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Abstract 

Background: Screening the general public for atrial fibrillation (AF) may enable early detection 
and timely intervention, which could potentially decrease the incidence of stroke. Existing 
screening methods require professional monitoring and involve high costs. AF is characterized by 
an irregular irregularity of the cardiac rhythm, which may be detectable using an index quantifying 
and visualizing this type of irregularity, motivating wide screening programs and promoting the 
research of AF patient subgroups and clinical impact of AF burden. 

Methods: We calculated variability, normality and mean of the difference between consecutive 
RR interval series (denoted as modified entropy scale - MESC) to quantify irregular irregularities. 
Based on the variability and normality indices calculated for long 1-lead ECG records, we created 
a plot termed a regularogram (RGG), which provides a visual presentation of irregularly irregular 
rates and their burden in a given record. To inspect the potency of these indices, they were applied 
to train and test a machine learning classifier to identify AF episodes in gold-standard, publicly 
available databases (PhysioNet) that include recordings from both patients with AF and/or other 
rhythm disturbances, and from healthy volunteers. The classifier was trained and validated on one 
database and tested on three other databases.  

Results:  Irregular irregularities were identified using normality, variability and mean MESC 
indices. The RGG displayed visually distinct differences between patients with versus without AF 
and between patients with different levels of AF burden. Training a simple, explainable machine 
learning tool integrating these three indices enabled AF detection with 99.9% accuracy, when 
trained on the same person, and 97.8%, when trained on patients from a different database. 
Comparison to other RR interval-based AF detection methods that utilize signal processing, classic 
machine learning and deep learning techniques, showed superiority of our suggested method. 

Conclusions: Visualizing and quantifying irregular irregularities will be of value for both rapid 
visual inspection of long Holter recordings for the presence and the burden of AF, and for machine 
learning classification to identify AF episodes. A free online tool for calculating the indices, 
drawing RGGs and estimating AF burden, is available. 

 

 

 

 

 

 



1. Introduction 

Atrial fibrillation (AF) is an arrhythmia initiated by ectopic atrial foci which create rapid atrial 
activity, with variable ventricular response governed by atrioventricular (AV) node conduction. It 
is the most common type of cardiac arrhythmia and constitutes a major risk factor for stroke and 
death (Lip et al., 2016; Bassand et al., 2019). The prevalence of AF is age-dependent, reaching 5% 
in patients aged 65 years or older (Chugh et al., 2014). Moreover, as the population ages globally, 
AF is predicted to affect 6–12 million people in the USA by 2050 and 17.9 million in Europe by 
2060 (Morillo et al., 2017). Screening for AF in the general public and specifically in risk groups, 
may enable early detection and the timely administration of anticoagulant treatment, potentially 
decreasing the incidence of stroke (Freedman et al., 2016). Currently, diagnosis of AF is based on 
a standard 12-lead electrocardiogram (ECG). However, in many cases, AF is paroxysmal, with 
recordings failing to show AF rhythm even in patients experiencing frequent AF events. When AF 
is not recorded, but clinical suspicion is high (e.g., when searching for the cause of a recent stroke), 
the patient undergoes ambulatory monitoring and recordings are then analyzed offline. This 
approach requires manual inspection of the recordings and is therefore difficult to apply for large 
populations (Hoefman et al., 2010). 

AF is well known to be characterized by irregular irregularity of the heart rate.(Mann, D. L., Zipes, 
D. P., Libby, P., Bonow, R. O., & Braunwald, 2015). However, an exact mathematical definition 
of irregular irregularity is missing, hindering theoretical and computational modeling of AF 
initiation. Using an intuitive definition, it can be said that an irregular rate is a rate with variable 
changes in inter-beat intervals and that an irregularly irregular rate is one whose changes are 
random. We introduce a quantitative embodiment of this intuitive definition to measure short-term 
changes using a novel index, termed the modified entropy scale (MESC) index, whose distribution 
can provide indices for both the level of variability and the randomness (referred to as “normality”, 
see section 2.2 below) of rate.  Using such variability and normality indices may enable 
identification of significant changes between irregularly irregular rates (e.g., AF) and rates that are 
regular and regularly irregular. We hypothesize that indices aimed directly at detecting irregular 
irregularity, will aid simple and robust detection of AF from RR interval series. Plotting the 
variability and normality indices of a long RR interval recording (e.g., extracted from a Holter) 
generates a “regularogram” (RGG), which provides a visual presentation of AF episodes and their 
burden. This work aimed to test the ability to detect AF events based on the variability and 
normality indices, even with a simple machine learning algorithm.  

 

 

 

 

 



2. Methods   

2.1 Data sources and preprocessing 

Publicly available long (10-26 hours) ECG recordings of patients with AF events and of healthy 
individuals, were collected from several PhysioNet (Goldberger et al., 2000) databases. For a given 
experiment, one dataset was used for training and validation, and the other ones for testing, to 
avoid overfitting the model to a specific set of records. 

The following databases were used: 

1. Long Term Atrial Fibrillation Database (LTAFDB) (Petrutiu et al., 2007): a database 
consisting of 84 long (~24 hours) 2-lead ECG recordings sampled at 128 Hz and 12-bit 
resolution; each record is from a different patient. All patients in this database suffered at 
least one AF event during the recording, some with persistent AF and some with 
paroxysmal AF. The recordings contained a variety of rhythms, including normal sinus 
rhythm and other (non-AF) arrhythmias, including: ventricular tachycardia, atrial and 
ventricular bigeminy and trigeminy, sinus bradycardia, and others. Sample no. 64 was 
omitted because rhythm annotations were missing for most of the record (only ~5 out of 
24 hours are annotated).  

2. Normal Sinus Rhythm Database (NSRDB): a database consisting of 18 long (~24h) 2-lead 
ECG recordings sampled at 128 Hz and 12-bit resolution; each record is from a volunteer 
with a validated normal sinus rhythm.  

3. MIT-BIH Atrial Fibrillation Database (AFDB) (Moody and Mark, 1983): a database 
consisting of 25 long (~10h) ECG recordings sampled at 250 Hz and 12-bit resolution; 
each record is from a different patient. All patients in this database suffered at least one AF 
event during the recording, mostly paroxysmal AF. Samples no. 00735 and 03665 were 
excluded because their signals are unavailable to the public. Samples no. 04936 and 05091 
were excluded because they were reported to contain incorrect rhythm annotations (Dash 
et al., 2009; Lee et al., 2013).  

4. MIT-BIH Arrhythmia Database (MITDB) (Moody and Mark, 2001): a database consisting 
of 48 short (~30min) ECG recordings sampled at 360 Hz and 11-bit resolution. This is a 
diverse dataset with recordings containing a variety of rhythms. 

2.2 Indices for quantitative description of irregular irregularity 

The proposed characterization of irregular irregularity is based on two questions: whether the rate 
is regular or irregular and, if the rate is indeed irregular, whether the irregularity is regular or 
irregular.  For each of these questions, regularity is measured by the variability and the kind of 
regularity is quantified by the normality of the MESC. The MESC is an index which can have 
different orders. An MESC of order 1 (which is the main order used in this work) is simply the 
difference between two consecutive inter-beat intervals. In general, the MESC is defined 
recursively, where an MESC of order 𝑛 is defined as the difference between consecutive MESCs 
of order 𝑛 − 1, while an MESC of order 0 is simply the inter-beat interval. The MESC, regardless 
of its order, is essentially a measure of change: it is low in regular processes and fluctuates 
furiously in disordered ones. Because the irregular rate tends to be highly disordered with many 
sharp changes, its MESC tends to be highly variable, so the distribution width of the MESC 



(referred to herein as “variability”) can be used to characterize irregular rates. This measure tends 
to rise for various types of irregularities in rhythm.  

To distinguish between regular and irregular irregularity, we assume that most types of regular 
irregularities, such as atrioventricular (AV) blocks, premature atrial, and ventricular premature 
complexes, are statistically a superposition of several regular rhythms; therefore, their unified 
distribution is far from normal. In contrast, the irregular irregularity of the ventricular activity 
during AF can be modeled as a non-linear stochastic process (Aronis et al., 2018) influenced by 
both chaotic atrial activity and disordered AV node conduction. Each of these processes is a 
summation of multiple stochastic processes and is therefore intuitively expected to have an 
approximately normal distribution, yielding a normally distributed MESC, as demonstrated 
empirically in our experiments. Consequently, our second requirement of irregularly irregular 
rhythms is randomness of the MESC (referred to herein as “normality”).  

Taken together, an irregular irregularity can be characterized as a rate with wide and normal 
distribution of the MESC. Namely, the heart rate within a time window of some dozens of 
consecutive beat intervals (referred to herein as an “estimation window”) can be described as 
irregularly irregular if both its variability and normality of its rate are high. 

Please see mathematical definition in the supplement.  
 
2.3 Data preprocessing 

Recordings were preprocessed using MATLAB® R2019A (The MathWorks Inc., Natick, 
Massachusetts). For all databases, the original beat annotations were used to extract beat times 
throughout the recording; the technique used for beating annotations in each database is elaborated 
in their official documentation. Consecutive beat times were subtracted to yield inter-beat 
intervals.  

To label AFs in the records, the rhythm annotations of the databases were used; for all databases, 
the rhythm annotations were performed by manual inspection by expert cardiologists. The inter-
beat interval time series was divided into overlapping windows (window length was optimized 
experimentally, as described below). Windows with ambiguous labeling (containing different 
rhythms at different parts of the window) were discarded. 

The MESC time series was calculated for each time window. The variability and normality indices, 
as well as the mean of the MESC (to address rapid AF episodes) were then subsequently calculated. 
The indices were also calculated using MATLAB® R2019A. To calculate the normality index, we 
implemented a fast novel estimator for the Kolmogorov-Smirnov statistic based on a work by J. 
Vrbik (Vrbik, 2018). 

For unannotated datasets, manual or automated beat time detection would be needed. The choice 
of method should be based on the signal at hand. After the point beat times are detected, the 
processing described above can be applied.  

2.4 Regularogram (RGG) 
The RGG is a 2-D plot drawn from the variability and normality indices plotted against one 
another. Each point in the plot represents a single estimation window of the indices. Windows with 
an irregularly irregular rate tend to be found inside a characteristic zone of the plot (referred to 



herein as “irregular irregularity zone”). RGGs containing multiple estimation windows from a 
longer record, provide a visual presentation of irregularly irregular rates (presence of points in the 
zone) and their burden (clustering of points in the zone). 
Due to the utility of visualization of an entire Holter recording in a single plot, we provide a free 
online tool for calculation of the indices, drawing of the RGG and estimation of AF burden 
(https://physiozoo.com/rgg).  

 
2.5 Machine learning classifier 

Our exploratory data analysis (see below) showed that the irregularity indices described above can 
yield a visibly good separation of the AF and non-AF time windows on the RRG; however, the 
border between them is not a straight line (non-linear separation). Therefore, to demonstrate the 
potential of detecting AF based on the variability and normality, we applied them to train and test 
a machine learning classifier for AF detection (Fig. 1). The goal was to demarcate the irregular 
irregularity zone and not necessarily to maximize performance; thus, a simple and fast, but non-
linear, classification model, i.e., a decision tree, was sufficient and allowed explainable 
classification. The decision tree was implemented using MATLAB® R2019A (The MathWorks 
Inc., Natick, Massachusetts), with the default settings. The only choice made was to limit the 
number of branches to 30 (an empirical choice) to avoid overfitting. Windows containing more 
than one rhythm were removed due to labeling ambivalence. 

The classification work had four stages: 

1. Exploratory data analysis: Manual exploration of the records, visualizations, and basic 
statistics. The main useful visualizations were RGGs, plots of the indices and onset of AF 
in time, and an extended version of the RGG, including variability, normality, and mean 
MESC.  We performed a preliminary analysis by training a model using records from a 
single patient each time, and then testing on data from the same patient to demonstrate the 
existence of the irregular irregularity zone, without the complexity of inter-personal 
variability. 

2. Validation: To find the optimal combination of hyperparameters (correct order of MESCs 
and estimation window length) we did cross validation; a full description is provided in the 
supplementary methods section. 

3. Final training: The model was trained on the full datasets, one at a time, using the 
hyperparameters shown in step 2 to yield the best accuracy. 

4. Testing: The model was tested on the other three datasets. 

2.6 Performance statistics 

The detection results are presented using the standard metrics of clinical trials: sensitivity, 
specificity, positive predictive value (PPV, precision), negative predictive value (NPV), aaccuracy 
(ACC) and F1 score, derived as follows: 

(8)             𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = !"
!"#$%

 

TP – true positive 

FN – false negative 
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TN – true negative 

 FP – false positive 
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2.7 General statistics  

To determine the statistical significance of the differences in accuracy between different sets of 
parameters in the validation stage, a one-tailed, unpaired t-test was performed comparing the best 
mean validation result with each of the other mean results.  A value of p<0.05 was considered 
significant.  

 

 

 

 

 

 

 

 

 

 

 



3. Results 

3.1 Irregular irregularity index – exploratory data analysis 

To obtain a basic idea of the ability of the variability and normality indices to discern between AF 
and non-AF rhythms, data were first manually inspected. Figure 2 shows a RGG generated from a 
recording collected from the LTAFDB database. Distinct regions for the AF estimation windows 
(the irregular irregularity zone) and the non-AF estimation windows are apparent. Note that both 
indices are required for such a classification.  

Figure 3A presents the typical pattern of AF onset and the corresponding changes in the variability 
and normality. Figure 3B presents a typical non-AF interval. Although the variability and 
normality indices fluctuate, they do not rise together. The rhythm before the onset of the fibrillation 
is irregular (normal sinus rhythm with many missed beats and premature atrial contractions), which 
translates to a high variability before AF onset, while the normality only rises after most of the 
estimation window is inside the AF episode.  

As AF is frequently a tachycardic rhythm, examination of the regularity and normality indices 
versus the heart rate is reasonable. To address the nature of AF as a tachyarrhythmia, we show 
here an extended version of the RGG; Figure 4 visualizes the normality and variability of the 
MESC of order 0 plotted against the mean RR on a 3D scatter plot. In these representative 
examples, the distinct separation between AF and non-AF events is clear. Figure 4 also shows the 
trajectory between AF and non-AF events which was omitted (ambivalent windows because it 
includes both AF and non-AF rhythms) in our analysis. 

The next step was to verify that the distinctly visible regions consistently exist across AF patients. 
Even if such distinct regions do exist for every patient, they may differ between patients. To isolate 
the problem of inter-patient variability from the question of AF region existence, we performed a 
simple training and validation process using data from the same patient, and decision trees of 
different complexities.  Note that each split of the tree is a single separating line parallel to one of 
the axes in the feature space. For example, a tree with 1 split is simply a threshold considering a 
single index; a tree with 4 splits may describe a rectangular area on the RGG for one class and the 
rest of the plane for the other. 

Table 1 shows the average accuracy results for the patient-to-self experiment. Even simple trees 
with 4 splits yielded high accuracy. Due to the way decision trees are constructed, this implies that, 
for most patients, there exists a window in the RGG plane containing almost all AF episodes.  
However, this experiment did not inform whether its boundaries are similar for different patients. 

3.2 The regularogram (RGG) 

Figure 5 presents four RGGs calculated using records from healthy individuals and four RGGs 
prepared using records from AF patients. All the AF patients had paroxysmal AF, with AF rhythm 
for less than 20% of the record and other rhythms for the rest of the record (Figure 5). Although 
each of the eight RGGs in the figure represents ~24 hours of Holter recording, the plots provide a 
simple visualization of AF episodes occurring during the recording.  

 



3.3 AF burden 

To assess the possibility to measure AF burden using an RGG plot and eyeballing only, we 
implemented a graphic user interface, which allows the user to inspect an RGG and mark a 
rectangular area suspected to be the AF region. Then, the program calculated the estimated AF 
burden in the marked area and compared it to the annotations of the database. An experienced 
inspector from our research group and a blinded evaluator, separately marked the RGGs of patients 
from the LTAFDB (n=83). Full details about the conduct of the experiment are provided in the 
supplementary material. 
The mean absolute error between the true AF burden and the burden estimated by RGG eyeballing 
for the blinded assessor was 4.33% and for the experienced inspector was 2.46%. The inspection 
took less than 5 seconds; the ground truth annotation was made by manual inspection of 24-hour 
ECGs. 

3.4 AF detection  

After validating the best-performing set of parameters, the set was applied to train the model on 
each of the databases separately. We then tested it on the other databases and reported performance 
on the other sets and on the train set itself. Table 2 summarizes the results of the analyses. The 
results of the training set appear in gray, which, because of the risk for overfitting, are merely a 
useful indicator of successful training. The other databases were comprised of records from 
patients that were not included in the training set, and thus can be used to reliably test performance. 

When the LTAFDB was used for training (Table 2), better results were achieved with AFDB as 
compared to MITDB records, in all measured parameters. Because NSRDB does not contain AF 
events, it could only be used to inspect the false positive rate. Similar results were obtained when 
training on the AFDB as when training on the LTAFDB. For both training sets, the performance 
on the MITDB was good in terms of sensitivity, specificity, NPV, and accuracy, albeit with low 
PPV. The model trained on the MITDB was highly specific, but not sensitive on the other sets.  

 

 

 

 

 

 

 



4. Discussion 

AF is characterized by irregular irregularity in cardiac rhythm. However, no simple mathematical 
definition exists for such rhythm in the literature. To quantify such rhythms, only heart rate 
measurements, rather than entire ECG recordings, are needed.  Thus, in the age of smartphones, 
wearables, and the internet of things, simple indices that quantify irregularly irregular rhythms and 
detect AF events can be embedded on a mobile device and paired with a device that continuously 
measures the heart rate. In addition to the introduction of the MESC, we introduced the RGG, a 
convenient presentation enabling quick manual identification of AF episodes over a long 
recording.  We also showed that a simple artificial intelligence (AI) system can be used to detect 
AF events.  

4.1 Modified entropy scale index   

We showed here that by using normality, variability, and mean MESC indices, AF events can be 
automatically identified with high accuracy. We achieved high accuracy by exploring the 
distribution of parameters, rather than a single average value, in a short beat interval series (150 
beats, ~2.5 min); shortening the estimation window to as few as 70 beats did not significantly 
reduce performance.  The highest accuracy of AF detection was achieved for a first-order MESC 
index and no further improvement was achieved when higher-order indices were used. Taken 
together, irregular irregularity can be quantified by assessing changes in heart rate fluctuation over 
a short time period. The existing simple, short time scale indices are linear indices, which have 
been shown to perform poorly in detection of AF (Kennedy et al., 2016). Other indices for the 
quantification of short time scale fluctuations have been recently suggested, but their performance 
as an indicator of irregular irregularity has not been tested (Costa et al., 2017).  

4.2 The RGG 

The introduced RGG is a convenient method for rapid inspection of long Holter recordings in one 
shot. The RGG also enables evaluation of the AF burden within seconds. Current protocols often 
manage patients with nearly persistent AF and patients with only occasional events in a similar 
fashion. A simple tool assessing the AF burden may allow for personalized treatment of patients. 
Beyond recognizing whether the patient had AF events and assessment of their burden, it can 
distinguish between different types of AF. For example, paroxysmal and persistent AF events have 
similar normality, but usually have different variability. The differences between groups of 
patients with distinctly different RGGs suggest heterogeneity in the AF patient population and 
requires further investigation.  

4.3 AF identification  

We were able to detect AF episodes with high accuracy, even without training on the same patient 
data and even when testing with data that included other arrhythmias. Other methods to detect AF 
were suggested in the past, however, their application and performance tests have certain 
limitations. In some, data were used from the same database for training and testing; thus, the 
detection may have been biased to certain populations or certain recording devices (Lee et al., 
2011; Lian et al., 2011; Kennedy et al., 2016). In others, full ECG recordings were used and not 
only the heart rate series (which excludes photoplethysmogram-based implementation) (Li et al., 
2018; Xia et al., 2018). Some used  numerous indices that can lead to overfitting and over-
complexity (Gilani et al., 2016). Several techniques only use the beat interval series as an input 



(Costa et al., 2005), but require lengthy recordings. Those that did utilize simple short-term HRV 
indices, showed low performance.(Kennedy et al., 2016)   

Even though we tested our algorithm in a stricter manner than most similar works, our 
measurements showed that the algorithm was competitive and even exhibited accuracy that was 
superior to that of other AF detection algorithms. A comparison to several state-of the-art methods 
is shown in Table 3. Due to the lack of a gold standard benchmark, each group reported 
performance in a different way. Zhou et.al. (Zhou et al., 2015) performed a comprehensive 
comparison of methods in 2015; thus, we adopted their benchmark (using the LTAFDB as a 
training set and AFDB, MITDB and NSTDB as test sets), which was based on detection 
performance as expressed by sensitivity, specificity, positive and negative predictive values, and 
accuracy. To enable a simple comparison between methods using a single score, we calculated the 
F1 score. 

None of the groups that developed the methods was willing to share the original implementation 
of their method. Therefore, the following approach was used: 

- Results are quoted from papers using a similar benchmark, training on one of the mentioned 
datasets and testing on most of the others. 

- For papers using a different benchmark, but with adequate elaboration of the method 
proposed, we meticulously re-implemented the method using every detail of the 
implementation that was available in the paper or supplements. 

- For papers with inadequate information for re-implementation (for example, containing 
proprietary steps), but with a method that seemed promising, we used the features proposed 
in the paper, with the same classifier we used for our own method. 

The comparison showed that our irregularity features, even when used with a simple classifier, 
e.g., a 30-branch decision tree, yielded better results (as embodied by the F1 score in table 3) than 
symbolic dynamics and Shannon entropy (Zhou et al., 2015); sample entropy (SampEn), 
coefficient of sample entropy (CoSEn), root mean square of successive differences (RMSSD), 
normalized RMSSD (nRMSSD) and Shannon entropy (ShE) classified by a gaussian kernel SVM 
(Andersen et al., 2017); deep learning model comprised of CNN blocks feeding an LSTM 
processing the RR interval series directly (Andersen et al., 2019); CoSEn, RMSSD, mean absolute 
deviation (MAD) and coefficient of variance classified by a random forest. As indices based on 
the Poincare plot were used in the Apple Heart Study (Perez et al., 2019) and in the preliminary 
study of the WATCH AF study (Krivoshei et al., 2017), we included a comparison to a system 
based on these features classified by the decision tree algorithm used for our method. This 
comparison also shown better results for our irregularity indices. 

4.4 Other irregularly irregular rhythms 

AF is not the only arrhythmia described as an irregularly irregular rhythm (Margulescu et al., 
2016). Atrial and ventricular ectopic beats and atrial flutter with variable atrioventricular 
conduction may also present with an irregularly irregular rhythm. While atrial and ventricular 
ectopic beats appear for only a couple of beats, with a minor effect on our detection system (that 
uses 150 beats), atrial flutter with variable heart block would affect our ability to detect AF. To 
verify that the irregular irregularity is an atrial flutter, the ECG should show a 'saw-tooth' pattern 
and irregularly irregular normal QRS complexes. Because our approach is based on beat intervals, 
it cannot distinguish between AF and atrial flutter with variable heart block. Note, however, that 



atrial flutter, in general, is described as regular and is usually distinguishable from AF by their 
distinct variability and normality indices; only in the presence of variable AV conduction does this 
problem arise.  

4.5 Application 

Mass screening for AF in an aged population identified a significant number of unrecognized and 
untreated AF participants.(Svennberg et al., 2015) An automated tool for detection of AF events 
and for verification of AF in a recording, opens a new avenue for massive population screening. 
The ability to detect AF using a beat interval series only can lead to new applications based on 
smartwatches and fitness bands (Bumgarner et al., 2018), which are more convenient and 
affordable than mobile ECGs. Potentially, our algorithm can be used on cardiac implantable 
electronic devices recordings. However, as implantable electronic cardiac devices record much 
more detailed signals (e.g., direct intra-atrial electrical activity measurements) than beat intervals, 
we assumed that detection algorithms better than that proposed in the current work, can be 
developed. Our method is advantageous for non-invasive measurements, when less information is 
available. 

Limitations  

This work focused on one family of indices that were all derived from the MESC index. Addition 
of other indices that quantify heart rate fluctuation changes over short time scales may improve 
the performance of the classifier. In addition, a simple machine learning approach was used. It is 
possible that more sophisticated AI algorithms, such as deep learning, would improve the results. 
However, results based on deep learning algorithms are usually a “black box”; even if the results 
are good, they do not provide physiological insights.  

We omitted the estimation windows with ambivalent labeling. For a retrospective analysis, this is 
a common and reasonable practice. However, this subject should be addressed when pursuing real-
time applications.  

Conclusions 

 The proposed variability and normality of MESC indices comprise valuable parameters for 
characterization of the regularity of heart rate. The indices are useful for both rapid visual 
inspection of long Holter recordings when plotted as a RGG, and for machine learning 
classification of AF events. 

 

 

 

 

 



Figures 

 

Figure 1: Data pipeline for the AF detection system. RR intervals are extracted from an ECG 
recording, then the MESC is calculated and used to estimate the variability, normality, and mean 
indices. The three indices are used by a decision tree to distinguish between AF and other 
arrhythmias. Abbreviations: AF-atrial fibrillation, ECG-electrocardiogram, MESC-modified 
entropy scale. 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure 2: A scatter plot of the 2D plane of the variability and normality of the modified entropy 
scale (MESC) index of order 1 and window length of 150 beats, for patient 06 registered in the 
LTAFDB. Estimation windows of ambivalent labeling were removed. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

   

Figure 3: (A) AF and (B) a non-AF (B) time interval with the corresponding variability and 
normality of modified entropy scale (MESC) index of order 1 and window length of 150 beats, 
taken from patients 00 (non-AF) and 06 (AF) registered in the LTAFDB. The black frame depicts 
the 150-beat estimation window. In both plots, the blue plot “AF episode” is one during AF 
episodes and zero elsewhere. 
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Figure 4: A scatter plot (A) without and (B) with ambivalent labeling of the 3D space of the 
variability, normality, and mean (order 0) modified entropy scale (MESC) index with a window 
length of 150 beats, for patient 00 registered in the LTAFDB.  
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Figure 5: RGG plots calculated from 8 Holter recordings. Graphs A, B, C, D show plots for 
recordings of healthy individuals from the NSRDB. Graphs E, F, G, H show plots for recordings 
of patients with paroxysmal AF from the LTAFDB. 

 

 

 

 

 



Tables  

Table 1. Average accuracy results of decision trees trained and tested with data from the same 
patients for each database. 

 

 
Maximum tree splits 

Database 2 3 4 10 20 30 50 100 

LTAFDB 99.3% 99.4% 99.7% 99.8% 99.8% 99.8% 99.9% 99.9% 

AFDB 99.1% 99.2% 99.4% 99.6% 99.6% 99.7% 99.7% 99.8% 

MITDB 99.5% 99.5% 99.7% 99.7% 99.8% 99.8% 99.9% 99.9% 

 

  



Table 2: AF detection performance of a classifier based on the variability and normality indices, 
using recordings from different databases.  

 

Database Se Sp PPV NPV ACC F1 

LTAFDB 98.3% 97.6% 98.3% 97.6% 98.0% 98.3% 

AFDB 97.4% 98.1% 97.7% 97.9% 97.8% 97.5% 

MITDB 93.0% 94.3% 52.8% 99.5% 94.2% 67.4% 

NSRDB 
 

96.7% 
  

96.7% 
 

       
Database  Se Sp PPV NPV ACC F1 

LTAFDB 98.3% 94.0% 95.8% 97.5% 96.5% 97.0% 

AFDB 98.6% 98.4% 98.1% 98.9% 98.5% 98.4% 

MITDB 96.8% 90.0% 39.7% 99.8% 90.4% 56.3% 

NSRDB 
 

94.5% 
  

94.5% 
 

       
  

Database Se Sp PPV NPV ACC F1 

LTAFDB 85.3% 98.5% 98.7% 82.8% 90.8% 91.5% 

AFDB 80.0% 99.6% 99.4% 86.0% 90.8% 88.7% 

MITDB 82.9% 99.2% 88.2% 98.8% 98.2% 85.5% 

NSRDB 
 

99.9% 
  

99.9% 
 

The grey line indicates the dataset used for training.  

Se-sensitivity, Sp-specificity, PPV-positive predictive value, NPV-negative predictive value, 
ACC-accuracy, F1-F1 score.  

 

 



Table 3: Comparison of the detection performance of the presented method to other methods using 
a common benchmark.  

 Database Se Sp PPV NPV ACC F1 
Features 

used Classifier used 

Proposed 
method 

LTAFDB 
98.3

% 
97.6

% 
98.3

% 
97.6

% 
98.0

% 
98.3

% 
MESC 

variability, 
normality and 

mean 

Decision tree AFDB 
97.4

% 
98.1

% 
97.7

% 
97.9

% 
97.8

% 
97.5

% 

MITDB 
93.0

% 
94.3

% 
52.8

% 
99.5

% 
94.2

% 
67.4

% 

NSRDB  
96.7

%   
96.7

%  

Zhou et al. 
(2015)(Zho

u et al., 
2015) ¥ 

LTAFDB 
96.1

% 
95.7

% 
97.0

% - 
96.0

% 
96.6

% 
Symbolic 

dynamics and 
Shannon 
entropy 

Discrimination 
threshold found 
by grid search 

AFDB 
97.4

% 
98.4

% 
97.9

% - 
98.0

% 
97.6

% 

MITDB 
97.8

% 
87.4

% 
47.7

% - 
88.5

% 
64.1

% 

NSRDB   
99.7

%     
99.7

%   

Andersen 
et 

al.(Anderse
n et al., 
2017) 

(2017)§ 

LTAFDB 
97.6

% 
96.3

% 
97.3

% 
96.6

% 
97.0

% 
97.5

% SampEn, 
CoSEn, 

RMSSD, 
nRMSSD, 

ShE 

SVM with 
gaussian kernel 

AFDB 
92.8

% 
96.2

% 
95.3

% 
94.2

% 
94.7

% 
94.0

% 

mitDB 
74.5

% 
91.0

% 
41.0

% 
97.7

% 
89.8

% 
52.9

% 

NSRDB   
93.1

%     
93.1

%   

Andersen 
et 

al.(Anderse
n et al., 
2019) 

(2019)¥ 

LTAFDB - - - - - - 

RR interval 
time series 

Deep learning 
model: 2 CNN 
blocks feeding 
an LSTM unit 

AFDB 
98.2

% 
96.3

% 
95.0

% - 
97.1

% 
96.6

% 

MITDB 
99.0

% 
86.0

% 
45.5

% - 
87.4

% 
62.3

% 

NSRDB   
95.0

%     
95.0

%   

Kennedy et 
al.(Kenned

y et al., 
2016) 

(2017)§ 

LTAFDB 
94.7

% 
84.5

% 
89.5

% 
91.9

% 
90.4

% 
92.0

% 

CoSEn, 
RMSsd, 

MAD, CV 

Random forest 
of 30 decision 

trees 

AFDB 
92.2

% 
91.4

% 
89.8

% 
93.5

% 
91.8

% 
91.0

% 

mitDB 
89.0

% 
81.2

% 
34.2

% 
98.5

% 
82.0

% 
49.4

% 

NSRDB   
86.2

%     
86.2

%   
Krivoshei 

et  al. 
(2017)(Kri
voshei et 
al., 2017), 
Perez et 

al.(Perez et 
al., 

2019)(2019
) ¤ 

LTAFDB 
96.0

% 
80.2

% 
87.1

% 
93.5

% 
89.4

% 
91.3

% 
SD1, SD2, 

SD1/SD2 of 
the Poincare 

plot, 
nRMSSD 

Decision tree 
AFDB 

95.9
% 

80.2
% 

79.8
% 

96.0
% 

87.3
% 

87.1
% 

mitDB 
92.4

% 
72.7

% 
18.4

% 
99.3

% 
74.0

% 
30.7

% 

NSRDB   
92.3

%     
92.3

%   

          



¥ As reported in the original paper       
§ Re-implemented         
¤ inspired by         
The grey line indicates the dataset used for training.  

SampEn-sample entropy , CoSEn-coefficient of sample entropy, RMSSD-root mean square of 
successive differences, nRMSSD-normalized RMSSD, ShE-Shannon entropy, SVM-support 
vector machine, CNN-convolutional neural network, LSTM-long-short term memory, MAD-mean 
absolute deviation.  

  



Abbreviations 

ACC  Accuracy 

AI  Artificial intelligence 

AF  Atrial fibrillation 

AV  Atrioventricular 

CoSEn  Coefficient of sample entropy 

ECG  Electrocardiogram 

MAD  Mean absolute deviation 

MESC  Modified entropy scale 

NPV  Negative predictive value 

PPV  Positive predictive 

RGG  Regularogram 

RMSSD Root mean square of successive differences 

SampEn Sample entropy 

She  Shannon entropy 
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