Supplemental Material for "Online Linear Models for Edge Computing"

Hadar Sivan, Moshe Gabel, Assaf Schuster

This file contains proofs and figures that are described in Sections 4 and 5 but are not included there due to lack of space.

Proof of Bounding Prediction of New Model

This is a proof of Lemma 1 from Section 4.2:
Lemma 1. Let $\beta_{1}^{*}, \beta_{2}^{*}$ and r be as in Theorem 1, and let x be a sample. Then the upper and lower bounds on the prediction of β_{2}^{*} for x are:

$$
\begin{align*}
L\left(x^{T} \beta_{2}^{*}\right) & :=\min _{\beta \in \Omega} x^{T} \beta=x^{T} \beta_{1}^{*}-x^{T} r-\|x\|\|r\| \tag{7a}\\
U\left(x^{T} \beta_{2}^{*}\right) & :=\max _{\beta \in \Omega} x^{T} \beta=x^{T} \beta_{1}^{*}-x^{T} r+\|x\|\|r\| . \tag{7b}
\end{align*}
$$

Proof. Every vector β in the sphere Ω could be represented as the sum of two vectors: the vector m, which is the center of the sphere, and vector u that starts from the center of the sphere and whose magnitude is bounded by the sphere radius vector $(\|u\| \leq\|r\|)$. Therefore, the dot product between β and a given x is

$$
x^{T} \beta=x^{T}(m+u)=x^{T} m+x^{T} u=x^{T} m+\|x\|\|u\| \cos (\angle(x, u))
$$

The minimum of the dot product $x^{T} \beta$, with respect to u, is obtained when $\|u\|=\|r\|$ and $\cos (\angle(x, u))=-1$, i.e., u is a vector in the opposite direction of x and with the maximum magnitude under the constraint that u is on the sphere. In this case the lower bound is obtained,

$$
\begin{equation*}
L\left(x^{T} \beta_{\text {new }}^{*}\right)=x^{T} m-\|x\|\|r\| . \tag{8}
\end{equation*}
$$

Using similar arguments, the maximum of the dot product $x^{T} \beta$ is obtained when $\|u\|=\|r\|$ and $\cos (\angle(x, u))=1$. This time u is in the same direction as x. In this case the upper bound is obtained,

$$
\begin{equation*}
U\left(x^{T} \beta_{n e w}^{*}\right)=x^{T} m+\|x\|\|r\| \tag{9}
\end{equation*}
$$

By substituting $m=\beta_{1}^{*}-r$ (from definition of Ω in Section 4.1) in the above expressions of the lower and upper bounds, we obtain (7).

Figure 4 shows these vectors in two dimensions, the sphere Ω, and the vectors on its surface that yield the maximum and minimum dot product with x.

See Okumura et al. [21] for an alternative derivation of these bounds in a different form.

Fig. 4. Illustration of Lemma 1. Vector v_{1} is the vector in the circle that maximizes the projection on vector x, while v_{2} minimizes the projection on x. The projections of β_{1}^{*} and β_{2}^{*} on x are always between the projection of v_{1}, and v_{2}.

Reanalysis of Okumura et al. [21] Bound to $\left\|\beta_{1}^{*}-\beta_{2}^{*}\right\|$

Okumura et al. suggest in their paper [21] an upper bound to the distance between models $\left\|\beta_{1}^{*}-\beta_{2}^{*}\right\|$. By reanalysis of their bound we show that the new bound we describe in Theorem 1 is tighter.

In [21, Section 2.2], a one-hot vector $e_{j}, j \in[d]$ where d is the dimension of x, is used to compute the upper and lower bounds of the $j^{t h}$ element of the new classifier $-\beta_{2, j}^{*}$. Then, by [21, Corollary 2]:

$$
\begin{equation*}
\left\|\beta_{1}^{*}-\beta_{2}^{*}\right\|_{q} \leq\left(\sum_{j \in[d]} \max \left\{\beta_{1, j}^{*}-L\left(\beta_{2, j}^{*}\right), U\left(\beta_{2, j}^{*}\right)-\beta_{1, j}^{*}\right\}^{q}\right)^{\frac{1}{q}} \tag{10}
\end{equation*}
$$

where $\|\cdot\|_{q}$ is the L_{q} norm. The lower and upper bounds, $L\left(\beta_{2, j}^{*}\right)$ and $U\left(\beta_{2, j}^{*}\right)$, are as in (7) for $x=e_{j}$. Assignment of $x=e_{j}$ in (7) gives:

$$
\begin{gathered}
L\left(\beta_{2, j}^{*}\right)=\beta_{1, j}^{*}-r_{j}-\|r\| \\
U\left(\beta_{2, j}^{*}\right)=\beta_{1, j}^{*}-r_{j}+\|r\| .
\end{gathered}
$$

Therefore:

$$
\begin{aligned}
\beta_{1, j}^{*}-L\left(\beta_{2, j}^{*}\right) & =r_{j}+\|r\| \\
U\left(\beta_{2, j}^{*}\right)-\beta_{1, j}^{*} & =-r_{j}+\|r\|
\end{aligned}
$$

If $r_{j} \geq 0$ then $\beta_{1, j}^{*}-L\left(\beta_{2, j}^{*}\right) \geq\|r\|$, otherwise $U\left(\beta_{2, j}^{*}\right)-\beta_{1, j}^{*} \geq\|r\|$. Therefore:

$$
\begin{equation*}
\max \left\{\beta_{1, j}^{*}-L\left(\beta_{2, j}^{*}\right), U\left(\beta_{2, j}^{*}\right)-\beta_{1, j}^{*}\right\} \geq\|r\| \tag{11}
\end{equation*}
$$

Using (11) with (10) gives:

$$
\left(\sum_{j \in[d]} \max \left\{\beta_{1, j}^{*}-L\left(\beta_{2, j}^{*}\right), U\left(\beta_{2, j}^{*}\right)-\beta_{1, j}^{*}\right\}^{q}\right)^{\frac{1}{q}} \geq\left(\sum_{j \in[d]}\|r\|^{q}\right)^{\frac{1}{q}}=d^{\frac{1}{q}}\|r\|
$$

In general, for every $d>2^{q}$ the bound $\left\|\beta_{1}^{*}-\beta_{2}^{*}\right\| \leq 2\|r\|$ is tighter than (10). Specifically, for L_{2} norm, for any $d>4$ the bound is tighter.

Evaluation Figures

Fig. 5. Sine1+ dataset with 50 attributes and different scale (σ) values. As with 2 attributes, the incremental based algorithms' performance is affected by σ.

Figure 5 shows that the effect of σ does not depend on the number of attributes. See Section 5.4 for description and analysis.

