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Abstract—The ability to promptly and efficiently detect
arbitrarily complex patterns in massive real-time data streams
is a crucial requirement for a wide range of modern
applications. The ever-growing scale of these applications and
the sophistication of the patterns involved makes it imperative to
employ advanced solutions that can optimize pattern detection.
One of the most prominent and well-established ways to achieve
the above goal is to apply complex event processing (CEP)
in a parallel manner, using a multi-core and/or a distributed
environment. However, the inherent tightly coupled nature of
CEP severely limits the scalability of the parallelization methods
currently available.

We introduce a novel parallelization mechanism for efficient
complex event processing over data streams. This mechanism is
based on a hybrid two-tier model combining multiple layers of
parallelism. It thus allows for high scalability and fine-grained
load balancing, while significantly reducing synchronization
overhead. An extensive experimental evaluation on multiple real-
life datasets shows that our approach consistently outperforms
state-of-the-art CEP parallelization methods by a factor of up to
two orders of magnitude.

I. INTRODUCTION

Complex event processing, (CEP) is a leading technology
for robust and high-performance real-time detection of
arbitrarily complex patterns in massive data streams ([9], [10],
[12]). It is widely employed in many areas where extremely
large amounts of streaming data are continuously generated
and need to be promptly and efficiently analyzed on-the-fly.
Online finance [11], credit card fraud detection [26], sensor
networks [15], healthcare industry [6], and IoT applications
[33] are among the many examples.

CEP engines treat the data items that make up the input
streams as primitive events arriving from event sources.
As new primitive events are observed, they are assembled
into higher-level complex events that match the user-defined
patterns. Detecting complex events generally consists of
collecting primitive events and incrementally combining them
into partial pattern matches using some type of detection
model. As more events are added to a partial match, a full
pattern match is eventually formed and reported. The most
widely used detection models are non-deterministic finite
automata ( [2], [19], [31], [32]) and evaluation trees [23]. In
these models, the loose order of constructing and extending
partial matches is represented by the topology of an automaton

or a tree, with the automaton’s states or the tree’s nodes
denoting the full match subsets.

As discussed by multiple authors ([3], [19], [23]), the
processing time, latency, and resource consumption of the
CEP execution grows exponentially with the size of the
pattern being detected. The main factor contributing to this
growth is the need to explicitly examine a large fraction
of event subsets of any size (up to pattern’s size) to
determine whether they comprise valid pattern matches. As
the patterns are often characterized by their extreme length,
complexity, and nesting level, this limitation presents a crucial
performance bottleneck. The situation is exacerbated by the
tight real-time constraints imposed on these systems, as
well as by a common requirement to simultaneously process
multiple patterns and streams. Therefore, advanced algorithmic
solutions and sophisticated optimization techniques are
essential for achieving an acceptable level of service quality.

Parallelizing CEP evaluation flows is one of the most
popular avenues for improving the performance of event
processing applications. Various methods for allocating the
workload of a CEP system to multiple execution units
and managing their parallel execution have been proposed,
addressing multi-core and fully distributed scenarios. These
solutions can be roughly divided into two separate categories:
data-parallel and state-parallel methods.

Data-parallel approaches ([5], [16], [21]) operate by
splitting the input data stream into different partitions
according to some predefined criteria and routing each
partition to a dedicated CEP unit; this unit may be a thread,
a process, or a separate machine. Each unit then executes
the same sequential pattern matching algorithm. The pattern
matches detected by each CEP unit are then merged and jointly
returned to the end users. Fig. 1(a) presents an example of a
parallel CEP system architecture implemented according to
this paradigm. While this scheme has proven highly powerful
and efficient in many cases, its inherent limitation lies in
the difficulty of designing a good partitioning scheme. In
particular, since any subset of data items can potentially
represent a pattern match, at least a fraction of the sub-streams
must be duplicated and delivered to multiple units to avoid
missing results and to guarantee detection correctness.

The second category of CEP parallelization methods is



(a) Data parallelism - Input is split into
partitions and handled separately by each
execution unit

(b) State parallelism - Each state
is a separate execution unit that
receives events of a specific type

(c) Hybrid parallelism - Two-layer
approach combining both state-
parallelism and data-parallelism

Fig. 1: Parallelism classes

known as state-parallel ([5], [8], [30]). This approach assigns
a dedicated execution unit to each building block of the pattern
detection model, which may be an NFA state or an evaluation
tree node. Consequently, each unit is exclusively responsible
for some functional part of the sequential pattern matching
algorithm. Each unit receives a part of the input stream,
which is usually events of a specific type. An example is
shown in Fig. 1(b). This parallelization scheme avoids the data
stream duplication problem that plagues data-parallel methods.
However, it imposes a strict limit on the application scalability
since the maximal number of execution units is a linear value
bounded by the number of states or nodes.

In this paper, we propose and implement a new, third
paradigm for parallelizing CEP applications, which we refer
to as a hybrid-parallel approach. In a hybrid-parallel system,
the execution units are organized in two layers, and the
workload distribution proceeds in two stages. First, a state-
parallel procedure allocates a set of execution units to each
state according to its expected load. This procedure comprises
the outer parallelism layer. The inner layer is manifested as a
state executes a data-parallel routine that divides the input of
its state between the individual units. This process is repeated

continuously during the system run. In this way, the system
can dynamically adapt to the ever-changing data arrival rates,
system properties, and resource availability. Fig. 1(c) illustrates
this parallelization scheme.

By providing two distinct layers of parallelism, our
approach combines the strengths of data-parallel and state-
parallel solutions, while overcoming their limitations. Unlike
that of a pure state-parallel system, the degree of parallelism
in a hybrid-parallel system is unbounded. On the other hand,
no duplicate data transmission is required, since the outer
state-parallelization layer mimics the evaluation flow of the
state-parallel approach. It does not require duplicate input
since the detection algorithm is sequential in its essence with
only the states themselves running in parallel. The inner
data-parallelization layer is designed to leverage the shared
memory of a multi-core architecture to avoid the need for
an explicit partitioning scheme. Units of the same state can
directly access data stored in other units instead of having
to duplicate such data. The hybrid-parallel approach also
provides a significant degree of flexibility, since the outer
parallelization layer can be deployed in a fully distributed
share-nothing environment. An additional advantage of our
proposed paradigm is a two-tier load balancing scheme
that allocates different numbers of execution units to states,
depending on their load. It can also dynamically adjust the
volume of the input data processed by each unit.

The contributions of this paper can thus be summarized as
follows:

• A novel paradigm for scalably and efficiently distributing
CEP workloads between multiple execution units using a
hybrid-parallel approach.

• A detailed NFA-based implementation of the above
approach and athorough analysis of its performance.

• Practical extensions to the basic hybrid-parallel
mechanism to cover dynamic thread allocation and state
fusion. These extensions allow us to further improve
the performance and resource utilization of the pattern
detection process.

• An extensive experimental evaluation of our method,
demonstrating its superiority over state-of-the-art CEP
parallelization approaches.

The remainder of this paper is organized as follows. Section II
provides background on CEP and introduces the notations used
throughout the paper. In Section III we introduce the hybrid-
parallel approach and present an NFA-based parallel CEP
system using this approach. Section IV provides a detailed
theoretical analysis of our solution. Section V describes
important implementation details and properties of the system.
Section VI describes two significant extensions of our basic
method, to further improve its efficiency and scalability. We
report the results of our extensive experimental study in
Section VII. Section VIII discusses the related work and
Section IX concludes the paper with our planned future work.



II. BACKGROUND AND TERMINOLOGY

The functionality of a CEP system revolves around the basic
notion of an event. An event is an indication that an action
of interest happened at a specific point in time. CEP systems
receive events as their main input, usually from a streaming
source. Each event is typically associated with a single event
type, which defines a set of attributes that an event contains.

Users interact with a CEP system by providing patterns that
specify the combinations of events to be detected, that we also
call complex events. A pattern typically conveys the following
information: the structure of the complex event (e.g., whether
the desired combination is a sequence of a predefined number
of primitive events, a conjunction or disjunction thereof, or
a more complex expression); the optional Boolean conditions
that must be satisfied for the complex event to be considered
a pattern match; and the time window W that defines the
maximal difference between the occurrence time of the events
in a pattern match, that is, the time frame within which the
complex event is to be detected.

As an example, consider the following:
Example 1. A warehouse receives orders for specific items

and delivers them to customers. These items have RFID tags
that are scanned when certain actions occur, such as removing
an item from storage, loading it onto a forklift, and registering
it as ready for delivery. We are interested in detecting sets of
items that were ordered recently (in the last hour) and are
ready to be delivered in the next shipment.

Using the terminology defined above, we will represent each
action on an item as an event with the type determined by
the action type. For example, type S can represent taking
the item from the storage, type O for ordering the item,
type R for registering the item for delivery, and so on. The
attributes of each such event could include the item ID, the
employee performing the action, and the customer that ordered
the item. A CEP pattern for monitoring recent orders ready to
be shipped could then be formulated as "detect a sequence of
three events, o of type O (an item was ordered), s of type
S (an item was fetched from the storage), and r of type R
(an item was registered and is ready for delivery), such that
the item ID of o, s, and r is the same and the time window
W is equal to one hour". Every triplet of the events satisfying
this formulation would contitute a complex event matching the
above pattern.

Pattern matches are constructed incrementally by combining
incoming events with already formed partial matches. For the
pattern defined above, each newly arrived event of type O
triggers the creation of a partial match of size 1 containing this
event. Consequently, a new event of type S is matched with
all partial matches containing previous O events, and the pairs
sharing the same costumer ID form new partial matches of
size 2. In a similar manner, each event of type R is compared
against all partial matches containing the above pairs, and the
triplets satisfying the conditions are united into full pattern
matches which are then reported to the system users.

CEP systems commonly utilize a detection model for
creating, extending, and managing partial matches during

Fig. 2: NFA plan of P1

pattern detection. One model extensively used due to its
simplicity and expressibility is the non-deterministic finite
automata, also known as NFA ([2], [19], [31], [32]). An
automaton allows to easily express the connections between
the various subsets of a full pattern match according to the
underlying structure of the pattern. Fig. 2 provides an example
of an automaton constructed for the pattern from Example
1. Each state represents a particular step during the pattern
matching process, with every traversed edge causing a new
partial match creation. The transition from the initial state is
performed upon an arrival of an event of type O, creating a
new partial match. Likewise, an outgoing transition of state S
will be traversed when an event of type S arrives satisfying the
mutual condition with some previously obtained event of type
O. The traversal and the creation of a new partial match with
an active state R will take place for each valid (O,S) pair.
Finally, the outgoing transition of state R will be traversed by
each (O,S,R) triplet representing a full pattern match.

It can be observed that the computational cost of complex
event detection as described above is inherently exponential
in the size and the complexity of the pattern. For example,
assume that the CEP system from Fig. 2 creates 100 partial
matches oi1 , oi2 , ..., oi100 from 100 events past events of type
O. An arriving event sj will be evaluated to see if it can be
used to extend those stored partial matches. Assuming that the
conditions hold for every evaluation(or that there are none),
100 partial matches will be created - oi1sj , oi2sj , ..., oi100sj .
Similarly, 100 new events of type S can create 10,000 partial
matches, each of which will have to be evaluated upon each
arrival of an event of type R. This problem becomes even
more severe for longer patterns.

To overcome the above problem, real-life CEP engines
employ advanced strategies for optimizing system
performance. Parallelizing the event detection process,
an increasingly popular choice for a CEP optimization
method, is the focus of this paper and is discussed in detail
below.

III. HYBRID PARALLELIZATION APPROACH

In this section, we present our hybrid parallelization
approach. We discuss the internal design of the system and
its two-layered parallelism approach. Our system comprises
execution units called agents. The outer layer splits the stream
of events up between a group of agents such that each agent
receives an incoming stream that contains one type of primitive
events that appears in the pattern being detected. Each agent
receives two types of input: these incoming events and partial
matches that were found by other agents. The flow of these
partial matches from agent to agent is determined by the
detection model used.



An agent receives an event stream from the system’s sources
and a partial match stream from other agents as inputs. The
agent combines these two inputs to extend the partial matches
received from the agents in the outer layer. This combination
of inputs is done by workers. Each agent comprises workers
that examine the incoming events and partial matches and
check whether new partial matches can be made based on
its event stream and partial matches stream received from its
neighboring agent. This internal execution done by the agent’s
workers is the inner layer of the hybrid-parallel approach.
This layer can be viewed as an independent parallel tier,
similar to the data-parallel approach. The layer’s parallelism is
manifested in the agent’s internal design. It comprises several
threads that run concurrently and merges of the two inputs.

Our hybrid-parallel approach combines the strengths of
both state-parallel and data-parallel methods. It provides an
unbounded degree of parallelism, since any number of cores
can be allocated to an agent. Furthermore, events need not
be replicated. An individual event is only handled by a single
agent and processed by a single core of that agent. The event
is only passed on to another agent once it has been combined
with other events to form a partial match. Our method provides
the flexibility to choose among distributed and multi-core
architectures. For the outer layer, passing partial matches is
the only communication between cores, thus agents could be
easily deployed on both shared memory and share-nothing
architectures. The inner layer is more suited to shared memory
scenarios, as cores have to constantly pass along information
needed for the pattern detection process. However, this inner
layer can also be deployed on a distributed system if needed.
While the system’s design supports any detection model, we
present our solution using NFA in the following subsections.

A. Agent Architecture

Events are received from outside the system and forwarded
for handling as input to our system.[ All basic events coming
into the system are passed through a splitter. The splitter
produces multiple streams, where each stream contains only
events of a specific type. This stream is forwarded as input to
an agent specializing in this type of event. All basic events
coming into the system are passed through a splitter. The
splitter produces multiple streams, where each stream contains
only events of a specific type. Each type of stream is then
forwarded as input to an agent that specializes in this type of
event.

As explained, each agent receives two input streams. One
input stream contains events of a specific type, and is
received from the system. The second input stream contains
partial matches; these are received from different agents that
constructed the partial matches. The agent’s output stream will
contain the partial matches it managed to extend based on
its input streams. This stream of extended partial matches is
sent on to the next agent. The job of the next agent is to
further extend the matches by combining them with the events
it receives from the system.

Detecting matches requires that the agent stores the partial
matches it received as input. This allows the partial matches
to be examined to determine whether they can be combined
with the incoming events to extend the match. Consequently,
each agent maintains two complementary lists: a match buffer
(MB) that stores the partial matches and an input buffer (IB)
that stores the incoming events. When an item arrives from
any of the two types of input streams, it is stored in its
corresponding buffer. Then, the agent’s workers evaluate each
item with every item stored in the complementary buffer to
discover whether it can create a more complete partial match.
In short, an incoming event is checked against every partial
match currently stored in the match buffer.

Execution threads are allocated among the different agents
in the system. This allocation is decided by applying a cost
model calculation that factors in the load expected for each
agent. We describe it in detail in Section IV-A. An agent
divides its threads into two groups: event workers and match
workers. Both kinds of workers process the input streams, but
each differs based on the input it handles. Event workers first
receive events and put them in the input buffer (IB). Then,
they check whether any of the partial matches stored in the
complementary match buffer (MB) can be used to extend the
match. Similarly, match workers receive partial matches and
put them in the match buffer (MB). Then, they check whether
any of the events stored in the input buffer (IB) can be used
to extend the match.

Executing threads in this manner concurrently requires
carefully managed access to shared data structures. Workers
storing items in the buffers raise the problem of simultaneous
access from multiple threads. A worker stores items in its
group’s buffer, and also has to iterate over its complementary
buffer during the pattern detection process. Thus, a worker
has to synchronize buffer access with other workers in its
group and with workers in the complementary group. A simple
solution would use coarse-grained synchronization, such as
acquiring a lock for every buffer modification; however, this
would cause a major overhead and degrade the system’s
throughput. Instead, our system has a sub-buffer for every
worker; thus, different workers can iterate over different sub-
buffers simultaneously. While synchronization is still required,
locking now involves only two workers instead of every
worker in an agent’s group. Each worker maintains its buffer
by adding items received from the input stream and by
removing items as necessary. Detailed explanation on the
removal method is discussed later in this section.

All workers of the same group in a specific agent, whether
event workers or match workers, access the same input stream.
The items are divided on a “first come, first served” basis.
A worker either waits until an item arrives in the stream or
accepts it immediately if there are already items that came
in. While this method does not enforce load balancing on
the size of the sub-buffers, it does not degrade the system’s
performance. A sub-buffer’s size is not relevant since the
buffer size does not affect insertion or removal time. The
complementary workers have to iterate over all the stored



items without differentiating where they are stored. From now
on, our use of the terms IB and MB refers to the union of all
sub-buffers of an agent’s event workers and match workers,
respectively.

1 while event stream has events:
2 e ← get_event_from_stream()
3 insert_to_own_input_buffer(e)
4 foreach match_worker in

complementary_worker_list:
5 partial_matches_sub_buffer

←get_worker_sub_buffer(match_worker)
6 foreach m in partial_matches_sub_buffer:
7 if check_predicates(m, e):
8 send_to_succeeding_agents(append(m,

e))
9 remove_old_events_from_buffer(partial_matches)

Algorithm 1: Event worker algorithm

Algorithm 1 showing the event worker algorithm contains
a main loop that runs as long as events continue arriving as
input. In lines 2-3 an event is received from the stream and
is added to the worker’s IB. Adding elements to the buffer
requires that it be locked to prevent concurrent access by other
workers who need to access the buffer, as seen in line 5. The
worker then starts iterations over the match workers; in each
iteration it gets the worker’s sub-buffer. The sub-buffer can be
accessed directly in a multi-core shared-memory architecture,
but the event worker has to acquire a lock while going through
the sub-buffer. In lines 6-7, the event is evaluated with every
partial match from the sub-buffer, by checking the relevant
predicates in the newly arrived event. If the condition check
is passed, the event is appended to the partial match and is sent
to the succeeding agents, as in line 8. Finally, some events are
removed from the worker’s IB in line 9. Events that should
be removed are determined by the partial matches currently in
the MB.

The match worker algorithm is similar to the event worker
algorithm; the differences stem from handling partial matches
instead of events. Instead of receiving events, the match worker
gets partial matches as input. It then evaluates the partial match
with the events from the input buffer to check for a more
complete partial match. Finally, removing partial matches is
determined based on the events in the IB, as explained below.

Because both worker groups perform similar actions, the
question of creating duplicate partial match arises. Duplicates
are avoided as there is no single combination of an event
and a partial match that is evaluated twice. An arriving
item can be evaluated only with items that are already in
the complementary buffer. This means that a specific item
is used in the check predicate function (line 7) only in
two scenarios: (i) Immediately after arriving from the input
stream, thus checked only with complementary items that
arrived earlier. (ii) When stored in a buffer and a newly
arrived complementary item triggers the check. The same

Fig. 3: Type C agent for detecting SEQ(A,B,C,D)

complementary item cannot exist in both scenarios and thus
we do not check the same combination twice.

Items are removed from a buffer to ensure correctness of
the algorithm, and prevent unnecessary evaluations and wasted
memory space. Removal is done when an item can no longer
form partial matches. An item can be discarded if it has arrived
early enough such that a combination of new arriving items
does not satisfy the pattern’s window requirement, denoted as
W .

Removing an event requires finding the latest timestamp
of all the partial matches in the MB. The timestamp of a
partial match is defined as the earliest timestamp among the
events it comprises. Say tlatest is the latest timestamp of
all the partial matches in the MB. Events are removed if
they have a timestamp t for which t + W < tlatest is true.
Correctness is maintained because any arriving partial match
is guaranteed to have at least one event with a timestamp that
is at least as late as tlatest; otherwise it would have been
created earlier and thus received earlier at the match worker.
We cannot combine newly arriving partial matches with the
removed events without violating time window requirements,
so they can be safely removed. To find tlatest we need to
iterate over the agent’s MB and check all partial matches in
it. This iteration requires another synchronization action with
each match worker. To avoid those synchronization actions, we
find tlatest while iterating the MB during the match detection
algorithm.

Removing partial matches from the MB is done in a similar
way, and is based on the events currently in the IB. All partial
matches whose timestamp is earlier than the current time by at
least W are removed. Each match worker derives the current
time from the timestamp of the latest event in the IB. The
partial matches can be safely removed if the events arriving
from that point on will have a later timestamp than previously
arrived events. Thus they could not be used to create matches
with the partial matches that were removed.

Fig. 3 depicts an overview of an agent’s components. This
agent is part of a system for detecting the pattern’s structure
SEQ(A,B,C,D). The agent for event type C receives an event
stream of type C events and a stream of partial matches of the
form aibj . Depending on whether it is an event or a partial



match, an arriving item is added to a concurrent queue that
supports simultaneous access using locks. Each of the two
event workers accesses the event queue, takes an event, and
adds it to its own sub-buffer. This event is evaluated with
partial matches of the form aibj from the agent’s match buffer,
which is composed of two sub-buffers from the two match
workers. Newly created partial matches of the form aibjck
are then sent to the succeeding agent. The two match workers
perform similar work. They access the partial match queue for
partial matches, add them to a sub-buffer, and compare them
with the events from the two input sub-buffers.

Some operators of the pattern’s structure influence the input
and output streams of the agent. Specifically, we will discuss
how the Kleene closure operator affects agents. An agent
altered by a Kleene closure sends partial matches as output to
other agents and to itself. This is easily done by duplicating
the stream and adding the partial match to the agent’s queue of
partial matches. At the technical level, the input queues support
multiple threads, so there is no change in the data structure.
Additional changes to the algorithm are also unnecessary, since
the operators affect only the input and output of the agents.

B. System Design

This section describes the overall structure of the system and
inter-agent communication. First, an evaluation mechanism is
created based on the structure of the pattern and the topology
of the detection model. For our example, an NFA determines
the topology of the algorithm and hence the input and output
for the agents. A state in the NFA corresponds to an agent
and represents a subset of a pattern’s structure, since partial
matches of a specific subset are created at a specific state. The
initial state represents the empty subset. Edges between states
of the NFA are built according to the operators of the pattern’s
structure. Partial matches flow from one agent to other agents
that are connected to it by edges.

As an example of building an NFA based on a structure’s
operators, the sequence operator creates an NFA where each
state has exactly one outgoing edge, leading to a different state
or the system’s output. Kleene closure on a specific category
of the sequence alters the corresponding state by adding an
output edge that leads to itself (self-loop). Our system also
supports all common CEP operators such as conjunction,
disjunction, and negation; these operators influence edge
building, but are outside the scope of this discussion for
brevity. Our system also supports other alterations of the
evaluation mechanism such as pattern reordering [19]. These
alternations can be provided with a pre-made detection model
so the partial match is built in a different order. We define
an agent as preceding another agent if their corresponding
states immediately precede each other in the NFA. Similarly,
succeeding agents immediate follow each other in the NFA.

Fig. 4 presents an example of the NFA for our example’s
structure. For the pattern’s structure of SEQ(A,B,C,D) the
resulting NFA is shown in Fig. 4a. Its states are ordered by
the sequence imposed. The effect of the Kleene closure on
the resulting NFA is presented in Fig. 4b. In the structure

(a) NFA created for detecting SEQ(A,B,C,D)

(b) NFA created for detecting SEQ(A,B+,C,D)

Fig. 4: NFA created for different structures

Fig. 5: System for detecting SEQ(A,B,C,D)

SEQ(A,B+,C,D), type B events can exist more than once in
the match so the state representing agent B has an added self-
loop.

Incoming events are split according to their type and are
sent to specific agents. An agent receives all the events
that correspond to its event type, and only those events.
Partial matches are received from agents that correspond to
preceding states. As explained in the previous subsection, an
agent combines the input streams it receives and creates more
complex partial matches as output. These partial matches are
sent to succeeding agents as the output stream of that agent.
To illustrate, we look at Fig. 5, which shows the actual parallel
system used for detecting the sequence in Fig. 4a. Taking
agent C as an example, it receives events of type C and partial
matches containing events of types A and B. The agent uses
the pattern matching algorithm and sends newly created partial
matches of the form aibjck to the agent that correspond to state
D.

The initial state does not have preceding states, thus it
cannot receive partial matches and will not create any output.
This state sends its events as partial matches of size 1,
directly to their succeeding states without any evaluation.
As an optimization, our system removes the initial state and
forwards incoming events of the relevant type to the partial
match stream of the succeeding states. The optimization can
be observed in Fig. 5. Type A events arrive directly to the
partial match stream of the type B agent and are stored in the
match buffer. The buffers’ contents for every agent are also
presented in the figure.



IV. THEORETICAL ANALYSIS

This section provides a theoretical analysis of our system.
First, we discuss the optimal number of threads that should
be allocated to each agent and how these threads are divided
internally. The allocation is based on the expected load of
each agent, which is in turn affected by the input parameters
of the system. These parameters include the arrival rate of
incoming events, the window size, and the selectivity of the
pattern’s condition, which is a fraction denoting the number
of successful evaluations divided by the total number of
evaluations. The second theoretical analysis is a detailed
breakdown of the system’s main metrics: throughput,latency,
and memory usage.

A. Thread Allocation Cost Model

Our system’s design relies on the fact that the agents are
all running in parallel. Each agent i is statically allocated a
specific number of threads Ti. This number is determined by
the total number of cores available in the system T and by
the load expected for each agent. In a specific agent i, the
total number of threads Ti is further divided between event
workers and match workers. TIBi

, TMBi
represent the number

of threads in each group, respectively. When allocating threads
to agents, our goal is to efficiently balance the load among
them. Our goal is to have the same load on each thread so
there will be no threads sitting idle while others are causing a
bottleneck. Throughout this discussion, we assume the threads
are homogeneous and perform calculations at the same speed.

The first allocation we discuss is the inner-agent allocation.
Given a specific agent i and a number of threads Ti we now
explain how we allocate the threads among the agent’s groups.
We start calculating the optimal allocation by comparing the
rate of computational and synchronization actions each group
of event workers and match workers performs. First, we define
the rate of items arriving at that agent. Since the arrival rate can
vary due to data bursts and congestion on the agents, we define
the average arrival rate of incoming events ei and the average
rate of incoming partial matches mi. These rates, together
with the window size W , determine the size required for an
agent’s buffers. When the system has been running for at least
W time, we can say that items are expected to be discarded
from the buffer at the same rate at which they enter it. Thus,
an item exists in the buffer for a time frame of roughly W .
Therefore |IBi| = eiW and |MB| = miW are the expected
input buffer and match buffer sizes, respectively.

The expected buffer sizes assume that the window size is
very large compared to the latency of the incoming partial
matches. Partial matches arrive with some latency as they pass
through the preceding agents compared to the events, which
arrive directly. When a partial match arrives at the IB, the
buffer most likely already holds events with a timestamp that
is later than that of the incoming partial match. The delta of
these two timestamps is denoted d. Thus, an average partial
match stays in the match buffer for W − d time and an event
stays in the input buffer for W + d time. Having W >>
d is a realistic assumption as our system is mainly intended

to work with patterns that have large time windows because
they require more calculations. These patterns that require the
largest number of calculations are those that benefit the most
from parallel execution.

These calculations involve the computation performed to
match the incoming events with the incoming partial matches,
and are the computational actions we consider for our cost
model. A worker executes evaluations when it receives an
incoming item and tries to combine it with items in the
agent’s complementary buffer. All event workers in agent
i cumulatively perform evaluations at a rate of leventi =
ei · |MBi|, since every incoming event is evaluated with every
partial match in the input buffer. Similarly, match workers
cumulatively perform evaluations at a rate of lmatchi

=
mi · |IBi|. When simplifying the expressions, we observe that
leventi = lmatchi

= eimiW , which indicates that the two
groups perform an equal amount of evaluations.

All evaluations done by the same agent do not require the
same number of computational actions, due to the difference
in payloads of the participating incoming events and the partial
matches. Therefore, in our discussion we use the average
number of computations done for each evaluation. While
evaluations vary in their complexity, both groups evaluate the
same predicates and are thus considered to have the same
average complexity. With this observation, we infer that the
number of computational actions performed in both worker
groups of the same agent is the same.

The second factor that affects a worker group’s load
is synchronization. Often in CEP systems, the pattern’s
condition is very simple and easy to compute and requires
a small amount of computational actions. Thus, while
there are relatively few synchronization actions compared
to computational actions, it is important to include those
synchronization actions in our cost model.

Synchronization between workers must to be done in two
cases. The first case occurs when the worker is iterating
over a complementary sub-buffer and locking it. TMBi

and
TIBi

are the number of synchronization actions required for
event workers and match workers, respectively. The second
occurs when a worker sends a partial match to its succeeding
agents using the concurrent queue between agents. In short,
there is synchronization among the workers in an agent, and
synchronization when partial matches are sent among agents.
Since we cannot use these values before allocating the threads,
we make the assumption that the threads are split evenly
between the groups and so TIBi = TMBi = Ti/2. The second
form of synchronization is when a worker sends a partial
match to its succeeding agents using the concurrent queue
between agents. The rate of partial matches sent depends on
the selectivity of the pattern’s condition. All evaluations in
a specific agent have the same selectivity, regardless of the
worker that performed them. Since the rate of evaluations and
the condition’s selectivity is the same, the rate of outgoing
partial matches and thus the rate of synchronization actions is
the same. Consequently, the expected load on both groups is
the same and as a general rule, threads should be split evenly



between the groups.
However, in specific scenarios ei or mi can be so low that

there would be many more threads in that group than what is
needed to handle those few events or partial matches. Thus,
using half the threads allocated to that agent would be wasteful
and would lead to idle threads. Taking input workers as an
example, we say that a worker can complete p evaluations in
the interval between two event arrivals. Therefore, the number
of threads used for event workers must not exceed miW/p. If
that limit is below half the threads allocated for the agent, the
excess threads will be used as match workers. This observation
also holds for the match workers with a limit of eiW/p.

Thread allocation among agents requires knowledge of the
load on each agent. As discussed above, for a state i an agent
has a rate of 2eimiW evaluations. When comparing the load
on all agents, we have to consider that different agents have
different evaluations that vary in their complexity. We define
ci as the average cost of one evaluation in agent i, measured in
computational actions. As mentioned above, evaluations by the
same agent can also vary in complexity. However, during the
system execution this cost is amortized over many instances of
computations and we can use the average in our cost model. ci
can be obtained by checking the predicates on a set of events
and partial matches, and measuring the computational actions
performed. This set can be collected from a previous run or
by simulating some events and partial matches. Consequently,
the number of computational actions in agent i is

compi = ci(leventi + lmatchi
) = 2eimiciW .

Workers of agent i cumulatively performs (ei + mi)Ti/2
synchronization actions when they lock complementary sub-
buffers. This value requires the actual thread allocation to
calculate the precise load. As we cannot calculate the load
before the allocation, we assume an even allocation among
agents such that Ti = T/n. We define bi as the cost of locking
a sub-buffer while iterating it. The synchronization load also
includes sending partial matches using the concurrent queue
at a rate of mi+1 at a load cost of qi. Therefore, the total
synchronization load of an agent is
synci = bi(ei +mi)Ti/2 + qimi+1.
Thus, the total load on an agent is
loadi = compi + synci.
Thread allocation is performed using this formula (n is the
number of agents in the system):
Ti =

loadi
n∑

j=1
loadj

While most symbols in this formula are input parameters
and therefore known, mi has to be expressed by those
parameters. The rate of incoming partial matches depends on
the NFA’s structure. Therefore, we limit our calculation to
specific structures due to space constraints. First, we discuss
NFAs where each state has exactly one direct preceding state,
except for the initial state. These are NFAs that are built when
the pattern’s structure is a sequence without an additional
operator, for example the, NFA presented in Fig. 4a. The
agents are numbered by the order of their corresponding states
in the chain. The initial state does not correspond to an agent

because our optimization forwards its incoming events directly
to the agent that would succeed it. Thus, Agent 2 is actually
the “first” agent, with no preceding agent.
mi is calculated as follows

mi =

{
e1, i = 2

|MBi−1| ∗ ei−1si−1 = mi−1ei−1si−1W i > 2

Agent 2 receives its partial matches stream directly from the
system. These will partial matches of size 1, which contains
only events of the first category and their arrival rate is defined
as e1. For all other agents, partial matches are received as a
product of evaluations done by the preceding agent on events
and partial matches. Every incoming event has the potential
for creating |MBi−1| partial matches. However, as not every
comparison produces a partial match, the number of partial
matches created is lower than the number of partial matches in
the match buffer. This depends on the product of the selectivity
of all the conditions required to pass for the creation of a new
partial match. We denote this selectivity as si and assume it
stays constant. Thus, only |MBi−1|si−1 partial matches are
actually created for every incoming event.

An arriving partial match can also be used to create partial
matches when it is compared against events in the input buffer.
However, to simplify the calculation, we assume that only
arriving events can create new partial matches. As mentioned
in Section III, every combination of event and partial match
is evaluated exactly once. Since the selectivity is also the
same regardless of the worker performing the evaluation, our
assumption is valid. In both cases, the rate of partial matches
created is the same.

After simplifying the formula, mi can also be represented
by a non-recursive formula:

mi = e1W
i−2

i−1∏
j=2

(ejsj).

This value is used to calculate Ti using only the input
parameters.

Kleene closure is the second pattern type we discuss. Its
NFA differs from the sequential pattern by having states with
self-loops. Agents corresponding to states affected by Kleene
closure, such as Agent B in Fig. 4b have a different mi than
the one calculated above. This is because any partial matches
created by an agent with Kleene closure are also forwarded
back to that same agent. The rate of partial matches arriving at
an agent i with Kleene closure can be viewed as two different
factors. mprev

i is the rate of partial matches arriving directly
from the preceding state and is calculated in the exact same
way as mi is calculated in a sequence pattern. mKCj

i is the
rate of partial matches arriving from the self-loop that has j
events of the type of agent i, such that
mi = mprev

i +
∑∞

j=1 m
KCj

i .
We observe that, initially, partial matches are constructed from
the input arriving from the preceding state at a rate of
mKC1

i = mprev
i ∗ |IBi| ∗ si.

Every partial match is evaluated with every event in the input
buffer with a selectivity of si. Then, these partial matches
arrive on the self-loop and create partial matches at a rate of



mKC2
i = mKC1

i ∗ |IBi| ∗ si,
which are again forwarded to agent i. And so it goes on
indefinitely; therefore
m

KCj

i = mprev
i

(
eki s

k
iW

k
)
.

Consequently, the rate of partial matches for a Kleene
closure agent is

mi = mprev
i

(
1 +

∞∑
k=1

(
eki s

k
iW

k
))

.

If all preceding agents are not affected by Kleene closure, then
the non-recursive form is

mi = e1W
i−2

i−1∏
j=2

(ejsj)

(
1 +

∞∑
k=1

(
eki s

k
iW

k
))

.

We can use it in the load formula and then calculate Ti, just
as we did for the sequence pattern.

B. Complexity Analysis
To complete our presentation of the pattern detection

system, we analyze its complexity regarding the computational
and synchronization actions, needed along with memory
consumption. The rate of computational actions for individual
agents is calculated in the previous subsection, and the total

amount in the entire system is
n∑

j=1

compi. As expected, a larger

time window, faster arrival rate of events, and longer pattern
sequence all contribute to more calculations and therefore
increase this rate.

The rate of synchronization actions was also calculated in
the previous subsection, where we assumed an even allocation
of threads among agents. Since we now have the actual
allocation, we can properly calculate the rate. Thus, instead
of using Ti = T/n , we use the actual values TIBi , TMBiand
the rate of synchronization actions is bi(ei+mi)Ti/2+qimi+1.
This rate is most affected by the time window, because a
larger window leads to more evaluations and therefore more
synchronization actions. Also, as expected, more threads in
the system requires more synchronization.

Memory consumption is defined as the size of all the event
buffers and match buffers in the system. We define vi as the
average event size that is handled by agent i. Therefore, the
size of agent’s i input buffer is |IBi| ∗ vi = eiviW . A partial
match from the match buffer of agent i is composed of single
events, and each preceding agent added a single event. Thus

its size is
i−1∑
j=1

vj and the total match buffer’s size for agent i

is
i−1∑
j=1

vj ∗ |MBi|. Combining both buffer sizes and summing

over all agents, we show that the total memory consumption

is
n∑

i=1

(
eiviW +

i−1∑
j=1

(vjmjW )

)
.

V. IMPLEMENTATION DETAILS

There are a few implementation details that contribute to the
optimization of the system but also impose some restrictions
on using it. Knowledge of these details can help explain some
design choices we have taken.

Scoping parameters [19] is a critical optimization
implemented in our system. We observe that an arriving partial

match does not necessarily have to be checked with every
event in the input buffer. Due to temporal constraints, an event
that does not have its timestamp within the interval imposed
by the partial match cannot be used to extend the match.
While this optimization was originally intended to be used
with pattern reordering, it is useful for our algorithm as well.
When a partial match arrives, there may be events with a later
timestamp that have already arrived. Only those events should
be evaluated with the arriving timestamp and not the entire
IB.

The input sub-buffers are sorted based on the incoming
events’ timestamps, since each event worker stores events in
the order in which they are received. This makes pruning
the events outside the useful timestamp scope a constant-time
action to eliminate the need for a full scan of the input buffer.
This is not the case when dealing with the match buffer, as
it is not sorted. However, we can still check the timestamps
before checking the actual predicate. This is helpful in cases
of conditions that have more significant computation times.

Concerning the parallel process, we observe that while our
system does not have an upper bound on its parallelism degree,
it warrants a minimal number of threads to operate. Each
agent requires at least an event worker thread and a match
worker thread. The total number of agents is the same as
the number of categories in the pattern, subtracted by one
due to our optimization. Thus the minimal amount of threads
should be twice that number. For example, the system would
need at least six threads to process the patterns in Fig. 5.
To maximize throughput, the system should be used with an
appropriate processor that supports parallel execution of that
many threads. Unfortunately, because an agent can have a
relatively low amount of computations to perform but still
requires two threads to operate, this can lead to idle threads
and a waste of possible activity. One solution would be to use
fusion [17], a known parallel computing technique in which
two or more parallel units are merged into a single one. We
discuss how fusion can be implemented by merging agents in
Section VI-B

Restricting a thread to function only as an event worker or
only as match worker can cause some threads to be idle for
a long period of the execution time. While the theoretic cost
model shows that the thread allocation inside an agent splits
the threads evenly between event workers and match workers,
in practice this does not always lead to the best throughput.
The actual event rate ei can change over time and so can the
match arrival rate mi. The execution time of every thread also
varies and depends on the system’s load, memory caching, and
the complexity of the specific condition being computed.

Even minor variances in the throughput of a group of threads
can cause that group to perform significantly better or worse
than another group. For instance, if at a certain point in the
execution, the event workers of a specific agent handle the
incoming events at a slightly faster rate, the IB for that agent
will also grow faster. However, a larger IB means that every
arriving partial match is going to be evaluated with more
events. This will take thus taking more time and slow the



rate at which partial matches are handled, which also leads
to slower growth of the MB. As the MB is now smaller
than it would have been without the variance of computation,
the event workers can handle events even faster due to fewer
evaluations needed. Ultimately, we will see a “rolling effect”
in which the IB grows even faster as the event workers need
to perform fewer evaluations. Meanwhile, the match workers
have to perform most of the evaluation and the MB grows even
slower. The event workers will finish their task much faster
and thus become idle while the match workers continue to run.
The same phenomenon can occur if the match workers start
to perform slightly better and the MB is the one that grows
faster instead of the IB.

As a practical solution to our experiments, we added support
for threads to operate on both groups. In this “state-dynamic”
allocation, each thread maintains two workers - an event
worker and a match worker with one of them being the primary
worker and the other the secondary worker. The threads are
still split evenly between the groups such that half the threads
have an event worker as their primary worker, while the rest
have a match worker as their primary worker. Handling an
item is now split to an input phase and an evaluating phase.
In the input phase, the thread receives an element from one of
the possible streams. Each thread has a primary stream and a
secondary stream depending on its primary worker. A thread
with a primary event worker will have an event stream as its
primary stream. The thread then tries to receive an element
from its primary stream, if it cannot do so because there is
no such an element available, it checks the secondary stream.
Based on the element received, the thread starts the evaluating
phase in which the corresponding worker is used to handle the
element.

Supporting this dynamic allocation requires twice the
amount of sub-buffers, as there are twice the amount of
workers. When the worker is handling an item, it has to get
the complete complementary buffer (IB or MB) from the other
group of workers, which now includes all the threads of the
agent. This, in turn, leads to more synchronization actions.
Although the extra synchronization affects the performance
negatively, this change to support dynamic allocation ensures
that there will not be idle threads in the agent – which
outweighs the negative impact. We further improve this
allocation by having a thread handle elements of different
agents, as detailed in Section VI-A.

VI. EXTENSIONS

A. Dynamic Thread Allocation

Agents can become idle for various periods of time during
the system’s execution. While the cost model aims to minimize
this problem, it can still happen due to imperfect application
of the continuous cost model on a discrete number of threads.
As explained in Section V, changes in the input parameters
also affect the cost model. When an agent is idle, its threads
are no longer contributing to the throughput of the system and
using them for another agent’s computations would improve
the system’s performance. As a further optimization to the

state-dynamic allocation explained in Section V, we propose
a fully dynamic thread allocation.

Similar to the state-dynamic allocation, each thread
maintains both an event worker and a match worker, but
it does so for every agent. Each thread is also accessible
to all input streams of the system. A thread is associated
with an agent according to the cost model thread allocation,
denoted as the primary agent. That thread is further assigned
a primary worker and a secondary worker of that specific
agent, similar to the procedure in the state-dynamic allocation.
The thread tries to receive an input from its primary and
secondary streams of its assigned agent. If there is no element
in both streams, the agent is considered idle and that thread
can perform work for other agents. It randomly tries inputs
associated with other agents until it receives an element and
handles it using the corresponding worker. This input is saved
and will be tried first instead of randomly choosing an input.

This optimization ensures that threads will contribute to
the system even if their assigned agents are idle. However,
it can also impact the performance negatively. Every thread
now holds a worker of a specific group for every agent.
Moreover, a worker has to get the sub-buffer from every
thread in the system instead of just the thread of its agent.
This adds numerous synchronization actions, which could
outweigh the benefits from the additional computing power
provided by now non-idle threads. Thus, the fully dynamic
allocation is better suited to environments with a low amount
of threads, so the additional synchronization cost will not be
significant. Also, such environments have a higher chance of
thread allocation that differs significantly from the theoretic
cost model allocation.

B. Fusion

As explained in Section V, the system’s design requires
two threads for every agent. If an agent is expected to have a
significantly smaller load than other agents in the system, the
cost model will allocate less than two threads for it. However,
due to the minimum thread limit, these agents will actually
be allocated two threads. These threads must be taken from
other agents that could have actually used them. For patterns
that have many low-load (and thus wasteful) agents, losing
throughput is a critical issue.

We introduce fusion [17] to our hybrid algorithm as a viable
solution. Two consecutive agents, A and its successor B, can
be fused together to create a single fused agent that handles
both functions. Similar to a non-fused agent, the fused agent
has two input streams. Its event stream is the combination of
the two event streams of the original agents, while its partial
match input stream is the same partial match input as the
original agent A. The fused agent uses the same output as
agent original B. The fused agent maintains two IBs and two
MBs, which contain the same elements as those of the original
agents. On arrival of some event a of agent A, it is evaluated
with partial matches received from the preceding agent. Newly
created partial matches are added to the second MB, denoted
MBB . Some event b of agent B that arrives is compared with



the partial matches in MBB . Partial matches created at that
stage are forwarded to the succeeding agent. A fused agent
requires just two threads to operate and thus minimizes the
total system’s requirement without performing unnecessary
additional computations. This optimization ensures that the
actual allocation is more similar to the allocation calculated
in the cost model. Fusion is especially suited for patterns
resulting in many agents with such small loads that they
are allocated less than two threads. Furthermore, it is also
highly beneficial in scenarios with a low number of available
cores, where the additional threads gained from fusion is more
significant.

VII. EXPERIMENTAL EVALUATION

In this section, we present the results of the experimental
evaluation of our hybrid parallelism method. Our main
objective in this empirical study was to assess the overall
system performance achieved by our approach using different
metrics and to measure its improvement over a single-core
sequential CEP algorithm. Furthermore, we evaluated the
performance of the state-of-the-art parallel CEP system and
compared it with our own. Our second objective was to study
how the extensions of our system (as presented in Section VI)
affect the overall performance and analyze those results.

A. Experimental Setup

We implemented the parallel CEP system described in
Section III, which we refer to as the “hybrid approach”,
together with the cost model presented in Section IV-A.
We also added the extensions described in Section VI, with
the option to enable or disable them as needed. We also
implemented a sequential CEP engine and a parallel state-
of-the-art CEP engine, RIP [5] to measure our system’s
performance on a relative scale. We pre-calculated the rates
of the event arrival frequencies and predicate selectivities,
and fed them into the thread allocation mechanism. Unless
stated otherwise, we used the hybrid approach with a thread
allocation determined by the cost model and with none of the
extensions from Section VI.

We used two independent real-world datasets in the
experiments. The first was taken from the NASDAQ stock
market historical records [1]. Each record represents a single
update to the price of a stock. The data we used spans
a one month period covering over 2100 stock identifiers
with prices updated periodically. Our input stream contained
6,239,997 primitive events, each comprising a stock identifier,
a timestamp, and a current price. To support the detection of
some patterns described below, the event was augmented with
an additional 20 values. Each value is a price taken from the
last 20 prices of that specific stock, ordered in chronological
order. We considered an update of each stock identifier as an
event belonging to a separate type. For example, updates to
Google, Apple, and Twitter stocks represent 3 different types
of events. The second dataset contains measurements from
sensors placed in apartments to recognize human activities
and was taken from the research of D.Cook [7]. Each sensor

measurement comprises a timestamp, the activity performed
by a resident of the apartment, and an additional 33 attributes
describing the measurement itself. For example, these might
represent the type of the sensor, the value it measured, the time
since this sensor was last activated and so forth. The dataset
contains 13,956,534 measurements, with each considered a
separate event. We consider each activity to be a separate type
of the event.

The patterns we used for experimenting on both datasets are
similar in their structure. Each pattern represented a sequence
of event types, and a Kleene closure operator applied to
one type in the relevant experiments. The condition used for
these patterns is a predicate between two consecutive event
types. For the first dataset, wanted to define patterns that
could monitor desirable changes in stock prices. Therefore,
the condition used was either a change on the price from
the last price as compared to the change of the other event,
or a requirement on the correlation between two stocks by
their 20 previous prices. For the second dataset’s patterns,
the conditions tested the different changes in activity levels
as measured by the sensors, which is an event attribute. The
rationale of these patterns was to help predict the next activity
the person would perform. Unless stated otherwise, we ran the
experiments with sequences of six event types and a changing
time window.

The metrics we used to measure performance were (1)
Throughput, defined as the number of events processed per
second. (2) Latency, defined as the average of all time intervals
between the moment a match is created and the latest event in
that match. (3) Memory consumption, defined as the maximal
amount of bytes used by the system during its execution on a
specific pattern. All experiments were run on a machine with
24-cores, 2.20 GHz CPU, and 16.0 GB RAM; the parallel
systems were given 24 cores unless stated otherwise. All
models and algorithms were implemented in Java.

B. Experimental Results

In our first experiment, we evaluated the throughput gain
of our hybrid-parallel system as compared to a sequential
approach. We tested various values of time windows, available
cores, and pattern length. For this experiment, we used both
sequence patterns and Kleene closure patterns when testing the
throughput as a function of the time window or the number
of cores. When testing the effect of different pattern length on
the throughput we used only sequence patterns. The Kleene
closure operator was not used in this specific test, since it is
similar in its function to extending the length of the pattern.

To calculate the throughput, we measured the total execution
time for processing a fixed number of events. The results
are displayed in Fig. 6, presented as the time speedup
gained over the sequential run. In most scenarios, our system
performs significantly better than the sequential algorithm,
and we achieve a speedup gain from 0.5 up to three
orders of magnitude, compared to the sequential run. We
observe the speedup increase is relative to the increase in
pattern complexity, as apparent both in larger time windows
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Fig. 6: Speedup (higher is better) relative to the sequential
algorithm of the hybrid-parallel system and state-of-the-art
RIP system, applied on the stock dataset ((a)-(c)) and on the
sensor dataset ((d)-(f)), as a function of: (a),(d) time window;
(b),(e) number of cores; (c),(f) pattern length.

and in larger pattern lengths. A pattern requires more
computation actions to process it when it is more complex.
We attribute this improvement in speedup to a higher ratio
of computation actions compared to synchronizations actions.
As presented in Section IV, handling an item and iterating
over the complementary buffer require a fixed number of
synchronization actions, but the number of computational
actions needed depends on the size of the opposite buffer.
Both the IB and MB increase in size with an increase in time
window. Fig. 6b and 6e shows the scalability potential of the
hybrid-parallel approach. We observe that the system scales
well when adding more cores, with the exception of a sequence
pattern over the sensor dataset which hits a limit at about 16
cores.

Next, we evaluated our system’s throughput as compared to
the state-of-the-art RIP system, which is based on the data-
parallel approach. We tested the throughput RIP achieved on
the same patterns used for testing the hybrid-parallel approach.
RIP speedup compared to the sequential run is also displayed
in Fig. 6. While our system produce good results with both
datasets, the performance of RIP is significantly worse in the
sensors dataset than in the stocks dataset. It can be explained
by a unique characteristic of the sensors dataset; most partial
matches, and especially longer partial matches, are composed
of a small set of events. These events arrive relatively close to
each other and so they are mapped to a single RIP thread. This
thread have to perform a majority of the needed evaluations
by itself, while all other threads finish their batch of threads
early and wait idle for more events. This leads to a throughput
which is very similar to the sequential, and it can be seen that
the speedup RIP achieved is very close to 1 and sometime

(a) (b)

(c) (d)

Fig. 7: Latency (lower is better) comparison of the hybrid-
parallel system, state-of-the-art RIP system, and a sequential
implementation applied on the stocks dataset (a),(b) and the
sensors dataset (c),(d), as function of: time window (a),(c) and
number of cores (b),(d)

even lower, performing worse than the sequential run. This is
a major disadvantage in data-parallel system that our hybrid-
parallel approach does not suffer from. In both datasets, our
system achieved a significantly higher throughput than RIP
in all test cases, with improvement of up to two orders of
magnitude in the stocks dataset and up to three orders of
magnitude in the sensor dataset. We observe that while RIP
improves in speedup when the pattern is more complex, the
improvement gained by our system is considerably higher.

Parallel CEP usually algorithms suffer from increased
latency due to an out-of-order match detection. While this
is also the case in our solution, we detect matches with
less latency compared to the state-of-the-art RIP system and
compared to the sequential benchmark, as seen in Fig. 7. It
shows the results of our latency testing as a function of the
the window and the number of available cores with a sequence
pattern. Kleene closure pattern was also tested and produced
similar results but is omitted from the figure due to space
constraints. This improvement in latency over the other tested
methods is attributed to the increased throughput discussed
above. It allows the hybrid algorithm to find matches faster
and keep the overall latency low.

We compared the memory consumption of our system with
the memory consumption of RIP and a sequential benchmark.
The testing was performed on a changing values of time
window and number of available cores, and a sequence
pattern was used. Similar to the latency tests, we omitted
the Kleene closure results due to space constraints, but they
had produces similar results. In our system, we measured the
highest memory consumption in every thread by itself and
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Fig. 8: Memory usage (lower is better) comparison of the
hybrid-parallel system, state-of-the-art RIP system, and a
sequential implementation applied on the stocks dataset (a),(b)
and the sensors dataset (c),(d), as function of: time window
(a),(c) and number of cores (b),(d)

then summed the results, which is a worst-case measurement
instead of an accurate one. It was done so to not add additional
synchronization action between threads which would hurt
performance. We used a similar method for RIP for the same
reason. While it is expected that the parallel algorithms will
have a significantly higher memory consumption due to events
and partial matches that are handled simultaneously across
different threads, we observe that our hybrid implementation
actually uses less memory than the sequential algorithm.

Our system’s low memory consumption can be explained
by having a low amount of waiting partial matches. Memory
consumption of a CEP system comprises mostly of partial
matches waiting to be evaluated with incoming events. It
is also the case for our implementation, however in many
scenarios those partial matches are removed almost as soon
as they are created. Looking at some agent in the system,
we observe that at a single point of time, its handled events
will have a later timestamp than the timestamp of the handled
partial matches, if it is not the initial agent of the sequence. It
is because partial matches have to pass through the preceding
agents before they arrive at that agent, while the events simply
arrive from the event stream. It means that when a partial
match arrives it is possible that any event arriving after it will
have a timestamp so late that it will not be evaluated with it
because of the time window constraint. In such case the partial
match is removed as soon as the worker finished handling it,
which is not long after it was created in the preceding agent.
Comparing that to the sequential algorithm where a partial
match stays in memory until enough events have been handled
explains why the sequential algorithm consume more memory.

(a) (b)

Fig. 9: Throughput (higher is better) comparison of the fully
dynamic allocation extension as function of (a) the time
window and (b) the number of cores, applied on the stock
dataset.

(a) (b)

Fig. 10: Throughput (higher is better) comparison of the fusion
extension as function of (a) the time window and (b) the
number of cores, applied on the stock dataset.

The second goal of the our experimental evaluation was to
test the effects of the proposed extensions on the system. We
measured the throughput our system achieved with an enabled
extension and compared it to the throughput of a run with
that extension disabled. Fig. 9-10 summarize the results of the
experiments for testing the two extensions discussed in Section
VI. We used the stocks dataset, and measured the throughput
both as a function of the pattern’s time window, and as the
total cores available to the system.

Fig. 9 displays the results of our fully-dynamic allocation
test. We observe improvements in throughput over the state-
dynamic allocation for every value of time window and
every number of cores used. However, the figure shows that
system configurations with low number of cores benefit the
most from fully-dynamic allocation. We infer there are two
reasons for this phenomenon. First, an idle thread degrades
the performance of the system by a larger portion when the
overall number of thread is lower. Because the fully-dynamic
allocation utilize those idle threads, the gained throughput
is more in those systems with fewer threads. The second
reason is that the fully-dynamic allocation requires more
synchronization actions than the fully-dynamic allocation,
because there are more agents in the system. The added
number of synchronization actions depends on the overall
number of threads. Thus, this allocation incurs less overhead
in environment with fewer threads.



In Fig. 10 we display the results of the fusion extension
tests. For this test, we fused two agents out of the 5 required
to detect a pattern of size 6. The results shows a throughput
gain when using the extension over the “non-fused” version
in most cases tested. The most notable improvement is when
using just 10 threads, which is the minimal number needed
for the non-fused version. The fusion extension allows more
threads to be allocated and used by agents that can benefit
them more. Thus, an extra thread has more relative impact
when the overall number of threads is lower. This observation
is also evident from Fig. 10b, where it is shown that relative
throughput gain of fusion degrades with an increase in the
number of cores.

VIII. RELATED WORK

In recent years, CEP has been an active field of research
[12]. Different systems were proposed to detect patterns in the
input stream. Most use an NFA as a detection model [31], [2],
[32], [19], and some are based on different detection models,
such as trees[23], [19] or general graphs [3], [22]. While we
presented our work with the commonly used NFA, our solution
can apply to any detection model that uses separate building
blocks for its operators. The agents we discuss can be deployed
on any operator with their input and output streams split and
merged as needed.

High-volume input streams raise the problem of processing
incoming data in an efficient matter. Extensive work was
done to address this issue using various optimizations. These
solutions include pattern reordering [19], [23], [27], predicate
optimization [31], [32], and memory management solutions
to reduce memory usage [2]. While these works aim to
optimize the pattern matching process, they are orthogonal
to our solution as we use a parallel approach. Our work
is complementary to these optimizations and can be used
together with them.

Stream processing is a broad area of research that focuses
on performing continuous queries over any stream of data and
is therefore closely related to CEP research. In recent years,
a parallel approach was used to improve the performance
of stream processing systems. There are works that aim to
improve the system’s throughput, such as StreamIt [14], [29],
which provides coarse-grained task parallelism, and SABER
[20], which runs queries on heterogeneous hardware of both
CPU and GPU cores. Other papers have suggested load
balancing solutions [25], [24] and solutions for minimizing
latency [4].

In addition to the above works, research on parallel
implementations of automata also exists [28], [18]. Our work
differs in the fact that we parallelized the pattern matching
process and not the evaluation mechanism itself.

Parallel detection of complex events is another important
optimization of CEP systems [13], aimed at improving
throughput. It is usually categorized into distinct classes. For
example in state parallelism [5], [30], [8] an execution unit
handles a state of the NFA mechanism. In data parallelism
[5], [16], [21], the event stream is split and sent to different

execution units. Both approaches suffer from limits on the
degree of parallelism they can achieve, whether because of a
fixed number of states in state parallelism or a limit on the
number of partitions into which the stream can be split. In
contrast, our hybrid parallelism model can utilize all available
cores in the system, while providing efficient load balancing
among the execution units.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel approach for
parallelizing CEP applications. To the best of our knowledge,
our model is the first to combine the two main parallel CEP
approaches, state-based and data-based parallelism, uniting the
strengths of both approaches in a way that overcomes their
major disadvantages. Our extensive experimental evaluation
on two real-life datasets demonstrated a significant throughput
improvement over the state-of-the-art parallel CEP method,
while achieving lower latency and consuming less memory.
Our future research efforts will include supporting fully
adaptive and distributed use cases.
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