
finished on time. Rather, it may prefer to yield its resources
when they are idle and be compensated accordingly.

The clients in between these two extremes have a combi-
nation of long-term and immediate requirements. They need
a guarantee that their long-term requirements will be met,
but might demand additional ad hoc resources to support an
immediate load surge. They are mixed requirements clients.
Websites, for example, might partition their budget pro-

portionately to the gain from satisfying these dual require-
ments. They would not like to miss an opportunity to show

2Available from: https://bitbucket.org/funaro/stochastic-allocation.

https://bitbucket.org/funaro/stochastic-allocation

Stochastic Resource Allocation VEE ’19, April 14, 2019, Providence, RI, USA

an advertisement to their visitors. Hence, the budget for their
immediate requirements might be proportionate to the in-
come from an ad. In addition, they would like to preserve
their customers’ visit rate. Users are unlikely to abandon
them because of a momentary slowdown, but regular low
responsiveness might reduce user visits. Thus, their budget
for long-term requirements might be proportionate to the
estimated loss of revenues due to an expected abandon rate.

The Azure Public Dataset [20] offers insight into how real
cloud users are distributed by category/type. Most clients
(60%) that ran over three days in the dataset were classified
as delay insensitive (i.e., long-term requirements clients),
and 33% were classified as interactive (i.e., short-term re-
quirements clients). The other 7% could not be classified.
Cortez et al. [20], who classified the clients, suggested that
clients with short workloads, each with a deadline, might be
classified as either interactive or unknown.

2.2 Provider Goals
Public cloud providers that rent computing resources to pay-
ing clients would like to maximize their profit from renting
their machines. However, prices are limited due to price wars
among providers [3]. Consequently, to increase their profits,
public cloud providers resort to higher consolidation and
overcommitment [26, 69]: they sell the same resources to
more clients, risking an SLA violation and having to pay
client compensation [68].
Private cloud providers would like to maximize the ag-

gregated value all their clients draw from the cloud: the
game-theoretic concept of social welfare. Accordingly, they
would like to prioritize the most financially valuable clients,
because their workloads carry the maximal benefit to the
organization. Additionally, they wish to maximize client con-
solidation in their existing infrastructure, similar to public
cloud providers.

2.3 Allocation Mechanisms
In this section we survey allocation mechanisms and pricing
schemes that increase the server consolidation by incentiviz-
ing clients to reduce their reserved requirements. Providers
often offer their clients one or more of these mechanisms
simultaneously.

Fixed performance instances consist of a bundle of re-
served resources. They are guaranteed to be constantly avail-
able to the client throughout the rental period. A long-term
requirements client, however, usually only fully utilizes one
resource in the bundle—which is its bottleneck. If the bun-
dle’s size and shape are determined by the provider, a long-
term requirements client is likely to have non-required, unuti-
lized resource margins. Clients that also have immediate
requirements need to compromise: over-provision according
to the maximal load at high costs—or under-provision and
save money, at the risk of being short on resources. Thus,

most clients pay for resources they do not utilize, and which
the provider cannot resell.

Burstable performance instances offer a baseline re-
source guarantee, which may be exceeded when necessary.
These instances are suitable for clients with immediate re-
quirements, which are mostly inactive until driven by an
event. Long-term requirements clients might not require
bursting, as they typically use the resources at an even, max-
imal rate.

We compared pricing of burstable and fixed performance
instances using identical CPUmodels and optimization types.
According to the regression analysis, using Amazon’s and
Azure’s publicly available pricing data [7, 8, 49], a burstable
instance with similar price and characteristics to a fixed
instance is limited to an average performance of 10%–30% of
the fixed instance maximal performance, depending on the
instance type.
Therefore, clients utilizing, on average, less than 10%–

30% of their maximal resources will save money by renting
burstable instances instead of fixed ones. Accordingly, pure
long-term requirements clients will pay for burstable in-
stances 3.3–10 times more than their fixed instance bill, to
get the same performance.

Preemptible instances, deployed by many providers [6,
9, 28, 48, 53], offer a low-cost VM whose availability depends
on the available resources in the cloud. The provider can shut
down the instance at any time to reclaim the resources. An
immediate requirements client can scale horizontally, i.e., ex-
pand the number of active VMs with an increasing load, at a
low cost. Nevertheless, horizontal expansion incurs an over-
head, for the provider and clients, when booting a machine
and gracefully shutting it down. A long-term requirements
client might use these instances whenever available or fall
back to higher cost, nonpreemptible, instances [45].

This mechanism allows the provider to rent unallocated re-
sources while waiting for higher paying clients to rent them.
Unused reserved resources of other clients, however, cannot
be used to create a new preemptible instance. Reserved re-
sources must be supplied on demand, which is not possible
due to the long notification 3 required before shutting down
the preemptible instance.

Posted prices, formerly deployed by CloudSigma [37],
are a mechanism for resource pressure management. In this
mechanism, the provider periodically changes the resource
unit-prices, which it posts publicly via an online API. Clients
with immediate requirements can use the resource when the
prices are low, while using the baseline for their long-term
requirements.

If clients do not cap their resource utilization in response
to price changes, posted pricesmight be ineffective in increas-
ing client density. Clients might not reduce their consump-
tion in response to price surges, as they might value steady

330 seconds in Google Cloud [28], two minutes for Amazon [9].

VEE ’19, April 14, 2019, Providence, RI, USA Liran Funaro, Orna Agmon Ben-Yehuda, and Assaf Schuster

performance as long as the average cost remains within their
budget [40, 77]. Moreover, clients will agree to participate
only if price surges are limited by the cost of a horizontal
expansion—the clients’ alternative.

Immediate resource auctions allow clients to rent a
baseline performance, and bid—every few seconds—for an
immediate, temporary, resource allocation. Such a mecha-
nism was implemented in Ginseng for RAM [4] and last level
cache (LLC) [25]. It is suitable for clients with immediate
requirements that need not plan ahead. Such clients can bid
according to their momentary expected valuation of the re-
source. Clients with long-term requirements can also benefit
from the mechanism by getting cheap resources when these
are abundant. Nevertheless, it is hard for such clients to as-
sign a momentary value to a resource with unknown future
availability.
Similarly to posted prices, a horizontal expansion might

be more profitable for some clients than costly, temporary
but immediate, allocation.

3 Stochastic Allocation
Client performance can be quantified in terms of stochastic
properties such as mean, standard deviation, minimum or
maximum. The client can infer these on the basis of its expe-
rience [71]. Different clients might assign different monetary
values to these properties [17, 24, 32, 47, 51, 62, 73], as de-
scribed in Section 2.1. When offered a choice of bundles, each
differently priced and stochastically characterized, the client
can estimate its valuation for the bundle and its expected
profit if selected [18].
Accordingly, to effectively utilize the resources, we pro-

pose the Stochastic Allocation (SA) mechanism. Under the
SA mechanism, the provider offers clients a combination:
a choice of a stochastic allocation class and an amount of
reserved resources. The provider posts fixed unit-prices for
both goods. Each client may choose to rent reserved and/or
stochastic resources—the latter enable consumption of re-
sources that are unused by other clients. The provider prior-
itizes clients when they consume their reserved resources.
To allow clients to make an educated decision when renting
such a stochastic bundle, the provider publishes statistics on
resource availability, for each SA class.

SA supports an asymmetrical bundle of reserved resources
and SA classes. It allows clients to reduce their reserved
resource requirements, and thus increases the number of
clients per server. The SA mechanism bridges the idle re-
source gap between the provider’s obligation to safeguard
clients’ reserved resources and their dynamic demands.

3.1 Implementing Stochastic Allocation via Shares
To evaluate the SA mechanism for CPU using shares, we
simulated it on the basis of the completely fair scheduler
(CFS) [52] algorithm, as was implemented in the Linux kernel.

CFS combines a share-based resource allocation system with
a hard rate limit. Each task is assigned a number of shares,
which entitle it to a portion of the resources proportional to
the number of allocated shares. A task accumulates virtual
runtime according to its actual runtime divided by its number
of shares. In each period, the task with the least accumulated
virtual runtime is run. Thus, at any given time, the virtual
accumulated time of all active clients is nearly identical

CFS can easily implement a credit system, because having
a portion of the shares is effectively the same as reserving
the same portion of the resources. For example, in a machine
with 64 CPUs, a process allocated 1 share out of a total of
64 is guaranteed at least 1 CPU. Nevertheless, CFS does not
support a key feature of SA: defining a different consumption
share for the leftover CPUs. Rather, the consumption rate
is constrained to be identical to the reserved portion of the
shares.

We added a degree of freedom to CFS, adapting it to sup-
port asymmetric reserved resources and share allocations.
We duplicated the CFS logic, to have a second, alternative,
virtual runtime clock and a second priority queue that is
sorted according to the alternative clock. The existing knobs
(share and limit) are associated with the original, main CFS,
which is used as a reserve mechanism. The alternative CFS
takes the newly introduced alt-share and alt-limit knobs.
Once the limit rate of the main CFS is reached, the task is
moved to the alternative one. The scheduler only pulls tasks
from the alt-queue if the original queue is empty. For exam-
ple, to reserve 1 CPU out of 64, allocate 10 shares (e.g., of
100) and set a total limit of 2 CPUs, the administrator would
allocate a process with
• 1 main share such that client main share

total main shares =
reserved CPU
total CPUs ,

• a main limit of 1 CPU to mark the point where excess
resources start being consumed,
• 10 alt-shares (out of 100) for the stochastic part, and
• an alt-limit of 2 CPUs, for the actual capping.

Our adapted CFS allows the provider to implement our SA
mechanism. Once the client chooses its bundle of reserved
resources and number of shares, the provider assigns the
client to the appropriate server while trying to maintain an
even distribution of total shares across the servers.

4 Realistic Workload Modeling
How effective would the SA mechanism be on a cloud? How
does it compare with other mechanisms such as fixed perfor-
mance and burstable instances? How would it affect client
density? How would it affect the provider’s profits?
Experimentation at this scale requires a full commercial

cloud and thousands of real clients. To answer these ques-
tions, we resorted to simulations, showing the method’s
potential on equal grounds with the simulated burstable-
performance. We modeled client workload and then simu-
lated a cloud with various mechanisms (Section 5).

Stochastic Resource Allocation VEE ’19, April 14, 2019, Providence, RI, USA

Our realistic modeling is based on real data from the
Azure Public Dataset [20], which was used to deduce real
consumption and market demand. We generated 12 client-
datasets, which we ran in parallel on our 12-core machine.
Each dataset contained 1024 clients.
To create a single dataset, we sampled a random group

of clients from Azure’s dataset. To model each client, we
generated three functions that were consistent with its given
statistics: performance, load, and valuation.

4.1 Performance
The performance function (resource→ perf) indicates the
maximal performance (in the range [0, 1]) that a resource
allocation can yield, assuming the workload can utilize the
resource. We generated a random monotonically rising func-
tion for each client. These functions are not necessarily al-
ways concave; they can have inflection points, as a real ap-
plication utility function might have [70, 83]. Examples of
generated performance functions are shown in Fig. 1.

0 2 4 6 8
CPU

0%

50%

100%

P
er

fo
rm

an
ce

0 1 2
CPU

0%

50%

100%

P
er

fo
rm

an
ce

Inflection Point

Figure 1. Generated performance function examples.

4.2 Load
The load function (time → perf) indicates the client’s re-
quired performance (in the range [0, 1]) at a given time. For
each sampled client, we generated a realistic load function
for a single day, in 12-second intervals (i.e., 7200 samples
for each client for each day). For IaaS and CaaS clients, this
means that their VM/container was active for at least a day.
For AaaS and serverless clients, this means that they had
many small tasks which may span across a whole day and
are considered as their day’s load.

To do this, we used the client’s sampled load from Azure’s
data. Azure’s data contain statistics in 5-minute intervals per
client, for up to 30 days. Each sample contains minimum,
maximum and average CPU usage. To get enough statistical
information, we chose only clients with at least a day’s worth
of data (288 samples).

The simplest way to interpret the data would be to main-
tain the average CPU usage constant over each 5-minute
period, but then the extremum values would not be reached.
To remedy that, the usage must reach other values, in partic-
ular the minimum and maximum values, and yet maintain
the average usage. To take all the values in the sample into
account, we divided each sample time into multiple samples

that adhere to the given minimum, maximum and average
CPU usage: min and max are visited, usage values are only
between these values, and the average value is according to
the measured data. This mandatory enhancement of the data
introduces several degrees of freedom: which values to visit
and when.
A simple solution is to visit the minimum and maximum

once, and then fill the rest of the time with a value that will
correct the average. This solution is arbitrary: the minimum
and maximum values can be visited more. Also, it is natural
for more values in the min-max range to be visited as well.
This simple but reality-consistent solution can be smoothly
extended using a beta distribution, which can be defined
by its average, bounds, and density—i.e., having more sam-
ples near the mean value or near the bounds. The density
represents a degree of freedom in the function choice.

For each 5-minute sample, we generated a beta distribution
with the sample’s characteristics (i.e., minimum, maximum
and average) and a density of one, which yields a uniform
distribution when the average is exactly in the middle of the
bounds (see Algorithm 1). We then drew samples from this
beta distribution to fill the 5-minute interval with 25 samples
(a sample every 12 seconds during the five minutes).

Algorithm 1: Generating a random sample.
Data: b: minimum, t : maximum,m: mean, d : density

1 ms ←−
m−b
t−b ; // scale to beta’s domain: [0, 1]

2 if ms < 0.5 then
3 α ←− d ·ms

1−ms
, β ←− d ;

4 else
5 α ←− d , β ←− d ·(1−ms)

ms
;

6 end
7 return beta(α, β) · (t − b) + b ; // draw and scale

We assumed that some clients might choose a smaller
bundle than their maximal potential consumption. Hence,
we extrapolated the client’s consumption to what it would
have been had it not been limited by its rented cores. To this
end, if a sample’s maximum was near the client’s limit (i.e.,
within 90% of its number of virtual cores), we matched the
sample with a beta function with a higher maximal value (64
cores), while maintaining the same average and minimum.
That is, we created a modified beta function that allows for
some over-the-top samples. Fig. 2a shows an example of a
generated load from a real client.

Each client gets its realistic load samples and treats them
as a load history. It models this history using a cumulative dis-
tribution function (CDF) (Fig. 2b), and uses it to statistically
predict its load for the upcoming day, assuming that “That
which hath been is that which shall be”. The client later uses
its statistical load prediction to predict its expected revenue
and profit from the various bundles.

VEE ’19, April 14, 2019, Providence, RI, USA Liran Funaro, Orna Agmon Ben-Yehuda, and Assaf Schuster

0 6 12 18 24

Time of Day (hour)

0%

20%

40%

60%

R
eq

u
ir

ed
P

er
fo

rm
an

ce

Local Mean

1%

10%

100%

(a) The load over a single day.
The local mean shows the av-
erage load over a local win-
dow, and the heat map shows
the density of required perfor-
mance over that window.

0%20% 50% 100%
Required Performance

0.00

0.39
0.50

1.00

C
u

m
u

la
ti

ve
P

ro
b

ab
il

it
y

(b) The cumulative distribu-
tion of the load over that day.
For example, this client’s re-
quired performance will be
less than 20% for 39% of the
time.

Figure 2. A client’s generated load. This client’s required
performance was 42% on average.

4.3 Valuation
Real (human) clients may choose an offering in any way they
like. They may choose randomly, take some time to make a
decision, or go through a long iterative process of selection
and improvement. In the simulation we needed to create
realistic artificial intelligence agents which mimic the behav-
ior of real clients. We did this using the valuation function
tool. A valuation function (perf→ $) indicates the monetary
value that a client attributes to the stochastic properties of
the performance. It is based on business logic, such as the
expected revenue from this performance.

The valuation of a client is the sum of two sub-functions;
each takes different properties of the performance into ac-
count. The immediate valuation function, Vimm , represents
the expected income from the immediate performance, de-
fined in this work as the average performance over a short
period of 12 seconds. The long-term valuation function, Vl t ,
represents the benefit from the long-term performance, i.e.,
the average performance over the entire day.
Using these two functions, a client can estimate the ex-

pected value of its revenue from a combined bundle of re-
served resources and shares. Let us define two random vari-
ables: Xload denotes the client’s load and Xs denotes the
resource availability given a share allocation (s). Let r denote
the client’s reserved resources. The actual performance, Pr ,s ,
is the minimum value of the load and the performance that
the resources allow:

Pr ,s = min{Xload ,per f (r + Xs)}. (1)

The client calculates its expected revenue by adding two val-
uation functions: E

(
Vimm(Pr ,s)

)
, its expected revenue from

immediate performance, and Vl t
(
E(Pr ,s)

)
, its expected rev-

enue from long-term performance. Accordingly, the client

estimates these random variables on the basis of its self-
created load CDF and the CDF representing the potential use
of a resource attributed to a share, supplied by the provider.

Some researchers modeled valuations using analytic func-
tions (e.g., power law [59]), which are easy to symbolically
analyze. But real user valuations are sophisticated [40]. We
tailored to each client an individual, piece-wise linear func-
tion, to model actual consumption. Such non-symbolic func-
tions may be harder to manipulate; however, they cover a
wider range of functions.

To produce these valuation functions, we first character-
ized each client using three values: rented number of cores
(i.e., its bundle), the expected revenue and the portion of the
revenue affiliated with each requirement.
The number of rented cores was obtained from Azure’s

data. We used cores as the basic currency for the simulation:
one core costs $1 a day. Assuming the client is rational, the
cost of the cores the client rents is a lower bound on its valua-
tion of these cores. Wemodeled the clients’ expected revenue
using a Pareto distribution (standard in economics) with an
index of 1.1. A Pareto distribution with this parameter trans-
lates to the 80-20 rule: 20% of the population has 80% of the
valuation, which is reasonable for income distributions [65].

For each client, we drew a value from this Pareto dis-
tribution, with the condition that the value is higher than
the client’s number of cores (i.e., a conditional probability
distribution).
We used Azure’s strict client classification (interactive,

delay insensitive and unknown) to infer for each client the
portions of the revenue affiliated with each requirement.
To this end, we assigned to each class a different truncated
normal distribution function (in the range [0, 1]), which de-
scribes the division between the requirements, as depicted
in Fig. 3. For each client, we chose a distribution function
according to its class, and drew a sample from it to get the
client’s budget portions.

0 0.25 0.5 0.75 1
0

2
Interactive∼ TN(0, 0.25)

Delay Insensitive∼ TN(1, 0.25)

Unknown∼ TN(0.5, 0.25)

Figure 3. A probability density function (PDF) of the por-
tion between the two valuation types. The horizontal axis
describes the long-term requirements portion, and the im-
mediate requirements portion completes it to 1.

Using these three values (bundle, revenue and portion),
we produced two monotonically rising functions, one for
each valuation type. We engineered these functions such
that when used to produce the valuation of each bundle,
the client’s bundle yields the maximal profit (value − cost),
and its expected revenue for this bundle will be the revenue
we draw for this client. To this end, we used an iterative

Stochastic Resource Allocation VEE ’19, April 14, 2019, Providence, RI, USA

process: we assumed that the revenue from zero performance
is always zero and thus started with the identity functions
Vimm(x) = x and Vl t (x) = x . Then, in each iteration, we

1. estimated the client’s expected value for different bun-
dles using these functions;

2. adjusted each function, such that the value attributed
to the client’s selected bundle matched its portion of
the revenue; and

3. adjusted the values that the functions attributed to
other bundles, such that they were less profitable for
the client.

Fig. 4 depicts an example of a generated valuation, and
a simple example of a choice of fixed resources, i.e., Xs ≡

0. The choice of a combination of reserved resources and
shares is of a higher dimension, as the valuation function is
(shares × reserved) :→money.

0% 50% 100%
Required Performance

0

2

4

V
al

u
at

io
n

($
)

Immediate

Long Term

(a) A client’s immediate and
long-term valuations.

0 2 4
Allocated CPUs

0.0

2.5

5.0

7.5

V
al

u
at

io
n

($
)

Valuation

Profit

(b) A client’s valuation and ex-
pected profit for a fixed CPU
allocation.

Figure 4. Creating the valuation function for various max-
imal available CPU usage values. This client’s immediate
requirements constitute 77% of its budget.

5 Evaluation Methodology
We simulated a cloud with various mechanisms: fixed perfor-
mance, stochastic allocation, and the most prevalent “burst”
mechanism. We compared the provider’s revenue, resource
utilization, and client density.
Our evaluation method was an iterative process. A sin-

gle iteration simulated a day and took 2-3 real minutes to
run. It is described in Fig. 5. An example of the progress of
the full process is given in Fig. 6. The initial iteration simu-
lated a cloud that offered only fixed performance (reserved)
resources. The subsequent iterations simulated the intro-
duction of another mechanism (e.g., stochastic allocation)
alongside the reserved resources. Some clients were free to
change their bundle choice at each step. We continued the
process until the measurements were steady for at least 128
iterations (Fig. 6), and considered only the results of the last
60 iterations. Here we describe each step of our simulations,
as depicted in Fig. 5.

Bundle
Selection

Client
Allocation

Cloud
Simulation

Share Distributions Calculation

Statistics
Collection

Distribution
Publishing

Figure 5. Iterative states in our evaluation methodology.

Selecting Fixed Performance and/or Share Allocation.
Each client computed, for each possible bundle, the valuation
it will draw from it. It used its own load statistics and the
provider’s statistical description of the resources that every
share amount yields. Because the client could not foresee its
exact load for the upcoming day, it used the load statistics
gathered over the entire recorded period. The client selected
the most profitable bundle of fixed performance and/or share
allocation for its load and resource requirement distribution.
Formally, the client’s decision can be described as:

argmax
r ,s

{E(Vimm(Pr ,s)) +Vl t (E(Pr ,s)) − Costr ,s }, (2)

where r is the number of reserved cores, s is the number of
shares, and Pr ,s is defined as in Section 4.3.
Changing Choices. Initially, each client chose a number of
reserved cores. In each subsequent iteration, 128 out of the
1024 clients in each dataset (12.5%) were allowed to switch
their bundle to any offer available in that simulation. This
is consistent with the behavior of a real market, in which
clients are unlikely to update their bundles all at once. Nu-
merically, the limitation on the number of clients changing
bundles simultaneously makes the solution method more
stable, reducing oscillation over iterations and enabling the
solution to converge.
At this stage, the provider’s revenue was calculated by

summing the prices of the clients’ bundles.
Allocating Clients to Machines. To allocate clients to 64-
core servers, we randomly shuffled them. Then, one at a time,
each client was assigned to the first server that could accom-
modate the reserved component of its bundle. To ensure an
even distribution of shares among the servers, a client that
rented only shares was assigned to the server with the least
sum of shares at that point.
We then calculated the average number of clients per

server by repeating the allocation process and taking the
average over the active servers. For a single resource, the
assignment algorithm achieves near-optimal allocation, ex-
cept for the last active server, which may be partially full.
Accordingly, to measure the average number of clients per
server, we disregarded the last active server. For a large cloud
with more machines and clients, a single last server is negli-
gible. Each dataset contains 1024 clients, so there are always
enough full, representative active servers in the simulation.

VEE ’19, April 14, 2019, Providence, RI, USA Liran Funaro, Orna Agmon Ben-Yehuda, and Assaf Schuster

0%

25%

50%

75%

100%

U
ti

li
za

ti
on

Clients per Server

Host Revenues

Shares Allocated

Mean Utilization

2%-10% Util.

10%-25% Util.

25%-50% Util.

50%-75% Util.

1 5 10 15 20 25 30 35 40 45 50 55 60
Iteration

0

100

200

C
li
en

ts
p

er
S

er
ve

r

0

1000

R
ev

en
u

es
($

)

0

250

500

750

S
h

ar
es

Figure 6. A typical iterative process and its convergence. The number of clients per server increases over time until it peaks
and starts to drop due to the high utilization and the increasing number of shares per server, which reduce the value of a share.
The provider’s revenue decreases over time as more clients switch to cheaper bundles (with shares).

Simulating a Cloud. Each client load for the current day
(iteration) was selected cyclically from its data over multiple
days. We applied the server allocation algorithm 16 times
for each of the 12 datasets and simulated the actual resource
allocation of the first server of each dataset each time. Due to
our assignment algorithm, the first server is the busiest. This
serves as a worst-case analysis as these clients experience
the most resource stress, and would thus be more reluctant to
reduce their reserve requirements. The server’s resource al-
location was simulated using our modified CFS (Section 3.1).
At this stage, we collected client and server statistics:

clients’ expected revenue (i.e., their valuation), clients’ ef-
fective revenue from their effective performance, and the
server’s resource utilization distribution.
Calculating the Statistical Potential of a Share. To allow
the clients to rationally select a bundle of reserved resources
and shares, our simulated provider supplies statistical infor-
mation regarding the shares, which represents their poten-
tial: the distribution of the maximal resource amount that
a client might attain over a short period—12 seconds in our
case—with the commensurate number of shares. To this end,
we collected the utilization statistics of the machines and
computed their distributions. This produced an effective two-
dimensional probability density function (PDFcpu (t, r)) for
the total unconsumed CPU (t), and the CPU that was not
exploited by clients that reserved it (r). A client can utilize an
unused reserved CPU that adheres to its proportional share,
or utilize the entire total unconsumed CPU. Thus, the CDF
of the probability for a client with portion p of shares to get
x of the resource is given by

CDFp (x) =

∫ x

t=0

∫ x
p

r=0
PDFcpu (t, r) · dt · dr . (3)

To deduce the portion (p) of each offered number of shares,
the provider uses the average total share allocation per server.
It publishes, accordingly, the corresponding distributions for
each offered number of shares, in the form of a CDF (CDFp ,

according to Eq. 3). Identical distributions were published to
all of the clients, regardless of their actual server allocation.
The provider’s utilization and average share allocation sta-
tistics remain concealed. Each client, then, uses the CDF of
shares in the next bundle choice stage (Fig. 7).

1/64 1/16 1/4 1 4 16 64

CPU Potential

0.0

0.5

1.0

C
u

m
u

la
ti

ve
P

ro
b

ab
il
it

y

1
16 share
1
8 share
1
4 share
1
2 share

1 share

2 shares
4 shares
8 shares
16 shares
32 shares

Figure 7. CDF of the potential resource use for a number of
shares.

6 Compared Mechanisms
Similarly to public cloud providers, we offer clients a choice
of CPU performance units. In our simulations, these units
are core portions, i.e., 1

16 ,
1
8 ,

1
4 ,

1
2 , 1, 2, 4, 8, 16, 32 core(s). In

addition, the client can rent shares in the amount of 1
16 ,

1
8 ,

1
4 ,

1
2 , 1, 2, 4, 8, 16, 32 shares. A client that rents shares is not

obligated to rent reserved resources. We evaluated each of
the following mechanisms separately:
Fixed Performance (FP). Each initial iteration is a choice
among fixed performance offerings. This is our baseline.
When evaluating the rest of the mechanisms, FP was always
offered to the clients as an alternative.
Limited Stochastic Allocation (LSA). In our mechanism,
the client can rent shares alongside reserved resources, and
utilize them only up to their absolute value. E.g., a client that
rented 1

8 of a share can utilize up to 1
8 of a core in addition to

its reserved allocation, even if the machine is underutilized.

Stochastic Resource Allocation VEE ’19, April 14, 2019, Providence, RI, USA

Unlimited Stochastic Allocation (USA). For complete-
ness, we also tested our SA mechanism in a scenario where
the client can rent shares and use them without any cap-
ping. Its utilization is limited only by the server’s available
resources, and is in proportion to the total number of actively
used shares on the machine.
Burstable Performance (BP). We compared our mecha-
nism to burstable performance, where instances are modeled
assuming the allocated credit rate represents reserved re-
sources. Moreover, the credit system limits the client to a
certain average utilization per day; the provider will impose
a fine for overutilization. Hence, we assumed rational clients
will try to avoid exceeding the bundle’s average allocation.
To adhere to the strict coupling of the burstable instance of-
ferings, we only let clients rent bundles in which the number
of reserved resources equaled the number of shares.

To select the most profitable bundle, a client using BP has
to predict, for each bundle, the limit that will prevent it from
exceeding the bundle’s average (i.e., its reserved allocation).
To do this, the client takes into account its potential load
and the statistical potential attributed to a share [76]. Once
a bundle is selected, the client will not exceed its predicted
limit so as to not incur penalties. However, overutilization
was not fined by the provider.

According to our regression analysis (Section 2.3), a burstable
instance is limited to an average performance of 10%–30% of
the fixed instance maximal performance. Consequently, the
cost of a bundle of matching reserved resources and shares
should be 3.3–10 times the cost of renting only reserved re-
sources. Given the fact that reserved resources cost $1 per
core unit, the corresponding share should bear the rest of
the cost—that is, a share cost of $2.3–$9 per share unit.

We tested BP using share unit prices of $2, $3 and $4. For
LSA, we used share prices of $0.15, $0.5, $0.6, $0.7 and $0.9
per share unit. For USA, we used higher share prices of $3,
$5 and $8, as they allow clients to use more of the resource
and thus are more valuable to them.
LSA or BP (LSA/BP).We also tested the case where clients
had a choice between these two mechanisms: LSA with a
unit price of $0.5 or USA with a unit price of $3.

7 Results
First, we review our raw results by comparing the increase
of clients per server while maintaining revenue. Then, using
our simulation results, we make some assumptions to infer
server costs, and use them to compare the provider’s profit
from the various mechanisms.
As Fig. 8 shows, LSA .5 (Limited SA with a unit price of

$0.5) can pack 1.7 times more clients into each server than
BP 3 with the same revenue, and 5.7 times more than FP.
USA has a similar number of clients per server (CPS) as
LSA—albeit with significantly lower revenues.

LSA .15 allowed 233 CPS—the most among our tested
cases, but reduced the provider’s revenue significantly (35%)
compared with BP 3. LSA .5 matched the provider’s revenue
when using BP 3, and allowed nearly as many CPS as LSA
.15. LSA/BP allowed nearly as much CPS as LSA .5, however
with lower revenues.

0

50

100

150

200

250

C
li
en

ts
/S

er
ve

r

M
ax

im
al

C
P

S

40 231 228 215 158 133 107 233 227 224 220 206 223

F
P

U
S

A
3

U
S

A
5

U
S

A
8

B
P

2

B
P

3

B
P

4

L
S

A
.1

5

L
S

A
.5

L
S

A
.6

L
S

A
.7

L
S

A
.9

L
S

A
/B

P

0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

R
ev

en
u

es

Figure 8. Comparison of allocated clients per server and
provider’s revenue. The number following the mechanism’s
name is the share price of each tested case. The revenues are
normalized by the FP revenue. The error bars indicate the
variance in CPS between the servers.

7.1 Provider’s Economic Benefit
The public provider’s profit depends on its expenses on hard-
ware, energy and infrastructure purchasing: data we do not
have. This data can be used to estimate the daily server costs
and derive the profit from the revenue. Although revenues
for non-FP schemes are reduced, the providers’ profit may
still grow due to lower daily server costs, which increase the
profit margins—the profit divided by the revenue.

We estimated the server cost on the basis of our simulation
results, and the assumption that the first provider to offer BP
(Amazon) chose to offer this scheme to increase its profits.
Amazon’s BP pricing matches BP 3. Hence, we assume that
the FP profits are lower than those of BP 3. The profits are
equal when the profit margin of FP is 38%, which implies a
daily cost of $39 4 (in reserved core price units), assuming no
new clients joined due to the new attractive track. A lower
profit margin of 25% implies a server cost of $47, and a higher
profit margin of 50% implies a server cost of $31.

4The daily server cost is calculated as follows: ((1−profit margin)·profit)
number of servers .

VEE ’19, April 14, 2019, Providence, RI, USA Liran Funaro, Orna Agmon Ben-Yehuda, and Assaf Schuster

In Fig. 9, we demonstrate the provider’s profits in the
different tracks, using these three hypothesized values for
server costs. If a server costs $39—the break-even case for
FP and BP—the provider can increase its profit by over 35%
and its profit margins by at least 22% by offering LSA .6
instances instead of BP 3. The higher server cost ($47) leads
to a 44% increase in profit. Moreover, in all of these cases, the
profitmargins growwhen any stochastic allocation instances
(excluding USA 3) are offered.

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

P
ro

fi
t

$47 $39 $31 Break Even

F
P

U
S

A
3

U
S

A
5

U
S

A
8

B
P

2

B
P

3

B
P

4

L
S

A
.1

5

L
S

A
.5

L
S

A
.6

L
S

A
.7

L
S

A
.9

L
S

A
/B

P

20%

40%

60%

80%

100%

P
ro

fi
t

M
ar

gi
n

Figure 9. The provider’s profit and profit margin. Given a
server cost, the plot shows the expected profit and profit mar-
gin of the provider if it were to offer each tested mechanism.
The profits are normalized by the FP revenues.

A private cloud provider is interested in maximizing the
aggregated value of all its clients (social welfare). Fig. 10
shows that the BP track nearly maximized the social wel-
fare (over 99% of the maximal social welfare, achieved when
resources are abundant). LSA achieved over 97% of the max-
imal social welfare. It did so with fewer machines, meaning
it produced 55% more value per machine than did BP. USA
achieved a higher social welfare than LSA because it achieved
higher resource utilization and thus created more value.

F
P

U
S

A
3

U
S

A
5

U
S

A
8

B
P

2

B
P

3

B
P

4

L
S

A
.1

5

L
S

A
.5

L
S

A
.6

L
S

A
.7

L
S

A
.9

L
S

A
/B

P

97%

98%

99%

100%

S
o
ci

al
W

el
fa

re

Figure 10. Comparison of the social welfare.

7.2 Server Utilization
The more expensive the stochastic allocation is, the lower
the CPS will be (Fig. 8) and the lower the average utilization
will be, as seen in Fig. 11. This is because fewer clients prefer
it over a reserved allocation. The reserved allocations, which
grow larger, are generally less utilized, as also seen in Fig. 11.
For BP, the mean and median reserved utilization were

higher than for LSA and USA, but the average total utilization
was lower. This is because BP forces the clients to rent a
reserved resource in order to rent a proportionate share,
although they might want a smaller amount of reserved
resources. This proves our claim: decoupling the reserved
allocation from the average allocation will be preferred by
clients, and will also yield higher server consolidation.

F
P

U
S

A
3

U
S

A
5

U
S

A
8

B
P

2

B
P

3

B
P

4

L
S

A
.1

5

L
S

A
.5

L
S

A
.6

L
S

A
.7

L
S

A
.9

L
S

A
/B

P

0%

20%

40%

60%

80%

100%

U
ti

li
za

ti
on

Total Reserved Mean

Figure 11. CPU utilization distribution for each tested case,
differentiated by the total utilized CPU (left) and the portion
of the CPU consumed only by clients that reserved it (right).

7.3 Clients’ Preferences
When offered a choice of FP and a flexible mechanism, how
many would go for the flexible one? 92%–99% of the clients
preferred LSA to FP (Fig. 12c), and 77%–96% preferred USA
to FP (Fig. 12b). Only 65%–84% chose BP over FP (Fig. 12a.
When offered BP 3 or LSA .5, 56% preferred LSA and 42%
preferred BP. This indicates SA is more attractive to most
clients than BP. Its flexibility enables it to cater to a wider
set of client needs. Moreover, when offered any kind of sto-
chastic allocation (either USA or LSA), 34%-46% of the clients
avoided reserving resources at all.

7.4 Clients’ Attainment Ratio
Every 12 seconds, we calculated each client’s attained CPU
utilization divided by its required CPU utilization—i.e., the
client’s attainment ratio. In all the tested cases (FP, BP, SA
and USA), the average attainment ratio for all the clients was
over 99.8%. This indicates that the clients were able to satisfy
most of their load requirements.

Stochastic Resource Allocation VEE ’19, April 14, 2019, Providence, RI, USA

0%

20%

40% Reserved Resources

2 3 4

None 1
16

1
8

1
4

1
2 1 2 4 8

CPU and Share Units

0%

20%

40% Shares

P
or

ti
on

of
C

li
en

ts

(a) Distribution of burstable performance bundle.

0%

25%

50%

75% Reserved Resources

3 5 8

None 1
16

1
8

1
4

1
2 1 2 4 8

CPU and Share Units

0%

25%

50%

75% Shares

P
or

ti
on

of
C

li
en

ts

(b) Distribution of unlimited shares bundle.

0%

20%

40%
Reserved Resources

0.15 0.5 0.6 0.7 0.9

None 1
16

1
8

1
4

1
2 1 2 4 8 16 32

CPU and Share Units

0%

20%

Shares

P
or

ti
on

of
C

li
en

ts

(c) Distribution of limited shares bundle.

Figure 12. The distribution of clients’ selected bundles. Each
color represents a different tested unit price for the shares.

7.5 Validation
To validate our simulation, we compared the distribution
of the selected bundles in our FP simulation to the distribu-
tion in the entire Azure dataset (2,013,767 clients). Our FP
response profile distribution matches Azure’s, with 10% less
overprovisioning (Fig. 13). This is consistent with real clients
being more risk averse than rational, simulated clients. This
indicates that most of our simulated realistic clients have the
same utility function distribution as real clients.

For further validation, we compared the utilization distri-
bution in our FP simulation to real cloud data. Measurements

1
16

1
8

1
4

1
2 1 2 4 8 16

CPUs

0%

20%

40%

C
li

en
ts

Azure Fixed Performance

Figure 13. The selected number of virtual cores in our fixed-
performance experiment and in the Azure dataset.

taken before the introduction of burstable instances indicated
average CPU utilization of 15%–20% [13, 42], which is consis-
tent with the FP’s mean utilization in our simulation results,
shown in Fig. 11.
We also confirmed that the clients in our simulations act

rationally, that their load expectations are realistic, and that
the published shares’ potential is accurate. To do this, we
compared the clients’ expected value (before the server simu-
lation) to their effective value (their actual revenues from the
simulated performance). The average effective value tended
to be slightly lower than the expected value, as seen in Fig. 14.
The high variance is expected as the clients use statistics
from up to a month to predict the load of a single day.

F
P

U
S

A
3

U
S

A
5

U
S

A
8

B
P

2

B
P

3

B
P

4

L
S

A
.1

5

L
S

A
.5

L
S

A
.6

L
S

A
.7

L
S

A
.9

L
S

A
/B

P

0.5

1.0

1.5

E
ff

ec
ti

ve
/E

x
p

ec
te

d
V

al
u

e

Median Mean

Figure 14. The distribution of clients’ revenue normalized
by their expected value in each tested case.

We validated that the iterations we chose—the last 60—
indeed converged. Over the course of the last 60 iterations, up
to 12% of the clients changed their selected bundle from the
first iteration to the last, in all the tested cases. Moreover, the
standard deviation of the selected bundles’ distribution over
these iterations was under 0.6% and the standard deviation
of the shares CDF was under 0.01%, in all the tested cases.
Finally, we analyzed the effect the different assumptions

would have on the results. When we modified the beta den-
sity to be 0.5, 10 or 50, CPS was increased by up to 6% for

VEE ’19, April 14, 2019, Providence, RI, USA Liran Funaro, Orna Agmon Ben-Yehuda, and Assaf Schuster

SA, on the one hand, and reduced by up to 5% for BP, on the
other, compared with the main value (1). When we avoided
the over-the-top extrapolation of the generated load val-
ues, CPS was reduced by up to 7%. When we modified the
performance functions so they were linear and concave,
CPS was reduced by up to 3% compared with monotonically
increasing ones. When we modified the Pareto index, CPS
was reduced by up to 6% for a Pareto index of 0.8 and in-
creased by up to 1% for an index of 1.3, compared with the
main index (1.1). We also modified the number of clients
that can change their bundle. The average CPS was not
affected when 384 (or less) clients changed their bundle at
once. When more than 256 clients changed their bundle,
however, the results fluctuated. When more than 384 clients
changed their bundle, the results failed to converge.
In all of the simulations, we compared the CPS ratio of

LSA over BP. Throughout the above-mentioned modifica-
tions, this ratio turned out higher than in the main results
presented earlier (Fig. 8). This indicates that the main results
are numerically sound.

8 Related Work
Agmon Ben-Yehuda et al. [1, 3] predicted that cloud providers
will reduce the resource allocation intervals, as they cur-
rently do. They also predicted the need for sophisticated
economic mechanisms to efficiently allocate resources in the
cloud. This work and the other mechanisms mentioned here
follow this principle.

Many researchers have suggested ways to improve server
consolidation and social welfare other than those used in the
industry. Dynamic pricing schemes have been proposed to
regulate demand [82] or reduce interference [35]. Shahrad
et al. [59] also suggested incentivizing clients to limit their
burstiness via an incentive compatible pricing scheme, in
which clients profit from limiting themselves.

Other researchers suggested allowing clients to communi-
cate information to the provider (the desired availability [60,
63], long-term (months) required service level objectives [17]
or short term requirements [31]). This approach places the
burden of placement and scheduling on the provider’s alloca-
tor, which must ensure that the client’s requirements are met
with high probability. That is, it must solve an optimization
problem. Our solution is simpler for the provider, who only
needs to publish its statistics, and leaves the burden of mak-
ing an informed choice to clients. Other researchers collected
statistics about clients to improve utilization [16, 46, 74],
efficiency [66, 67], consolidation [78] or energy consump-
tion [43] via placement algorithms or resources reallocation.
Many solutions have been proposed for improving the

utilization of dedicated large-scale clusters given a job sched-
uler [5, 10–12, 15, 22, 23, 29, 33, 34, 36, 38, 41, 44, 50, 57, 58,
64, 72, 74, 80, 81]. Such schedulers are more flexible, and
thus reach higher utilization than public clouds. They can

do so because the data center provider is often the one that
deploys this system and can control the fine-tuning of each
task. Real clients’ utility functions were characterized on
such systems [40, 77], but the characterization is inapplica-
ble to public clouds or private clouds without a centralized
scheduler.

9 Conclusions and Future Work
Stochastic CPU allocation via shares allows clients to re-
duce their reserved resource requirements. This allows the
provider to increase the number of clients per server by more
than 70% compared with burstable performance. As such, our
method can increase the profits of the public cloud provider
by over 28% compared with burstable instances. Further-
more, our method also benefits private cloud providers as it
increases the client social welfare per server. It increases the
value each server generates for the corporation by over 55%.

The private cloud’s social welfare can be improved further
by allowing clients to bid for shares, just as clients bid for
spot instances in horizontal scaling [2, 9, 28, 48]. Formulating
a bidding and valuation language for stochastic allocation
remains as future work. The provider might also charge
the clients an additional, fixed, price-per-use to discourage
resource waste. Analyzing this is left for future work as well.
Our simulations show that almost all clients will prefer

using our mechanisms versus the fixed performance track,
and over 56% will prefer it over burstable performance. Our
SA mechanisms offer a cheaper track than either fixed per-
formance or burstable, and do not mandate reserving any
resources. Hence, new clients, who were unable to afford
other cloud services, might now join the cloud and further
increase the provider’s revenues, without cannibalizing the
market share of the existing offerings.
Our simulation infrastructure was validated using real

data from a real cloud. Our methodology and the clients’
rationale were validated by the accuracy of the clients’ ex-
pectations, despite the reduced and compact data at their
disposal. We hope that our infrastructure, published as an
open source project, will allow more research on the appli-
cability of novel allocation methods.
To implement our stochastic allocation method in a real

cloud, our modified CFS should be implemented in the Linux
kernel. It can also be implemented on other resources that
can be allocated via a proportional share mechanism [75]. In-
vestigating the coexistence of this mechanism over multiple
resources remains as future work as well.

Acknowledgments
We thank Sharon Kessler, Deborah Miller, Danielle Mov-
sowitz, Tamar Camus, Shunit Agmon and Muli Ben-Yehuda
for fruitful discussions. This work was partially funded by
the Hasso Platner Institute, and by the Pazy Joint Research
Foundation.

Stochastic Resource Allocation VEE ’19, April 14, 2019, Providence, RI, USA

References
[1] Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan

Tsafrir. 2012. The Resource-as-a-Service (RaaS) Cloud. In Proceedings
of the 4th USENIX Conference on Hot Topics in Cloud Computing (Hot-
Cloud). USENIX Association. http://portal.acm.org/citation.cfm?id=
2342775

[2] Orna Agmon Ben-Yehuda, Muli Ben Yehuda, Assaf Schuster, and Dan
Tsafrir. 2013. Deconstructing Amazon EC2 Spot Instance Pricing.
ACM Transactions on Economics and Computation (TEAC) 1, 3 (2013).
https://doi.org/10.1145/2509413.2509416

[3] Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan
Tsafrir. 2014. The Rise of RaaS: The Resource-as-a-Service Cloud.
Commun. ACM 57, 7 (2014), 76–84. https://doi.org/10.1145/2627422

[4] Orna Agmon Ben-Yehuda, Eyal Posener, Muli Ben-Yehuda, Assaf Schus-
ter, and Ahuva Mu’alem. 2014. Ginseng: Market-driven Memory Allo-
cation. In Proceedings of the 10th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE), Vol. 49. ACM,
ACM, 41–52. https://doi.org/10.1145/2576195.2576197

[5] Orna Agmon Ben-Yehuda, Assaf Schuster, Artyom Sharov, Mark
Silberstein, and Alexandru Iosup. 2012. ExPERT: Pareto-Efficient
Task Replication on Grids and a Cloud. In IEEE 26th International
Parallel & Distributed Processing Symposium (IPDPS). IEEE, 167–178.
https://doi.org/10.1109/ipdps.2012.25

[6] Alibaba. 2018. Alibaba Cloud Spot Instances. https://www.alibabacloud.
com/help/doc-detail/52088.htm. Accessed: 2018-05-03.

[7] Amazon. 2017. Amazon EC2 On-Demand Pricing. https://aws.amazon.
com/ec2/pricing/on-demand/. Accessed: 2017-07-24.

[8] Amazon. 2018. Amazon EC2 Burstable Performance Instances. https:
//aws.amazon.com/ec2/instance-types/#burst. Accessed: 2018-07-25.

[9] Amazon. 2018. Amazon EC2 Spot Instances. https://aws.amazon.com/
ec2/spot/details/. Accessed: 2018-07-25.

[10] Apache. 2018. Apache Aurora Project. http://aurora.incubator.apache.
org/. Accessed: 2018-07-25.

[11] Apache. 2018. Apache Hadoop Project. http://hadoop.apache.org/.
Accessed: 2018-07-25.

[12] Apache. 2018. Apache Spark Project. http://spark.apache.org/. Ac-
cessed: 2018-07-25.

[13] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel
Rabkin, Ion Stoica, and Matei Zaharia. 2010. A View of Cloud Com-
puting. Commun. ACM 53, 4 (2010), 50–58. https://doi.org/10.1145/
1721654.1721672

[14] Luiz André Barroso, JimmyClidaras, and Urs Hölzle. 2013. The datacen-
ter as a computer: An introduction to the design of warehouse-scale
machines. Synthesis Lectures on Computer Architecture 8, 3 (2013),
1–154.

[15] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zheng-
ping Qian, Ming Wu, and Lidong Zhou. 2014. Apollo: Scalable and
Coordinated Scheduling for Cloud-Scale Computing. In OSDI, Vol. 14.
285–300.

[16] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and
John Wilkes. 2016. Borg, Omega, and Kubernetes. Queue 14, 1 (2016),
10.

[17] Marcus Carvalho, Walfredo Cirne, Francisco Brasileiro, and John
Wilkes. 2014. Long-term SLOS for reclaimed cloud computing re-
sources. In Proceedings of the ACM Symposium on Cloud Computing.
ACM, 1–13.

[18] Sivadon Chaisiri, Bu-Sung Lee, and Dusit Niyato. 2012. Optimization
of resource provisioning cost in cloud computing. IEEE Transactions
on Services Computing 5, 2 (2012), 164–177.

[19] CloudSigma. 2018. CloudSigma Cloud Pricing. https://www.
cloudsigma.com/pricing/. Accessed: 2018-07-25.

[20] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus
Fontoura, and Ricardo Bianchini. 2017. Resource Central: Understand-
ing and Predicting Workloads for Improved Resource Management

in Large Cloud Platforms. In Proceedings of the 26th Symposium on
Operating Systems Principles. ACM, 153–167.

[21] Rostand Costa, Francisco Brasileiro, Guido Lemos, and Dênio Sousa.
2013. Analyzing the impact of elasticity on the profit of cloud com-
puting providers. Future Generation Computer Systems 29, 7 (2013),
1777–1785.

[22] Mehiar Dabbagh, Bechir Hamdaoui, Mohsen Guizani, and Ammar
Rayes. 2015. Energy-Efficient Resource Allocation and Provisioning
Framework for Cloud Data Centers. IEEE Trans. Network and Service
Management 12, 3 (2015), 377–391.

[23] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: resource-
efficient and QoS-aware cluster management. ACM SIGPLAN Notices
49, 4 (2014), 127–144.

[24] Benjamin Farley, Ari Juels, Venkatanathan Varadarajan, Thomas Ris-
tenpart, Kevin D Bowers, and Michael M Swift. 2012. More for your
money: exploiting performance heterogeneity in public clouds. In
Proceedings of the Third ACM Symposium on Cloud Computing. ACM,
20.

[25] Liran Funaro, Orna Agmon Ben-Yehuda, and Assaf Schuster. 2016.
Ginseng: market-driven LLC allocation. In Proceedings of the 2016
USENIX Conference on Usenix Annual Technical Conference. USENIX
Association, 295–308.

[26] Rahul Ghosh and Vijay K Naik. 2012. Biting off safely more than you
can chew: Predictive analytics for resource over-commit in iaas cloud.
In 2012 IEEE 5th International Conference on Cloud Computing (CLOUD).
IEEE, 25–32.

[27] Google. 2018. Google Cloud Compute Engine Pricing. https://cloud.
google.com/compute/pricing. Accessed: 2018-07-25.

[28] Google. 2018. Google Cloud Preemptible VM Instances. https://cloud.
google.com/compute/docs/instances/preemptible. Accessed: 2018-07-
25.

[29] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram
Rao, and Aditya Akella. 2015. Multi-resource packing for cluster
schedulers. ACM SIGCOMM Computer Communication Review 44, 4
(2015), 455–466.

[30] James Hamilton. 2018. Cost of Power in Large-Scale
Data Centers. https://perspectives.mvdirona.com/2008/11/
cost-of-power-in-large-scale-data-centers/. Accessed: 2018-
07-25.

[31] Michael R. Hines, Abel Gordon, Marcio Silva, Dilma Da Silva,
Kyung Ryu, and Muli Ben-Yehuda. 2011. Applications Know Best:
Performance-Driven Memory Overcommit with Ginkgo. In 2011 IEEE
3rd International Conference on Cloud Computing Technology and Sci-
ence (CloudCom). IEEE, 130–137. https://doi.org/10.1109/cloudcom.
2011.27

[32] Alexandru Iosup, Simon Ostermann, M Nezih Yigitbasi, Radu Prodan,
Thomas Fahringer, and Dick Epema. 2011. Performance analysis of
cloud computing services for many-tasks scientific computing. IEEE
Transactions on Parallel and Distributed systems 22, 6 (2011), 931–945.

[33] Michael Isard. 2007. Autopilot: automatic data center management.
ACM SIGOPS Operating Systems Review 41, 2 (2007), 60–67.

[34] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal
Talwar, and Andrew Goldberg. 2009. Quincy: fair scheduling for
distributed computing clusters. In Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles. ACM, 261–276.

[35] Vatche Ishakian, Raymond Sweha, Azer Bestavros, and Jonathan Ap-
pavoo. 2012. Cloudpack* exploiting workload flexibility through ratio-
nal pricing. In Proceedings of the 13th International Middleware Confer-
ence. Springer-Verlag New York, Inc., 374–393.

[36] Navendu Jain, Ishai Menache, Joseph Seffi Naor, and Jonathan Yaniv.
2015. Near-optimal scheduling mechanisms for deadline-sensitive jobs
in large computing clusters. ACM Transactions on Parallel Computing
2, 1 (2015), 3.

http://portal.acm.org/citation.cfm?id=2342775
http://portal.acm.org/citation.cfm?id=2342775
https://doi.org/10.1145/2509413.2509416
https://doi.org/10.1145/2627422
https://doi.org/10.1145/2576195.2576197
https://doi.org/10.1109/ipdps.2012.25
https://www.alibabacloud.com/help/doc-detail/52088.htm
https://www.alibabacloud.com/help/doc-detail/52088.htm
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/instance-types/#burst
https://aws.amazon.com/ec2/instance-types/#burst
https://aws.amazon.com/ec2/spot/details/
https://aws.amazon.com/ec2/spot/details/
http://aurora.incubator.apache.org/
http://aurora.incubator.apache.org/
http://hadoop.apache.org/
http://spark.apache.org/
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1145/1721654.1721672
https://www.cloudsigma.com/pricing/
https://www.cloudsigma.com/pricing/
https://cloud.google.com/compute/pricing
https://cloud.google.com/compute/pricing
https://cloud.google.com/compute/docs/instances/preemptible
https://cloud.google.com/compute/docs/instances/preemptible
https://perspectives.mvdirona.com/2008/11/cost-of-power-in-large-scale-data-centers/
https://perspectives.mvdirona.com/2008/11/cost-of-power-in-large-scale-data-centers/
https://doi.org/10.1109/cloudcom.2011.27
https://doi.org/10.1109/cloudcom.2011.27

VEE ’19, April 14, 2019, Providence, RI, USA Liran Funaro, Orna Agmon Ben-Yehuda, and Assaf Schuster

[37] Kristof Kovacs. 2018. Charting CloudSigma burst prices. https://
kkovacs.eu/cloudsigma-burst-price-chart. Accessed: 2018-07-25.

[38] Kubernetes 2018. Kubernetes. http://kubernetes.io. Accessed: 2018-
07-25.

[39] Ewnetu Bayuh Lakew, Cristian Klein, Francisco Hernandez-Rodriguez,
and Erik Elmroth. 2015. Performance-based service differentiation in
clouds. In IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid), 2015 15th. IEEE, 505–514.

[40] Cynthia B Lee and Allan E Snavely. 2007. Precise and realistic util-
ity functions for user-centric performance analysis of schedulers. In
Proceedings of the 16th International Symposium on High Performance
Distributed Computing. ACM, 107–116.

[41] Jacob Leverich and Christos Kozyrakis. 2014. Reconciling high server
utilization and sub-millisecond quality-of-service. In Proceedings of
the Ninth European Conference on Computer Systems. ACM, 4.

[42] Huan Liu. 2012. Host Server CPU Utilization in Ama-
zon EC2 Cloud. http://huanliu.wordpress.com/2012/02/17/
host-server-cpu-utilization-in-amazon-ec2-cloud/. Accessed:
2018-07-25.

[43] Xiao-Fang Liu, Zhi-Hui Zhan, Ke-Jing Du, and Wei-Neng Chen. 2014.
Energy aware virtual machine placement scheduling in cloud com-
puting based on ant colony optimization approach. In Proceedings of
the 2014 Annual Conference on Genetic and Evolutionary Computation.
ACM, 41–48.

[44] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ran-
ganathan, and Christos Kozyrakis. 2015. Heracles: Improving resource
efficiency at scale. In Proceedings of the 42nd Annual International
Symposium on Computer Architecture. ACM, 450–462.

[45] Tania Lorido-Botrán, José Miguel-Alonso, and Jose Antonio Lozano.
2012. Auto-scaling techniques for elastic applications in cloud environ-
ments. Department of Computer Architecture and Technology, University
of Basque Country, Tech. Rep. EHU-KAT-IK-09 12 (2012).

[46] Barnaby Malet and Peter Pietzuch. 2010. Resource allocation across
multiple cloud data centres. In Proceedings of the 8th International
Workshop on Middleware for Grids, Clouds and e-Science. ACM, 5.

[47] Ming Mao and Marty Humphrey. 2012. A performance study on the
VM startup time in the cloud. In 2012 IEEE International Conference on
Cloud Computing. IEEE, 423–430.

[48] Microsoft. 2018. Azure batch low-priority
VMs. https://azure.microsoft.com/en-gb/blog/
announcing-public-preview-of-azure-batch-low-priority-vms/.
Accessed: 2018-07-25.

[49] Microsoft. 2018. Microsoft Azure AKS B-series
Burstable VM. https://azure.microsoft.com/en-us/blog/
introducing-b-series-our-new-burstable-vm-size/. Accessed:
2018-07-25.

[50] Hiep Nguyen, Zhiming Shen, Xiaohui Gu, Sethuraman Subbiah, and
John Wilkes. 2013. AGILE: Elastic Distributed Resource Scaling for
Infrastructure-as-a-Service.. In ICAC, Vol. 13. 69–82.

[51] Zhonghong Ou, Hao Zhuang, Jukka K. Nurminen, Antti Ylä-Jääski,
and Pan Hui. 2012. Exploiting hardware heterogeneity within the
same instance type of Amazon EC2. In 4th USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud).

[52] Chandandeep S. Pabla. 2009. Completely Fair Scheduler. Linux Journal
2009, 184 (2009), 4.

[53] Packet. 2018. Packet Cloud Spot Instances. https://www.packet.net/
bare-metal/deploy/spot/. Accessed: 2018-06-02.

[54] Steven Pelley, David Meisner, Pooya Zandevakili, Thomas F Wenisch,
and Jack Underwood. 2010. Power routing: dynamic power provision-
ing in the data center. In ACM Sigplan Notices, Vol. 45. ACM, 231–242.

[55] Rackspace. 2018. Rackspace Cloud Flavors. https://developer.rackspace.
com/docs/cloud-servers/v2/general-api-info/flavors/. Accessed: 2018-
09-27.

[56] Charles Reiss, Alexey Tumanov, Gregory R Ganger, Randy H Katz, and
Michael A Kozuch. 2012. Heterogeneity and dynamicity of clouds at

scale: Google trace analysis. In Proceedings of the Third ACM Sympo-
sium on Cloud Computing. ACM, 7.

[57] Thomas Sandholm and Kevin Lai. 2010. Dynamic proportional share
scheduling in hadoop. In Workshop on Job Scheduling Strategies for
Parallel Processing. Springer, 110–131.

[58] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and
John Wilkes. 2013. Omega: flexible, scalable schedulers for large
compute clusters. In Proceedings of the 8th ACM European Conference
on Computer Systems. ACM, 351–364.

[59] Mohammad Shahrad, Cristian Klein, Liang Zheng, Mung Chiang, Erik
Elmroth, and David Wentzlaff. 2017. Incentivizing self-capping to
increase cloud utilization. In Proceedings of the 2017 Symposium on
Cloud Computing. ACM, 52–65.

[60] Mohammad Shahrad and David Wentzlaff. 2016. Availability knob:
Flexible user-defined availability in the cloud. In Proceedings of the
Seventh ACM Symposium on Cloud Computing. ACM, 42–56.

[61] Yogesh Sharma, Bahman Javadi, Weisheng Si, and Daniel Sun. 2016.
Reliability and energy efficiency in cloud computing systems: Survey
and taxonomy. Journal of Network and Computer Applications 74 (2016),
66–85.

[62] Supreeth Shastri. 2018. System Support for Managing Risk in Cloud
Computing Platforms. Ph.D. Dissertation. University of Massachusetts
Amherst.

[63] Supreeth Shastri, Amr Rizk, and David Irwin. 2016. Transient guar-
antees: maximizing the value of idle cloud capacity. In Networking,
Storage and Analysis, SC16: International Conference for High Perfor-
mance Computing. IEEE, 992–1002.

[64] Mark Silberstein, Artyom Sharov, Dan Geiger, and Assaf Schuster. 2009.
GridBot: execution of bags of tasks in multiple grids. In Proceedings of
the Conference on High Performance Computing Networking, Storage
and Analysis. ACM, 11.

[65] Wataru Souma. 2001. Universal structure of the personal income
distribution. Fractals 9, 04 (2001), 463–470.

[66] Byung Chul Tak, Youngjin Kwon, and Bhuvan Urgaonkar. 2013. To-
wards An Effective and General Resource Accounting and Control
Framework in Consolidated IT Platforms. In Proceedings of the Seventh
Workshop on Large-Scale Distributed Systems and Middleware (LADIS
’13).

[67] Priyanka Tembey, Ada Gavrilovska, and Karsten Schwan. 2014. Merlin:
Application-and platform-aware resource allocation in consolidated
server systems. In Proceedings of the ACM Symposium on Cloud Com-
puting. ACM, 1–14.

[68] Luis Tomás, Cristian Klein, Johan Tordsson, and Francisco Hernández-
Rodríguez. 2014. The straw that broke the camel’s back: safe cloud
overbooking with application brownout. In 2014 International Confer-
ence on Cloud and Autonomic Computing (ICCAC). IEEE, 151–160.

[69] Luis Tomás and Johan Tordsson. 2013. Improving cloud infrastructure
utilization through overbooking. In Proceedings of the 2013 ACM Cloud
and Autonomic Computing Conference. ACM, 5.

[70] Alexey Tumanov, James Cipar, Gregory R Ganger, and Michael A
Kozuch. 2012. alsched: Algebraic scheduling of mixed workloads in
heterogeneous clouds. In Proceedings of the Third ACM Symposium on
Cloud Computing. ACM, 25.

[71] Ruben Van den Bossche, Kurt Vanmechelen, and Jan Broeckhove. 2015.
IaaS reserved contract procurement optimisation with load prediction.
Future Generation Computer Systems 53 (2015), 13–24.

[72] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad
Agarwal, Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe,
Hitesh Shah, Siddharth Seth, et al. 2013. Apache hadoop yarn: Yet an-
other resource negotiator. In Proceedings of the 4th Annual Symposium
on Cloud Computing. ACM, 5.

[73] Christian Vecchiola, Suraj Pandey, and Rajkumar Buyya. 2009. High-
performance cloud computing: A view of scientific applications. In
2009 10th International Symposium on Pervasive Systems, Algorithms,

https://kkovacs.eu/cloudsigma-burst-price-chart
https://kkovacs.eu/cloudsigma-burst-price-chart
http://kubernetes.io
http://huanliu.wordpress.com/2012/02/17/host-server-cpu-utilization-in-amazon-ec2-cloud/
http://huanliu.wordpress.com/2012/02/17/host-server-cpu-utilization-in-amazon-ec2-cloud/
https://azure.microsoft.com/en-gb/blog/announcing-public-preview-of-azure-batch-low-priority-vms/
https://azure.microsoft.com/en-gb/blog/announcing-public-preview-of-azure-batch-low-priority-vms/
https://azure.microsoft.com/en-us/blog/introducing-b-series-our-new-burstable-vm-size/
https://azure.microsoft.com/en-us/blog/introducing-b-series-our-new-burstable-vm-size/
https://www.packet.net/bare-metal/deploy/spot/
https://www.packet.net/bare-metal/deploy/spot/
https://developer.rackspace.com/docs/cloud-servers/v2/general-api-info/flavors/
https://developer.rackspace.com/docs/cloud-servers/v2/general-api-info/flavors/

Stochastic Resource Allocation VEE ’19, April 14, 2019, Providence, RI, USA

and Networks. IEEE, 4–16.
[74] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppen-

heimer, Eric Tune, and John Wilkes. 2015. Large-scale cluster man-
agement at Google with Borg. In Proceedings of the Tenth European
Conference on Computer Systems. ACM, 18.

[75] Carl A Waldspurger. 1995. Lottery and stride scheduling: Flexible
proportional-share resource management. Technical Report. Cambridge,
MA, USA.

[76] Cheng Wang, Bhuvan Urgaonkar, Neda Nasiriani, and George Kesidis.
2017. Using Burstable Instances in the Public Cloud: Why, When
and How? Proceedings of the ACM on Measurement and Analysis of
Computing Systems 1, 1 (2017), 11.

[77] John Wilkes. 2009. Utility Functions, Prices, and Negotiation. New York:
Wiley.

[78] Dan Williams, Hani Jamjoom, Yew-Huey Liu, and Hakim Weather-
spoon. 2011. Overdriver: Handling memory overload in an oversub-
scribed cloud. In ACM SIGPLAN Notices, Vol. 46. ACM, 205–216.

[79] Qiang Wu, Qingyuan Deng, Lakshmi Ganesh, Chang-Hong Hsu, Yun
Jin, Sanjeev Kumar, Bin Li, Justin Meza, and Yee Jiun Song. 2016. Dy-
namo: Facebook’s data center-wide power management system. In
2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA). IEEE, 469–480.

[80] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang. 2013.
Bubble-flux: Precise online qosmanagement for increased utilization in
warehouse scale computers. In ACM SIGARCH Computer Architecture
News, Vol. 41. ACM, 607–618.

[81] Zhuo Zhang, Chao Li, Yangyu Tao, Renyu Yang, Hong Tang, and Jie Xu.
2014. Fuxi: a fault-tolerant resource management and job scheduling
system at internet scale. Proceedings of the VLDB Endowment 7, 13
(2014), 1393–1404.

[82] Liang Zheng, Carlee Joe-Wong, Chee Wei Tan, Mung Chiang, and
XinyuWang. 2015. How to bid the cloud. In ACM SIGCOMM Computer
Communication Review, Vol. 45. ACM, 71–84.

[83] Xiaoyun Zhu, Zhikui Wang, and Sharad Singhal. 2006. Utility-driven
workload management using nested control design. In American Con-
trol Conference, 2006. IEEE.

	Abstract
	1 Introduction
	2 Allocation Mechanisms and Incentives
	2.1 Client Requirements
	2.2 Provider Goals
	2.3 Allocation Mechanisms

	3 Stochastic Allocation
	3.1 Implementing Stochastic Allocation via Shares

	4 Realistic Workload Modeling
	4.1 Performance
	4.2 Load
	4.3 Valuation

	5 Evaluation Methodology
	6 Compared Mechanisms
	7 Results
	7.1 Provider's Economic Benefit
	7.2 Server Utilization
	7.3 Clients' Preferences
	7.4 Clients' Attainment Ratio
	7.5 Validation

	8 Related Work
	9 Conclusions and Future Work
	Acknowledgments
	References

