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ABSTRACT
A fundamental problem in distributed computation is the
distributed evaluation of functions. The goal is to determine
the value of a function over a set of distributed inputs, in
a communication efficient manner. Specifically, we assume
that each node holds a time varying input vector, and we
are interested in determining, at any given time, whether
the value of an arbitrary function on the average of these
vectors crosses a predetermined threshold.

In this paper, we introduce a new method for monitoring
distributed data, which we term shape sensitive geometric
monitoring. It is based on a geometric interpretation of the
problem, which enables to define local constraints on the
data received at the nodes. It is guaranteed that as long as
none of these constraints has been violated, the value of the
function does not cross the threshold. We generalize previ-
ous work on geometric monitoring, and solve two problems
which seriously hampered its performance: as opposed to
the constraints used so far, which depend only on the cur-
rent values of the local input vectors, here we incorporate
their temporal behavior into the constraints. Also, the new
constraints are tailored to the geometric properties of the
specific function which is being monitored, while the previ-
ous constraints were generic.

Experimental results on real world data reveal that using
the new geometric constraints reduces communication by up
to three orders of magnitude in comparison to existing ap-
proaches, and considerably narrows the gap between existing
results and a newly defined lower bound on the communica-
tion complexity.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Distributed
Systems

General Terms
Algorithms, Performance
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1. INTRODUCTION
Many emerging applications require processing high-volume

streams of data. Examples include network traffic monitor-
ing systems, real-time analysis of financial data [32, 34], dis-
tributed intrusion detection systems, and sensor networks
[23]. These applications are commonly referred to as Data
Stream Management Systems (DSMS) [4]. A key difference
between DSMS and traditional DBMS is that DSMS are re-
quired to process continuous queries. DBMS receive queries
that are static in nature, i.e. the system receives a query,
and returns a response based on the data currently present
in the system. DSMS, on the other hand, are designed to
handle continuous queries, i.e. the system receives a query
and continuously updates the user as new data arrives. This
key difference poses new fundamental challenges that are not
addressed by traditional DBMS.

Various types of continuous queries have been studied in
the past, including continuous versions of selection and join
queries [24], various types of aggregation queries [2, 26], and
monitoring queries [6]. While most previous work regarding
data stream systems considers sequential setups (the data is
processed by a single processor), many data stream appli-
cations are inherently distributed: examples include sensor
networks [23], network monitoring [17], and distributed in-
trusion detection.

In many cases, the user of a distributed stream system is
interested in receiving notifications when global “events of
interest” occur. These tasks are referred to as distributed
monitoring tasks. Consider, for example, a distributed sys-
tem for detecting denial of service attacks. A node is con-
sidered to be under a denial of service attack if more than
a certain percentage of the incoming traffic, say 0.1 percent,
is directed to that node. The system is comprised of agents
installed on the routers controlling the network traffic enter-
ing a local network. Each agent monitors the traffic flowing
into the network through its host.

It is easy to see that in the example given above, when a
certain node is under a distributed denial of service attack,
at least one of the agents will detect that the network traf-
fic to that node exceeds 0.1 percent of the incoming traffic
through its host. In other words, the global “event of in-
terest” has a local indication. This fact can be utilized to
develop efficient monitoring algorithms, as described in [17].

In more complex monitoring tasks, global “events of inter-
est” may be harder to detect by solely examining local data.
As an example of a complex monitoring task, consider a
distributed search engine. The engine is comprised of a dis-
tributed set of mirrors. Each mirror receives a stream of



queries, where each query consists of multiple search terms.
We are interested in monitoring the correlation between the
appearance of pairs of search terms is a search query. In
order to do so, each mirror keeps track of the queries it re-
ceived in the last, say, 48 hours. We refer to these queries as
the sliding windows held by the mirrors. Given two search
terms, denoted A and B, let fA and fB be the respective
global frequency of occurrence1 of A and B, i.e. the fre-
quency of their occurrence in the union of the sliding win-
dows held by the mirrors. In addition, let fAB be the global
frequency of occurrence of both A and B. The correlation
between the appearance of A and that of B is measured
using the correlation coefficient ρAB , which is given by:

ρAB(fA, fB , fAB) =
fAB − fAfB√

(fA − f2
A)(fB − f2

B)

The correlation coefficient receives values in the range
[−1..1]. A negative score indicates that the terms tend to
exclude each other, a score of zero indicates that there is
no correlation between the appearance of the terms, and a
positive score indicates that the terms tend to appear in the
same queries. We would like to receive a notification when
the correlation coefficient crosses a given positive threshold.
It is easy to see that it is impossible to reach a correct deci-
sion, given only the local values of the correlation coefficient.
This is a characteristic of non-linear functions.

In this paper we consider a set of nodes, each of which
holds a time varying data vector. The global “event of inter-
est” is defined by an arbitrary (possibly non-linear) function
over the weighted average of the vectors held by the nodes,
and we are interested in detecting when the value of this
function crosses a predetermined threshold value. We refer
to these monitoring tasks as non-linear monitoring tasks.
Note that the aforementioned problem of determining the
correlation coefficient is covered by this definition.

1.1 Distributed Geometric Monitoring
While non-linear monitoring tasks can be performed by a

naive algorithm that collects all the data to a central loca-
tion for analysis, the communication load incurred by such
an algorithm may be prohibitively high. Sensor networks
are particularly sensitive to a high communication load since
communications are the primary factor affecting the power
consumption of the network [33]. In addition to communica-
tion load concerns, collecting data to a central location may
violate privacy requirements in certain applications.

Previous work [30] has proposed algorithms for perform-
ing non-linear monitoring tasks that are based on geometric
techniques. The idea is to use the geometric properties of
the local data vectors to construct a set of local constraints.
Each node verifies that its local data vector conforms to a
local constraint. These constraints can be verified indepen-
dently (i.e. each node can verify its local constraint without
communicating with other nodes), and if all the constraints
are upheld, the threshold function is guaranteed to remain
unchanged. The constraints proposed in [30], however, have
several drawbacks.

The first deficiency of these constraints is that they are
constructed solely according to the current values of the lo-

1Frequency of occurrence refers to the number of search
queries containing the term divided by the total number of
queries.

cal data vectors. Real-world data usually displays an un-
derlying distribution. We fit a probabilistic model to this
distribution, and use it to create local constraints that are
optimized to the data received on the nodes, in the sense
that the probability of a constraint violation is minimized.

Another disadvantage of geometric constraints proposed
in previous work is that they are generic in the sense that
the same constraints are used regardless of the function at
hand. We present a new approach, which allows to construct
a range of valid constraints. This poses a new challenge –
how to select the constraints that are optimal given a certain
function. We address this challenge, and offer a method for
choosing the optimal constraints.

1.2 Contributions
The contributions of this work are the following:

1. We fit a distribution to the data received by the nodes,
and use this distribution to create geometric constraints
that minimize the probability of violation.

2. For every constraint, we define a formal construct called
a “safe zone”, which allows to measure the constraint’s
effectiveness in relation to the given function. This
measure, in turn, is used to select an effective con-
straint.

3. We present a theoretic optimal constraint (i.e. when
it is violated, any other possible geometric constraint
will be violated as well). We use this optimal con-
straint to evaluate how much further improvement to
our constraints is at all possible.

4. We present experimental results on real world data
that show that the constraints we propose can lead
to a reduction of up to three orders of magnitude in
communication in comparison to the existing geomet-
ric constraints. Using the new constraints drastically
reduced the gap between previous results, and those
achieved when using theoretic optimal constraints.

2. RELATED WORK
A well studied problem is the monitoring of frequency

counts over a single data stream [2, 3, 8, 26], however these
works do not address distributed environments. Other im-
portant problems over a single data stream were studied in
[7, 9, 16, 18].

Distributed function computation has been addressed by
the“Distributed Triggers”framework presented in [21]. Later,
this framework has been employed to monitor network wide
traffic anomalies [19, 20]. Our work is consistent with the
distributed triggers framework in that it employs a set of
local constraints for detecting a global event of interest. In
contrast to [19, 20], which focus on an anomaly detection
problem, our work addresses a wide class of non-linear mon-
itoring problems.

A well studied problem is the computation of a the sum or
average of a distributed set of variables. Prominent exam-
ples include [17], which studies detecting when such a sum
exceeds a given threshold, [10], which proposes observing
the distribution of the input data to receive optimal algo-
rithms, and [27] which enables tracking the sum, average, or
minimum of a distributed set of variables within a certain
predetermined error margin. Our work differs in that we
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Figure 1: Geometric interpretation of a monitoring
problem.

monitor the value of an arbitrary function over a vector of
distributed variables.

A common approach to distributed stream monitoring is
the use of sketches to summarize data while maintaining
accuracy guarantees. This approach has been employed to
detect “heavy hitters” [25], compute quantiles [12], count
distinct elements [14], and compute join aggregates [11].

Other distributed computation problems studied in pre-
vious work include top-k problems [5], set-expression cardi-
nality estimation [15], clustering [13], and distributed verifi-
cation of logical expressions [1].

Recently, the geometric monitoring scheme was proposed
in [30]. In contrast to the methods proposed in [30], which
are oblivious to the nature of the data on the streams and
to the monitored function at hand, the methods presented
here leverage this information, yielding very significant re-
ductions in communications.

3. THE MONITORING FRAMEWORK
We now present a general framework for performing non-

linear monitoring tasks. Given a monitoring task, we refer
to the data held by each node as the local data vector, and
to their weighted average as the global data vector. Denote
the dimension of the vectors by d. We refer to the func-
tion evaluated at the global data vector as the monitored
function. The combination of the monitored function and
the threshold value is viewed as inducing a coloring over
the d-dimensional domain: vectors for which the value of
the monitored function is above the threshold are colored
white, and vectors for which the value is below it are col-
ored gray. Given the geometric interpretation, the goal of
the monitoring task can be viewed as determining the color
of the global data vector at all times.

Upon initialization of the monitoring task, and from time
to time, as dictated by the monitoring algorithm, all the lo-
cal data vectors are collected by a certain node designated
as the coordinator. The coordinator calculates the weighted
average of the local data vectors (i.e. determines the global
data vector), and sends this value to the nodes. We refer
to this vector as the estimate vector, and denote it by ~e.
The process of collecting the local data vectors and calcu-
lating the estimate vector is referred to as a synchronization
process.

As data arrives on the streams maintained by the nodes,
each node keeps track of the difference between the current

value of its data vector and its value at the time of the last
synchronization process. We refer to this difference as the
delta vector. We denote the sum of the estimate vector and
the delta vector as the drift vector . The drift vector held
by the ith node is denoted by ~vi. It is easy to verify that
the global data vector is a convex combination of the drift
vectors, hence it belongs to their convex hull.

Figure 1(a) depicts the coloring induced by the combi-
nation of the monitored function and the threshold value,
the initial data vectors (purple diamonds) and the estimate
vector (blue square). As data arrives at the nodes, the data
vectors change. The new location of the data vectors (purple
diamonds), as well as their initial location (white diamonds)
are depicted in Figure 1(b). In addition, the corresponding
drift vectors (red circles) are depicted, and their convex hull
is highlighted in gray. Note that the difference between the
current and initial values of the a data vector is equal to the
difference between the corresponding drift vector and the
estimate vector.

Our goal is to construct a set of local constraints on the
values of the drift vectors, such that each node can ver-
ify its local constraint independently (i.e. without commu-
nicating with other nodes), and if all the constraints are
upheld, the convex hull of the drift vectors is guaranteed
to be monochromatic (i.e. all the vectors in it are of the
same color). As long as the convex hull of the drift vectors
is monochromatic, each node knows that the color of the
global data vector is equal to the color of its drift vector,
i.e. it knows the value of the function is above or below the
threshold.

The local constraints are regions in Rd that each node de-
termines according to the estimate vector and its drift vec-
tor. If the region determined by a node is monochromatic,
the constraint is upheld, otherwise it is violated. We call
these regions bounding regions, since we require that their
union covers the convex hull of the drift vectors.

We propose the following method for constructing bound-
ing regions: the nodes agree on a d × d symmetric positive
definite matrix A, which is called the parameters matrix. In
addition, the nodes agree on a common vector denoted by ~r,
which is called the reference vector. The parameters matrix
and reference vector are determined during the synchroniza-
tion process. Given a node’s drift vector ~vi, the reference
vector ~r, and the parameters matrix A, the bounding region
constructed by the node is the ellipsoid EA, which is defined
as follows:

EA(~r,~vi) ={
~z

∣∣∣∣(~z− ~r+~vi
2

)T

A
(
~z− ~r+~vi

2

)
≤

(
~r−~vi

2

)T

A
(

~r−~vi
2

)}
(1)

Note that by setting the parameters matrix to the unit
matrix, the bounding region maintained by each node is a
sphere centered at the midpoint between the reference vector
and the node’s drift vector, whose radius is half the distance
between the reference vector and drift vector. Given a refer-
ence vector and a drift vector, we denote the sphere created
by using a unit matrix as the parameters matrix by B(~r,~vi):

EI(~r,~vi) = B(~r,~vi) =

{
~z

∣∣∣∣∥∥∥∥~z − ~r + ~vi

2

∥∥∥∥
2

≤
∥∥∥∥~r − ~vi

2

∥∥∥∥
2

}
Using a unit matrix as the parameters matrix and the



Figure 2: The use of ellipsoidal constraints.

estimate vector as the reference vector yields the spherical
bounds presented in [30].

When the parameters matrix is not a unit matrix, the
bounding region held by a node is an ellipsoid centered at
the midpoint between the reference vector and the nodes
drift vector. Note that the ellipsoidal bounding regions held
by the nodes have the same orientation (their respective axes
are parallel), and the same proportions. Figure 2 illustrates
the use of local constraints to determine the value of the
threshold function. The coloring induced by the combina-
tion of the monitored function and the threshold value is
depicted. The convex hull of the drift vectors (red circles)
is highlighted, and the ellipsoids constructed by the various
node are illustrated. As illustrated in the figure, all the el-
lipsoids are monochromatic, guaranteeing that the convex
hull is monochromatic as well.

In summary, the monitoring algorithm proceeds as follows:
upon initialization, a synchronization process is performed,
after which each node holds an estimate vector, a reference
vector, and a parameters matrix. Note that after the syn-
chronization process, all the drift vectors are equal to the
estimate vector. If the estimate vector is used as the ref-
erence vector, the ellipsoids constructed by the nodes are
a single vector (and hence monochromatic), therefore after
the synchronization process, all the constraints are upheld.
As more data arrives on the streams, each node verifies that
its ellipsoid is monochromatic. If one of the ellipsoids is not
monochromatic, a synchronization process is performed.

We show that choosing the optimal parameters matrix
enables us to customize the constraints to the properties of
the data received on the streams. In addition, we show that
by carefully selecting the reference vector, we can customize
the constraints to the monitored function at hand.

In the following section we discuss the use of ellipsoidal
constraints. We build a probabilistic model of the data, and
use it to determine the parameters matrix. In addition, we
show that the ellipsoidal constraints are valid, i.e. the union
of the ellipsoids constructed by the nodes is guaranteed to
cover the convex hull of the drift vectors.

4. CONSTRUCTING DATA SENSITIVE CON-
STRAINTS

The goal of this section is to construct bounding regions
that cover the convex hull of the drift vector as tightly as
possible. We thus decrease the number of “false positives”
generated by the constraints. A geometric constraint causes
a “false positive” if the bounding region it defines is not
monochromatic, while the convex hull of the drift vectors is
monochromatic.

We use previous data received on the streams to construct
a probabilistic model of future values, and then use this
model to construct optimal tight bounding regions.

4.1 Data Modeling
In order to model the data received on the streams, we

view it as if it were generated by a probabilistic data source.
Consider, for example, the search term correlation example
presented in Section 1. Let us assume that the appearance
of each search term in a query is determined by a stationary
random variable that receives 1 if the term appears in the
query, and 0 otherwise. We assume that the terms used in
a certain query are drawn independently of the terms used
in previous queries (note that we do not assume that the
values drawn for the various terms in a certain query are
independent). Consequently, given two search terms, A and
B, the global data vector (fA, fB , fAB) can be viewed as an
average of i.i.d random vectors.

Under these assumptions, according to the Central Limit
Theorem, the distribution of the global data vector con-
verges to a multi-variate Gaussian distribution (as the num-
ber of search queries held in the sliding windows increases).
Recall the multi-variate Gaussian distribution:

G~µ,Σ(~v) =
1

(2π)d/2 det(Σ)1/2
exp(−1

2
(~v − ~µ)T Σ−1(~v − ~µ))

Were ~µ is the expected value of the global data vector, and
Σ is its covariance matrix. Given a set of previous values
of the drift vectors, we can build an empirical probability
distribution of these values by calculating their mean and
covariance matrix, and using them as the parameters of a
multi-variate Gaussian distribution. Since we assumed that
the data is stationary, we can use this distribution to predict
future values of the drift vectors.

Note that a Gaussian distribution of drift vectors is not
particular to the search term correlation example. The Gaus-
sian distribution is commonly used to characterize the be-
havior of natural phenomena, and is particularly suitable
whenever the drift vector can be modeled as the sum or av-
erage of independently drawn random vectors. As a result,
we expect that the methods presented below will be appli-
cable to a large family of practical problems.

4.2 Using the Model to Construct Tight Bound-
ing Regions

Intuitively, it would be simpler to construct tight bound-
ing regions on the drift vectors if the data were isotropic, i.e.
transformed so that it is distributed evenly in all directions.
Formally, this means that the variances of the transformed
data along the various axes is identical, and that the co-
variance among any pair of axes is zero. We use the model
we built to determine a transformation that normalizes the
data so that it is isotropic. Once this transformation is deter-
mined, it can be applied independently on the data received
at each node. We show that by first applying this transfor-
mation on the drift vectors, and then using spherical bound-
ing regions as described in Section 3, we receive ellipsoidal
bounding regions. In addition, we prove the validity of the
ellipsoidal constraints (i.e. the ellipsoidal bounding regions
are guaranteed to cover the convex hull of the drift vectors),
and show that by applying the normalizing transformation,
we receive the tightest possible ellipsoidal bounding regions.



We start by describing the normalization process. Given
G~µ,Σ(~v), a multi-variate Gaussian distribution of the drift
vectors, we wish to transform the data so that the variance of
the transformed data is identical along the various axes, and
the covariance among any pair of of axes is zero. In order
to do so, observe that the covariance matrix Σ is symmetric
and positive definite, and can therefore be decomposed as
follows:

Σ = PΣDΣP−1
Σ

Where PΣ is a matrix whose columns are the normal-
ized eigenvectors of Σ, and DΣ is a diagonal matrix with
the respective eigenvalues on its diagonal. Since Σ is sym-
metric, its eigenvectors are orthogonal, and therefore PΣ is
orthonormal. Since Σ is positive definite, its eigenvalues are
positive. Let D′

Σ be the square root of DΣ (i.e. a diago-
nal matrix with the square root of the eigenvalues of Σ on
its diagonal). Since PΣ is orthonormal, it can be viewed as
a rotation transformation, and P−1

Σ can be viewed as the
inverse rotation transformation. Since D′

Σ is a diagonal ma-
trix, it can be viewed as a scaling transformation. Let us
define the linear transformation TΣ = D′−1

Σ P−1
Σ . Note that

TΣ is a concatenation of a rotation transformation and a
scaling transformation. Given a drift vector ~v, drawn from
the distribution G~µ,Σ(~v), let ~v′ be the image of ~v under the

transformation TΣ, i.e. ~v′ = TΣ~v. It is easy to show that
the distribution of the transformed vectors is G′

~µ′,I
(~v′):

G′
~µ′,I

(~v′) =
1

(2π)d/2
exp(−1

2
(~v′ − ~µ′)T (~v′ − ~µ′))

where ~µ′ = TΣ~µ. Note that the distribution G′
~µ′,I

(~v′) is

isotropic, i.e. the variance of the data is equal in all direc-
tions.

The ellipsoidal bounding regions are constructed as fol-
lows: given an estimate vector ~e and a drift vector ~vi, we
determine ~e′ and ~v′i, their image under the transformation
TΣ. Next we construct a sphere centered at the midpoint be-
tween ~e′ and ~v′i, with a radius of half the distance between
~e′ and ~v′i (recall that this sphere is denoted by B(~e′, ~v′i)).

Observe that the image of the sphere B(~e′, ~v′i) under the
transformation T−1

Σ is the ellipsoid EΣ−1(~e,~vi) (see Equa-
tion 1). According to a theorem from [30] (which is quoted
below), is follows that given a set of drift vectors ~v1,...,~vn,

the union of the spheres B(~e′, ~v′1),...,B(~e′, ~v′n) bounds the

convex hull of the vectors ~v′1,...,~v′n:

Theorem 1. Let ~x, ~y1, ~y2, ..., ~yn ∈ Rd be a set of vec-
tors in Rd. Let Conv(~x, ~y1, ~y2, ..., ~yn) be the convex hull of

~x, ~y1, ~y2, ..., ~yn. Let B(~x, ~yi) be a sphere centered at ~x+~yi
2

and

with a radius of
∥∥∥~x−~yi

2

∥∥∥
2

i.e., B(~x, ~yi) =
{

~z
∣∣∣∥∥∥~z − ~x+~yi

2

∥∥∥
2

≤
∥∥∥~x−~yi

2

∥∥∥
2

}
. Then Conv(~x, ~y1, ~y2, ..., ~yn) ⊂

n⋃
i=1

B(~x, ~yi).

Since linear transformations preserve convexity (i.e. the im-
age of the convex hull of a set of vectors is the convex hull
of the images of these vectors), it follows that the convex
hull of the original drift vectors is covered by the ellipsoids
EΣ−1(~e,~v1),...,EΣ−1(~e,~vn). Figure 3 illustrates the process
of bounding the convex hull of a set of vectors using ellip-
soids. This process can be thought of as first applying a

1 2

45

Range(TΣ) Image(TΣ)

Figure 3: Bounding a convex hull with ellipsoids.

rotation transformation (1) and then a scaling transforma-
tion (2) on the vectors. Next, the convex hull is bound using
spheres (3), and finally, the inverse transformations are ap-
plied (4,5).

During the synchronization process, in addition to its drift
vector, each node sends the coordinator the covariance ma-
trix and mean vector of the data values contained in its
sliding window (note that if the dimension d is large, band-
width can be saved by compactly representing the covari-
ance matrix using the leading terms of its spectral decom-
position). The coordinator uses this data to calculate the
covariance matrix representing the global data set, sends its
inverse to the nodes as the parameters matrix, and sends
the estimate vector as the reference vector. Experimental
results show that using these ellipsoidal bounding regions
can reduce communication by over an order of magnitude in
comparison to spherical constraints.

In the following section we formally show that using the
inverse of the covariance matrix produces optimal ellipsoidal
bounding regions.

4.3 Optimality of the Ellipsoidal Bounds
In the previous section we proposed ellipsoidal bounding

regions, using the inverse of the covariance matrix of the
data as the parameters matrix. Intuitively, this transforma-
tion should be optimal, since using these ellipsoids is equiv-
alent to bounding transformed, isotropic data with spheres.
In other words, if we use a different parameters matrix, we
should receive ellipsoids whose expected volume is greater.
Theorem 2 formally confirms this intuition. For technical
reasons, we assume that the parameters matrix is normal-
ized so that its determinant equals 1. We can do this without
loss of generality, since multiplying the parameters matrix
by a positive constant produces the same ellipsoid.

Theorem 2. Let A be a d × d positive definite matrix
such that det(A) = 1. Let Σ be the covariance matrix of

a d-dimensional Gaussian distribution G(~0,Σ) centered at
the origin. Let ~x be a random vector drawn according to G.
Let V (~x) be the volume of the ellipsoid EA(~0, ~x). Then the

expected value of V (~x) is minimized by A = Σ−1

det(Σ−1)1/d .

Proof. Omitted due to space considerations.

As long as the data received on the streams has a stationary
distribution, choosing Σ−1 as the ellipsoid matrix is optimal



Figure 4: The effect of the reference vector on the
bounding regions.

in the sense that Theorem 2 guarantees that this parame-
ters matrix minimizes the mean volume of the bounding
ellipsoids.

5. STRATEGIES FOR SELECTING A REF-
ERENCE VECTOR

Up to this point, we focused on creating constraints that
minimize the volume of the bounding region maintained
by each node. While this approach is very effective, it
only takes into account the convex hull that is needs to be
bounded, and does not consider the monitored function. In
fact large, but carefully constructed bounding regions, can
be more effective than smaller regions in bounding the con-
vex hull of the drift vectors. The size of the bounding re-
gions is affected by the choice of the reference vector used for
constructing them. Up to this point, we used the estimate
vector as the reference vector. However, as the following
example demonstrates, the estimate vector is not necessar-
ily the best reference vector. Figure 4 depicts the coloring
induced by the function f(x, y) = 2x2/(x2 + 1) − y, and a
threshold value of 0. In addition, it depicts two drift vec-
tors ((0.45,0.39) and (0.105,0.055)) and an estimate vector
(0.26,0.268). The figure depicts two choices of reference vec-
tors, in Figure 4(a) the estimate vector is used as the ref-
erence vector, while in Figure 4(b), a vector that is more
“distant” from the threshold surface is used (the threshold
surface is the set of vectors for which the value of the mon-
itored function equals the threshold value). As illustrated
by the figure, despite being larger, the spheres created with
the “distant” reference vector are monochromatic, while the
smaller spheres created with the estimate vector are not.

In this section we will expand upon the intuitive concepts
described above. We begin by describing some notations,
then define a formal construct called a safe zone. Next, we
show how safe zones can be used to evaluate the merits of
a given reference vector, and finally, describe a method for
selecting good reference vectors.

5.1 Notations
Following are some notations used throughout this sec-

tion. As mentioned above, a monitored function g and the
threshold value t define the threshold surface T (g, t), i.e. the
set of vectors for which the value of the monitored function
is equal to the threshold value:

T (g, t) = {~x |g(~x) = t}

We assume that the monitored function g is continuous
and differentiable in all Rd.

x

*
x

),( tgT

)),,
((

xtg
T

dist

*xn

Figure 5: Illustration of a threshold surface, a ref-
erence point, and the normal.

The distance of a vector ~x to the threshold surface is de-
fined as the minimum over the distances of ~x to all the vec-
tors on the threshold surface, and is denoted by dist(T (g, t), ~x):

dist(T (g, t), ~x) = min
(
‖~z − ~x‖2 |~z ∈ T (g, t)

)
(2)

Note that a sphere is monochromatic if and only if the
distance of its center to the threshold surface is greater than
its radius. The vector on the threshold surface that is closest
to a given vector ~x is denoted by ~x∗. Note that there may be
more than one vector on the threshold surface that minimize
the distance to ~x. In this case ~x∗ is arbitrarily selected
among these vectors. Denote the normal to the threshold
surface at ~x∗ by ~n~x∗ . These constructs are illustrated in
Figure 5.

Given a monitored function g and a threshold value t,
define a function colg,t(~x) as follows:

colg,t(~x) =

 1 if g(~x) > t
0 if g(~x) = t
−1 if g(~x) < t

Two vectors ~x and ~y have the same color if colg,t(~x) ·
colg,t(~y) = 1.

Given a reference vector ~r, let Sg,t(~r) be the set of all the
vectors that create a monochromatic sphere with ~r:

Sg,t(~r) =

{
~z

∣∣∣∣∥∥∥∥~z − ~r

2

∥∥∥∥
2

< dist

(
T (g, t),

~z + ~r

2

)}
(3)

We call this set the safe zone induced by g, t, and ~r.

5.2 Using Safe Zones to Evaluate Reference
Vectors

In this section, we assume that spherical bounding regions
are used to bound the convex hull of the drift vectors. In
Section 5.3, we will discuss how the techniques developed in
this section can be applied to ellipsoidal bounding regions
as well. Figure 6 illustrates the safe zone defined by the
estimate vector and threshold surface that were depicted in
Figure 4 (outlined in blue), as well as the safe zone defined
by the “distant ” reference vector (outlined in green). It is
evident from the illustration that the safe zone induced by
the “distant” reference vector includes the safe zone induced
by the estimate vector. In other words, any drift vector that
creates a monochromatic sphere with the estimate vector
creates a monochromatic sphere with the “distant” reference
vector as well, but there is also a large set of drift vectors
that create a monochromatic sphere with the“distant” refer-
ence vector but not with the estimate vector. In this regard,



Figure 6: The estimate vector (blue) and the “dis-
tant” vector (green) that were depicted in Figure
4.

the “distant” reference vector is a better choice of reference
vector than the estimate vector.

Safe zones enable us to formally evaluate the merits of
a certain choice of reference vector in relation to a given
function. For example, as described above, if the safe zone
induced by a given reference vector contains the safe zone
induced by the estimate vector, then the former is obviously
a better reference vector then the estimate vector. However,
using the full containment of safe zones as a criteria for eval-
uating reference vectors can be restrictive. Intuitively, we
would like to find a reference vector so that the safe zone
it induces is large at the “vicinity” of the estimate vector.
We are less concerned about whether or not the safe zone
induced by a reference vector includes vectors that are far
from the estimate vector. This is because after a synchro-
nization process, the drift vectors are equal to the estimate
vector. As data arrives at the nodes, the drift vectors tend
to concentrate around the estimate vector (this is also sup-
ported by the probabilistic model of the data). In order
to capture this intuition we define a property we call local
containment of safe zones. The idea is that given two refer-
ence vectors, ~r1 and ~r2, then for ~r2 to be considered better
than ~r1, it is sufficient for Sg,t(~r2) to contain Sg,t(~r1) in
the “vicinity” of the estimate vector. We formally define a
vicinity of the estimate vector as a connected set2 of vectors
that contains the estimate vector. In addition, we say that
a vicinity of the estimate vector is sufficiently large if it also
contains ~e∗, the point on the threshold surface that is the
closest to the estimate vector. A formal definition of the
local containment property follows.

Definition 1. Let g be a monitored function, t a thresh-
old value, and ~e an estimate vector. Let L be a vicinity of
the estimate vector, i.e. a connected set that includes the
estimate vector. Let ~r1 and ~r2 be two reference vectors. We
say that the safe zone induced by ~r1 is locally contained in
the safe zone induced by ~r2 if [Sg,t(~r1) ∩ L] ⊂ [Sg,t(~r2) ∩ L].

We proceed to construct a sufficiently large vicinity of the
estimate vector and a reference vector, such that the safe
zone induced by it locally contains the safe zone induced by
the estimate vector. To achieve this, we examine the set of
vectors R that satisfy the following conditions:

2The term “connected set” refers to a path-wise connected
set, i.e. given two vectors ~x and ~y that belong to the set,
there exists a continuous function f , that maps the section
[0,1] to members of the set such that f(0) = ~x, f(1) = ~y,

e
*
e

maxr

maxL

Figure 7: A threshold surface, an estimate vector,
the set R and the vicinity Lmax.

1. For each vector ~r ∈ R, ~e∗ is the vector on the threshold
surface that is the closest to ~r.

2. For each vector ~r ∈ R, colg,t(~r) = colg,t(~e).

Let ~rmax be the vector in R that is the most distant from
~e∗. We refer to ~rmax as the internal vector (since, intuitively
speaking, it is found by moving from ~e∗ into the region –
white or gray – that contains ~e). Let Lmax be a sphere
centered at ~rmax, and whose radius is the distance between
~rmax and ~e∗ (see Figure 7). It is easy to see that Lmax

includes both ~e and ~e∗, and is therefore a sufficiently large
vicinity of the estimate vector. We propose using ~rmax as
the reference vector. This has two advantages. The first
is that the safe zone induced by ~rmax locally contains the
safe zone induced by the estimate vector (with respect to
the vicinity Lmax). The second is that given ~e, ~rmax can
be efficiently determined. We start by showing that the safe
zone induced by ~rmax locally contains the safe zone induced
by the estimate vector. This proceeds as follows: in Lemma
1 we show that the safe zone induced by ~rmax contains the
entire vicinity. As a result, it locally contains the safe zone
induced by the estimate vector.

Lemma 1. Let g be a monitored function, t be a threshold
value, and ~e be an estimate vector. Let ~rmax and Lmax be a
reference vector and a sufficiently large vicinity, as described
above. Then Lmax ⊂ Sg,t(~rmax).

Proof. Omitted due to space considerations.

Next, we show that ~rmax can be efficiently determined. In
order to do so, we observe that the vectors in R are located
along the normal to the threshold surface at ~e∗. This follows
immediately from Lemma 2 below. The significance of this
observation is that regardless of the dimensionality of the
domain of the function g, the vectors in R are a subset of a
one-dimensional subspace.

Lemma 2. Let g be a monitored function, t a threshold
value, ~x an arbitrary vector, and ~x∗ the vector on the thresh-
old surface that is the closest to ~x. Then ~x lies along the ray
starting at ~x∗, and whose direction is defined by ~n ~x∗ , the

normal to the threshold surface at ~x∗. In other words, there
is a real value α, such that ~x = ~x∗ + α~n ~x∗ .

Proof. Ommited due to space considerations.

The fact that the set R is a subset of a one-dimensional sub-
space enables employing the following strategy for selecting



a reference vector: during the synchronization process, after
determining the estimate vector ~e, the coordinator calcu-
lates ~e∗ (this can be done by employing the optimization
techniques described in [28]). Once ~e∗ has been calculated,
the coordinator sets the reference vector to be equal to the
estimate vector, and iteratively examines new reference vec-
tors by doubling the distance of the previous reference vector
from ~e∗, i.e. the reference vector ~ri examined in the ith it-
eration is ~e∗ + 2i(~e− ~e∗). In each iteration we calculate the
vector on the threshold surface that is closest to ~ri. If this
vector is ~e∗, we proceed to the next iteration, and, contin-
uing in this fashion, find ~rmax using a binary search. The
synchronization process is concluded by sending the nodes
~rmax as the reference vector.

Experimental results show that using spherical bounding
regions while using the internal vector as the reference vector
typically reduces communication by over an order of mag-
nitude in comparison to the spherical constraints used in
[30].

5.3 Selecting Reference Vectors while Employ-
ing Ellipsoidal Bounding Regions

In Section 4 we leveraged a probabilistic model of the data
to reduce the communication load incurred by the monitor-
ing algorithm by employing ellipsoidal constraints. In this
section we reduced the communication by selecting a better
reference vector, but we assumed that spherical constraints
are used. We now describe an algorithm that combines both
methods.

Recall that bounding the convex hull of the drift vectors
using ellipsoids is equivalent to bounding the convex hull of
drift vectors with spheres after applying a linear transforma-
tion to the drift vectors. In order for the transformed moni-
toring problem to remain consistent with the original moni-
toring problem, we apply the transformation to the monitor-
ing function as well, i.e. if g(~v) is the monitored function,
and TΣ is the transformation applied to the drift vectors,
then the transformed monitored function is g(T−1

Σ ~v).
We can select a better reference vector while leveraging

the probabilistic model of the data by selecting the refer-
ence vector in the transformed monitoring problem. Note
that, as opposed to the case of the isotropic distribution as-
sumed in Section 5.2, here the optimal direction by which to
move away from the boundary is not necessarily orthogonal
to it. Experimental results show that combining ellipsoidal
bounds with reference vector selection yields a reduction in
communication that is far greater than employing each of
these methods separately. Typically, the reduction in com-
munication achieved by combining both approaches reaches
two orders of magnitude in comparison to the spherical con-
straints presented in [30], and in certain cases exceeds three
orders of magnitude.

6. THEORETIC OPTIMAL GEOMETRIC CON-
STRAINT

Experimental results show that employing the new geo-
metric constraints presented above dramatically reduce the
communication cost incurred by monitoring algorithms. The
question arises, how much further improvement to the con-
straints is at all possible. The geometric monitoring scheme
is based on distributively constructing bounding regions,
such that the union of these regions covers the convex hull of
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Figure 8: Chi-square score for the features “bosnia”,
“ipo”, and “febru” as it evolves over the streams.

the drift vectors. Since all the nodes know about the global
vector is that it is contained in this convex hull, the most
we can expect from any set of geometric constraints is for
a constraint to be violated only if the convex hull is is not
monochromatic, i.e. a constraint with no “false positives”.
We refer to such constraints as optimal constraints.

We can simulate optimal constraints by collecting all the
drift vectors every time new data is received by one of the
nodes, and checking whether the convex hull of these vec-
tors is monochromatic. Such an approach is not feasible in
practice, since checking the constraints requires the nodes
to communicate, but simulating these constraints gives us
an indication of how much additional improvement can be
expected.

7. EXPERIMENTAL RESULTS
We performed several experiments using various geomet-

ric constraints. The constraints were tested on a distributed
feature selection problem. In this setup news stories, which
are referred to as documents, are received at a set of dis-
tributed nodes. Each document is categorized as belonging
to several categories (Sports, News, etc.). Our goal is to se-
lect the most relevant words, or features, for classifying the
documents according to a certain label (e.g. News). This
task, which is of great importance in data mining and ma-
chine learning, is known as feature selection. In order to
decide, at any given time, whether or not to select a certain
feature, each node maintains a sliding window containing
the last k documents it received. The relationship between
the appearance of the feature and the category label is cap-
tured using a contingency table, and the relevance of the
feature is scored by evaluating the chi-squared measure on
the sum of the contingency tables held by the nodes. The
feature is selected if its chi-square score exceeds a prede-
termined threshold. A detailed description of the feature
selection process can be found in [31].

We used the Reuters Corpus (RCV1-v2) [29] to generate
a set of data streams. RCV1-v2 consists of 804414 news
stories, produced by Reuters between August 20, 1996, and
August 19, 1997. Each story has been categorized according
to its content, and identified by a unique document id.

RCV1-v2 has been processed by Lewis et al. [22]. Fea-
tures were extracted from the documents, and indexed. A
total of 47236 features were extracted. Each document is
represented as a vector of the features it contains. We refer
to these vectors as feature vectors. We simulate ten streams



by arranging the feature vectors in ascending order (accord-
ing to their document id), and selecting feature vectors for
the streams in a Round Robin fashion.

In the original corpus each document may be labeled as
belonging to several categories. The most frequent cate-
gory documents are labeled with is “CCAT” (the “COR-
PORATE/INDUSTRIAL” category). In the experiments
our goal is to select features that are most relevant to the
“CCAT” category.

Each node holds a sliding window containing the last 6000
documents it received (this is roughly the amount of docu-
ments received in a month). We chose three features that
display different characteristic behavior. The chosen fea-
tures are “bosnia”, “ipo”, and “febru”. Figure 8 depicts
how the chi-square score for each feature evolves over the
streams. The chi-square score for the feature “bosnia” dis-
plays a declining trend as the stream evolves. The chi-square
score for the feature “ipo” remains relatively steady, while
the score for “febru” peaks halfway through the stream.

We monitored each feature using threshold values rang-
ing from 30 to 480. We repeated this experiment using the
following constraints: (1) The spherical constraints with the
estimate vector as the reference vector (the constraints pre-
sented in [30]), (2) Ellipsoidal constraint with the estimate
vector as the reference vector, (3) Spherical constraint with
the internal vector as the reference vector, (4) Ellipsoidal
constraint with the internal vector as the reference vector,
(5) Theoretic optimal constraint.

The results of these experiments are presented in Figure 9.
Since the chi-square scores for the feature “bosnia” and“ipo”
remain relatively high (above about 140), all the constraints
are more efficient when monitoring these features using low
threshold values. The chi-square scores for “ipo” fluctuate
around 250, which explains why the communication expen-
diture is highest for a threshold value of 250. The chi-square
score for “bosnia” is more varied, therefore we do not see a
distinct decline in communication expenditure. The gap be-
tween the performance of the spherical constraints presented
in [30] and that of the theoretic optimal constraints is typi-
cally two orders of magnitude

With the exception of the local peak about halfway through
the stream, the feature “febru” receives a low chi-square
score. As a result, the number of times the chi-square score
for “febru” crosses a given threshold is low in comparison to
the other features, and the gap between the performance of
the spherical constraints presented in [30] and the theoretic
optimal constraints is typically only one order of magnitude.

We can see that using ellipsoidal bounding regions (with
the estimate vector as the reference vector) reduces the com-
munication expenditure by a constant factor in comparison
to the spherical constraints. In contrast, using spherical
constraints with an internal reference vector is more effec-
tive for lower threshold values. This is because the threshold
surfaces induced by chi-square and the examined threshold
value are such that they allow plenty of space for distanc-
ing the reference vector when the chi-square score of the
estimate vector is above the threshold value, and very little
space when it is below the threshold. When higher thresh-
old values are used, it is more common for the chi-score of
the estimate vector to be below the threshold value, thus
reducing the effectiveness of the internal reference vector.

The experiments clearly indicate that using constraints
that combine ellipsoidal bounds with an internal reference
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Figure 9: The number of messages generated by
monitoring the chi-square score of the features using
various constraints.

vector consistently outperform the rest of the constraints.
Furthermore, in most cases, the communication cost in-
curred when using these constraints is close (typically by
50 percent for “bosnia” and “ipo”, and by 90 percent for
“febru”) to the communication cost incurred when using the
theoretic optimal constraint.

In all cases, the constraints combining ellipsoidal bounds
and an internal reference vector drastically reduced the gap
between the communication cost incurred when using the
constraints presented in [30] and the cost incurred when us-
ing the theoretic optimal constraints.

8. CONCLUSION AND FUTURE WORK
We presented geometric constraints that take advantage

of the distribution of the data vectors and the shape of the
threshold surface of the monitored function. Using these
constraints yields a typical improvement of two orders of
magnitude in comparison to the results achieved with pre-
viously used constraints. In all cases, the new constraints
drastically reduced the gap between previous results, and



those achieved when using theoretic optimal constraints.
Future research will attempt to devise new types of ge-

ometric constraints. We also plan to explore alternative
methods for resolving constraint violations.
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