
LAGA: Lagged AllReduce with Gradient Accumulation for Minimal Idle Time

Ido Hakimi∗, Rotem Zamir Aviv†, Kfir Y. Levy† and Assaf Schuster∗
∗Department of Computer Science, †Department of Electrical Engineering

Technion - Israel Institute of Technology, Haifa, Israel
Email: idohakimi@gmail.com

Abstract—Training neural networks on large distributed clus-
ters has become a common practice due to the size and com-
plexity of recent neural networks. These high-end clusters of
advanced computational devices cooperate together to reduce
the neural network training duration. In practice, training at
linear scalability with respect to the number of devices is diffi-
cult, due to communication overheads. These communication
overheads often cause long idle times for the computational de-
vices. In this paper, we propose LAGA (Lagged AllReduce with
Gradient Accumulation): a hybrid technique that combines the
best of synchronous and asynchronous approaches, that scales
linearly. LAGA reduces the device idle time by accumulating
locally computed gradients and executing the communications
in the background. We demonstrate the effectiveness of LAGA
in both final accuracy and scalability on the ImageNet dataset,
where LAGA achieves a speedup of up to 2.96x and 5.24x
less idle time. Finally, we provide convergence guarantees for
LAGA under the non-convex setting.

Index Terms—optimization, non-convex, neural networks
https://github.com/idoh/LAGA-Benchmark

1. Introduction

With the increase of available training data, the size
and complexity of recent neural networks [58] [15] has
grown tremendously. The training of these neural networks
is time consuming and requires high-end clusters of advanced
computational devices (workers). Thus, leveraging high-end
computing environments (such as GPU clusters) to distribute
the training process across multiple workers has become
common practice in the training of neural networks. However,
training a single model can still take up to several months
on high-end clusters to complete [45]. Hence, reducing the
training duration and making it more accessible is essential.

There are several techniques for optimizing neural net-
works, but the undoubtedly most popular is Stochastic
Gradient Descent (SGD) or its variants [27] [31]. SGD is
inherently sequential, which makes distributing the training
process difficult [9]. Training on a large number of workers
without making adjustments can have devastating effects on
the training process and the final model quality [26] [21].

The common approach for distributing the computations
on multiple workers is synchronous SGD (SSGD). In this

approach, each worker computes its gradient on a different
batch of examples. The gradients are then averaged across
all workers and the parameters are updated with the average
gradient. In the master-less setting, which is the popular
approach today [51], the parameters are updated locally at
every worker after each gradient synchronization. Before
computing the next gradient, the synchronization operation
has to be finished, during which the computational device is
idle. SSGD suffers from high communication overheads [30],
and without addressing this issue, training on more workers
can overshadow its benefits. Thus, efficient communication
is paramount for actual training speedups.

The AllReduce collective communication protocol is
frequently used in distributed training [42] [29] for syn-
chronizing gradients, thanks to its efficient NCCL [23] Ring-
AllReduce implementation and almost constant communi-
cation complexity [56]. The communication complexity of
Ring-AllReduce is theoretically independent of the number of
workers [16] [5] and therefore it remains constant regardless
of the number of workers. In practice, Ring-AllReduce is a
key component for training neural networks on large clusters
[6] [35].

Due to the massive size of recent neural networks, even
an optimized AllReduce operation can still take a long
time. Reducing the communication overhead reduces the
device idle time and results in higher speedups. Reducing the
synchronization frequency, which can be done both explicitly
[55] [20] [12] [3] or implicitly by training on larger batch
sizes [47] [24], reduces the communication overhead. [17]
have empirically demonstrated that large-batch training can
achieve fast convergence rate and high final accuracy when
scaling the learning-rate linearly with respect to the batch size.
To compensate for the large learning-rate, [17] introduced a
learning-rate warm-up during the initial training epochs.

A recent systematical approach [29] [49] to hide the
communication overhead, which we define as SSGD-OPT,
suggested to overlap the computations of the backpropagation
with the gradient synchronization. In SSGD-OPT, during the
backpropagation the layers whose gradient has already been
computed are synchronized in the background while the
worker continues to compute the gradient of the rest of the
layers. The gradient synchronization of the last layers is ex-
ecuted first since the backpropagation computes the gradient
from the last to the first layer. This technique was shown to
gain 15-25% speedup, depending on the neural architecture

https://github.com/idoh/LAGA-Benchmark


and the cluster hardware topology, bandwidth, and latency.
In cases where the backpropagation compute time is larger
than the gradient synchronization time, SSGD-OPT can, in
theory, completely hide all of the communication overhead.
However, as detailed in Section 3, not all neural architectures
are alike, so in some cases the gradient synchronization time
is considerably larger than the backpropagation compute
time.

Gradient accumulation has become standard feature in
many deep learning training frameworks [42] [1] [14]. The
basic idea of gradient accumulation is to accumulate gradients
from multiple micro-batches and only then update the model
parameters. This is particularly helpful in training very
large neural networks [22], where workers can only fit one
small micro-batch at a given time. From an optimization
perspective, gradient accumulation is completely equivalent
to training with a larger mini-batch size, since in both
cases the gradient is averaged with respect to all computed
examples. However, when combined with SSGD-OPT it is
less efficient than one large batch, because the communi-
cations are overlapped only with the backpropagation of
the last micro-batch. Our theoretical analysis shows that the
communication savings of SSGD-OPT compared to SSGD
are independent by the amount of gradient accumulations
and therefore pairing SSGD-OPT with gradient accumulation
is not efficient.

We propose LAGA, a novel and efficient algorithm that
leverages gradient accumulation to further hide the communi-
cation overheads. LAGA relaxes the synchronization barrier
by executing the gradient synchronization in the background,
which introduces a lag into the optimization process. We
further present a variation of LAGA that integrates Nesterov’s
Accelerated Gradient [34] for the lagged setting. LAGA
achieves near linear scaling with a speedup of up to 2.96x
and 5.24x less idle time compared to SSGD on the ImageNet
dataset. We conduct a thorough evaluation on a variety of
neural architectures and show that LAGA outperforms an
optimized implementation of SSGD-OPT. We summarize the
contributions of our paper as follows:

• We propose LAGA for efficient communications and
demonstrate its speedup gains on a variety of neural
network architectures.

• We conduct a theoretical communication overhead
analysis which derives the optimal amount of gradient
accumulations for LAGA to achieve linear scalability.

• We propose a variation for LAGA with Nesterov’s
Accelerated Gradient that achieves the same final
accuracy as SSGD.

• We provide an open-source implementation of LAGA
in both PyTorch [36] and Horovod [42] frameworks.

• We provide a convergence rate proof for LAGA.

2. Problem Setting

Generally, the optimization process of neural networks
minimizes an objective function f given parameter vector
x. The value of f(x) indicates how far from perfect the

model is, given the parameter vector. At each iteration, a
gradient is computed with respect to x and a training sample
ξ. The gradient ∇F (x; ξ) is then used to update the model
parameters vector, where f(x)

∆
= Eξ∼D[F (x; ξ)] is a smooth

non-convex function. The SGD update step is defined as:

xt+1 = xt − η∇F (xt; ξt) , (1)

where η denotes the learning rate and xt the model parameter
vector at iteration t. SGD converges by taking iterative steps
in the form of Equation (1) towards the minima.

Extending this notion to distributed neural network,
consider the typical training setting where all N workers
(computational devices) cooperate to minimize the given
objective problem f :

min
x∈Rd

f(x) ,
1

N

N∑
i=1

fi(x) , (2)

where fi(x)
∆
= Eξi∼Di

[Fi(x; ξi)] is a smooth non-convex
function and Di can be possibly different for different i.

Algorithm 1 SSGD

1: Compute gradient gti ← ∇Fi (x̄t; ξti)
2: AllReduce ḡt ← 1

N

∑N
i=1 g

t
i

3: Update local parameters x̄t+1 ← x̄t − ηḡt

The SSGD algorithm is described in Algorithm 1.
Each worker i computes its gradient gti , ∇Fi (x̄t; ξti)
on a different sample from the training set ξti , where
Eξi [gti |ξ[t−1]] = ∇fi(x̄t) and ξ[t−1] denotes all the ran-
domness up to iteration t− 1. The gradients of the different
workers are then averaged with an AllReduce operation
ḡt , 1

N

∑N
i=1 g

t
i . Finally, the parameters x̄ are updated

with the average gradient x̄t+1 = x̄t − ηḡt. Although each
worker holds a local copy of the model’s parameters, these
parameters are identical across workers since they are updated
with the same average gradient ḡt and initialized with the
same x0.

Notice that in Algorithm 1 the AllReduce operation in
line 2 has to be finished before updating the parameters in
line 3, meaning the worker has to wait during the AllReduce
operation. This can cause long idle times in cases where the
AllReduce operation is slow.

Algorithm 2 SSGD with Gradient Accumulation τ

1: Compute gradient gti(τ)← 1
τ

∑τ
j=1∇Fi

(
x̄t; ξti,j

)
2: AllReduce ḡt(τ)← 1

N

∑N
i=1 g

t
i(τ)

3: Update parameters x̄t+1 ← x̄t − ηḡt(τ)

Algorithm 2 describes the SSGD algorithm with gradient
accumulation, where τ denotes the amount of local gradient
accumulations. Each worker accumulates τ local gradients
gti(τ) , 1

τ

∑τ
j=1∇Fi

(
x̄t; ξti,j

)
, which are then used for the

AllReduce operation. The gradients satisfy E[gti(τ)|ξ[t−1]] =



VGG-16 VGG-19
ResNet-18

ResNet-50
ResNet-152

Wide ResNet-101-2

Neural Architecture

0.0

0.5

1.0

1.5

#P
ar

am
et

er
s

1e8

Figure 1: Neural architecture sizes (#Parameters).

Wall Clock Time

C CommunicationsF Forward IdleB Backwards

F B F B
C

F B F B
C

F B F B
C

F B F B
C

(a) SSGD

Wall Clock Time

C CommunicationsF Forward IdleB Backwards

F B F B
C

F B F B
C

F B F B
C

F B F B
C

F B F B
C

(b) SSGD-OPT

Wall Clock Time

C CommunicationsF Forward IdleB Backwards

F B F B
C

F B F B
C

F B F B
C

F B F B
C

F B F B
C

F B F B
C

F B F

(c) LAGA

Figure 2: Synchronization diagrams of the different algo-
rithms where the gradient accumulation is two (τ = 2).
Notice, that SSGD has a large idle while SSGD-OPT reduces
the idle time by overlapping the communications with the
last back-propagation. LAGA eliminates all idle time by
completely overlapping the communications with the forward
and backward computations.

∇fi(x̄t), where ξ[t−1] denotes all the randomness up to itera-
tion t−1, i.e. ξ[t−1] , [ξki,j ]i∈{1,··· ,N},j∈{1,··· ,τ},k∈{1,··· ,t−1}.
Hence, the AllReduce operation ḡt(τ) , 1

N

∑N
i=1 g

t
i(τ)

occurs only after τ gradient computations, which reduces
the synchronization frequency.

3. Communication Overhead Analysis

In this section we analyse the communication overhead
and the maximal achievable speedup when eliminating all
communication overheads. We define Tcomp and Tcomm
as the computation and communication time of a single
iteration. The computation time Tcomp equals the sum of
the forward Tfwd and backpropagation Tbwd compute time,
Tcomp = Tfwd + Tbwd. In the SSGD algorithm, the sum of
Tcomp and Tcomm determines the wall clock time of fully
executing a single batch as shown in Figure 3. The ratio
between Tcomp and Tcomm indicates the communication

overhead which we define as ψ = Tcomm

Tcomp+Tcomm
, where

0 ≤ ψ ≤ 1. A linear scalable algorithm would have an
optimal communication overhead of ψ = 0, whereas an
inefficient algorithm would have a high ψ. Deriving from ψ,
the optimal achievable speedup from completely eliminating
all the communication overhead of SSGD is Tcomp+Tcomm

Tcomm
.

This is what we call linear scalability, and it is the maximal
achievable speedup with respect to SSGD for a commu-
nication efficient algorithm. Thus, a high communication
overhead indicates that there is a higher potential for speedup
gains from reducing the communication time.

The communication time Tcomm is linearly depended
on the neural architecture size. That is, neural architectures
with more parameters require synchronizing a larger gradient
vector since the gradient is the same size as the number of
parameters if no additional gradient compression methods
are used [52]. The current trend in neural networks is to
increase the architecture size [44] [39], which has delivered
promising state-of-the-art results. In return, the Tcomm also
grows, which can increase the communication overhead. The
current growth of these network architectures is much faster
than the acceleration of the hardware NIC (network interface
controller) and therefore even with the latest hardware,
Tcomm still grows every year.

Figure 1 shows the number of parameters on a variety of
neural architectures. Neural architectures aren’t alike; archi-
tectures with more parameters don’t necessarily require more
computation time. The neural architecture design attributes
heavily affects its communication overhead and therefore its
scalability complexity. Some of the most impactful design
attributes include the hidden layer dimensions and convolu-
tion sizes. For example the VGG-16 [46] neural architecture
is a short neural network that uses large convolutional layers
which has a considerably smaller Tcomp than Wide ResNet-
101-2 [57] (Figure 3), although both neural architectures
have roughly the same amount of parameters as shown in
Figure 1. As a result, the communication overhead of VGG-
16 is higher than that of Wide ResNet-101-2, which makes
scaling VGG-16 more difficult.

Combining SSGD with gradient accumulation reduces the
communication time Tcomm by a factor of τ (the amount of
gradient accumulations), since the synchronization frequency
is reduced to every τ iterations as shown in Figure 2. We
define the communication overhead ψSSGD(τ) of SSGD
with respect to τ as:

ψSSGD(τ) ,
Tcomm

τ · Tcomp + Tcomm
, (3)

where ψSSGD(τ) is inversely depended on τ . Notice that
ψSSGD(τ) shrinks as τ grows, however, only for large
values of τ does SSGD achieve near linear scalability.
Since increasing τ also increases the SGD effective batch,
we would like to not increase it indefinitely, as after a
certain point increasing τ would hurt the final accuracy
[43]. Therefore, additional techniques are required to further
hide the communications.



ResNet-152| =1
ResNet-152| =4

ResNet-50| =1
ResNet-50| =4

VGG-16| =1
VGG-16| =4

Wide ResNet-101-2| =1

Wide ResNet-101-2| =4

Architecture

0

1

2

W
al

l C
lo

ck
 T

im
e 

(m
s) Communications

Computations

Figure 3: The computation and communications wall clock time of SSGD. For each of these neural architectures we ran
5000 iterations on eight workers with a micro-batch size of 32. We see that ResNet-50 [19] has a much lower ψ than
VGG-16 [46] and therefore has less potential for speedup gains from reducing the communication overhead. Next we look
at the effect of τ which lowers the wall clock time. Notice that when we change τ the Tcomp maintains the same and only
Tcomm shrinks down. We see that even when τ = 4 the Tcomm is still noticeable, for example the VGG-16 architecture
with τ = 4 has roughly the same ψ as ResNet-50 with τ = 1.

Next we analyse the communication overhead of SSGD-
OPT ψOPT (τ) which overlaps the communication with the
backpropagation compute time Tbwd of the last micro-batch.

ψOPT (τ) =

{
0 Tcomm ≤ Tbwd
Tcomm−Tbwd

τ ·Tcomp+Tcomm
Otherwise.

(4)

Based on the communication overhead of SSGD-OPT
and SSGD, Equation (4) and Equation (3) respectively, we
analyse the theoretical communication savings of SSGD-OPT
compared to SSGD when the communication time is high.

ψSSGD(τ)− ψOPT (τ) ≤ Tbwd
τ · Tcomp + Tcomm

(5)

Equation (5) shows that the communication savings of
SSGD-OPT compared to SSGD diminish as τ grows. So
as τ grows the backpropagation overlapping of SSGD-OPT
will be less important. We note that in scenarios where
Tcomm > Tbwd the communication overhead of SSGD-OPT
will never be completely eliminated even for large values of τ .
Only in cases where Tcomm ≤ Tbwd will SSGD-OPT achieve
true linear scalability, which does not hold in practice for
many neural architectures as shown in Figure 3. Furthermore,
the term Tcomm ≤ Tbwd is independent of τ and therefore
increasing τ does not aid it.

4. LAGA

Algorithm 3 LAGA-SGD

1: Compute gradient gti(τ)← 1
τ

∑τ
j=1∇Fi

(
x̄t; ξti,j

)
2: Update parameters x̄t+1 ← x̄t − ηḡt−1(τ)
3: Non-Blocking AllReduce ḡt(τ)← 1

N

∑N
i=1 g

t
i(τ)

In this section we describe our method LAGA, which
leverages gradient accumulation to further hide the com-
munication overheads. LAGA introduces a lag into the

AllReduce operation by overlapping the next micro-batches
computations with the previous AllReduce operation. Fig-
ure 2c illustrates the inner mechanics of LAGA, where the
communications (AllReduce operations) are executed in the
background while the worker continues to compute the next
micro-batches.

Algorithm 3 describes the LAGA-SGD variation in more
details. Unlike SSGD (Algorithm 1), where the parameters
x̄t are updated by ḡt, in LAGA-SGD these parameters
are updated with the previous average gradient ḡt−1(τ).
Notice that the computations of gti(τ) are independent of the
communication synchronization of ḡt(τ) = 1

N

∑N
i=1 g

t
i(τ)

and therefore the computations and communications are
executed in parallel.

4.1. The Importance of Gradient Accumulation

The communication overhead ψ of LAGA is different
than that of SSGD and SSGD-OPT since the gradient
synchronization is executed in the background of the com-
putations of multiple micro-batches when τ > 1. Figure 2c
illustrates this important attribute of LAGA, where the idle
time is completely eliminated and therefore the computations
are executed without any interruptions.

ψLAGA(τ) =

{
0 Tcomm ≤ τ · Tcomp
Tcomm−τ ·Tcomp

τ ·Tcomp+Tcomm
Otherwise.

(6)

Equation (6) shows that the communication overhead of
LAGA ψLAGA(τ) can be reduced by increasing τ . Given
a large enough τ that satisfies the inequality Tcomm ≤ τ ·
Tcomp, the communication overhead of LAGA are completely
eliminated and equal to zero. Therefore, LAGA can hide all
communication overheads and achieve linear scalability given
a respective τ that holds τ ≥ Tcomm

Tcomp
. We define τLAGA as

the optimal (minimal) number of accumulation that LAGA
requires to achieve linear scalability, τLAGA = dTcomm

Tcomp
e.

Increasing the amount of gradient accumulations beyond



τLAGA would not gain any speedups as LAGA has already
reached linear scalability.

Next we analyse the theoretical communication savings
of LAGA compared to SSGD, where we compare ψLAGA(τ)
and ψSSGD(τ) respectively when the communication time
Tcomm is high.

ψSSGD(τ)− ψLAGA(τ) ≤ τ · Tcomp
τ · Tcomp + Tcomm

(7)

Equation (7) shows that the communication savings of LAGA
increase as τ grows, unlike the communication savings of
SSGD-OPT which diminish. This essential property is what
helps LAGA achieve linear scalability, even in extreme cases
where Tcomm � Tcomp.

4.2. Theoretical Convergence Proof of LAGA

In this section, we prove the convergence rate of LAGA-
SGD and find that it achieves the same convergence rate as
SSGD [13].

Assumption 1.
1) Smoothness: Each function fi(x) is L-smooth.
2) Bounded variance and second moment: There

exits constants σ > 0 and G > 0 such that

Eζi∼Di‖∇Fi (x; ζi)−∇fi (x) ‖2 ≤ σ2,∀x,∀i
Eζi∼Di

‖∇Fi (x; ζi) ‖2 ≤ G2,∀x,∀i

Theorem 1. Consider Algorithm 3 with the above assump-
tions. Then, for 0 < η ≤ 1

L Algorithm 3 achieves

1

T

T∑
t=1

E
[
‖∇f(x̄t−1)‖2

]
≤

2
(
f(x̄0)− f∗

)
ηT

+
η2L2G2

4
+
Lησ2

N

Corollary 1. Using η =
√
N

L
√
T

yields,

1

T

T∑
t=1

E
[
‖∇f(x̄t−1)‖2

]
≤ 2L√

NT

(
f(x̄0)− f∗

)
+
NG2

4T
+

σ2

√
NT

. (8)

Theorem 1 and Corollary 1 imply that when T is large
enough, i.e., T > N3, Algorithm 3 has a convergence rate
of O

(
1√
NT

)
. Namely, it achieves a linear speed-up with

respect to the number of workers. In practice, T is usually
much larger than N3.

The proof of Theorem 1 is presented below.

Proof. The proof follows similar steps as the proof of
Theorem 1 in [55]. From the smoothness of f ,

E[f(x̄t)] ≤ E[f(x̄t−1)] + E
[
〈∇f(x̄t−1), x̄t − x̄t−1〉

]︸ ︷︷ ︸
(B)

+
L

2
E[‖x̄t − x̄t−1‖2]︸ ︷︷ ︸

(A)

.

Bounding (A). Using the relations described in Al-
gorithm 3 we have,

(A) = η2E

∥∥∥∥∥ 1

N

N∑
i=1

gt−2
i (τ)

∥∥∥∥∥
2


= η2E

∥∥∥∥∥ 1

N

N∑
i=1

gt−2
i (τ)−∇fi

(
x̄t−2

)∥∥∥∥∥
2


+ η2E

∥∥∥∥∥ 1

N

N∑
i=1

∇fi
(
x̄t−2

)∥∥∥∥∥
2


=
η2

N2

N∑
i=1

E
[∥∥gt−2

i (τ)−∇fi
(
x̄t−2

)∥∥2
]

+ η2E

∥∥∥∥∥ 1

N

N∑
i=1

∇fi
(
x̄t−2

)∥∥∥∥∥
2


≤ η2σ2

N
+ η2E

∥∥∥∥∥ 1

N

N∑
i=1

∇fi
(
x̄t−2

)∥∥∥∥∥
2
 ,

where in the second equality we used the known inequality
E[‖z‖2] = E[‖z − E[z]‖2] + ‖E[z]‖2 and the third follows
from gt−2

i (τ)−∇fi
(
x̄t−2

)
having zero mean and is inde-

pendent across workers.
Bounding (B). Using the relations described in Algo-

rithm 3 we have,

(B) =− ηE
[
〈∇f(x̄t−1), ḡt−2(τ)〉

]
=− ηE

[
〈∇f(x̄t−1),

1

N

N∑
i=1

∇fi
(
x̄t−2

)
〉

]

=− η

2
E

‖∇f(x̄t−1)‖2 +

∥∥∥∥∥ 1

N

N∑
i=1

∇fi
(
x̄t−2

)∥∥∥∥∥
2


+
η

2
E

[∥∥∥∥∥∇f(x̄t−1)− 1

N

N∑
i=1

∇fi
(
x̄t−2

)∥∥∥∥∥
]

︸ ︷︷ ︸
(C)

,

where in the third equality we used the identity 〈z1, z2〉 =
1
2 (‖z1‖2 + ‖z2‖2 − ‖z1 − z2‖2), and the second equality
follows from,

E[〈∇f(x̄t−1), ḡt−2(τ)〉] =

= E

[
E

[
〈∇f(x̄t−1),

1

N

N∑
i=1

gt−2
i (τ)〉|ξ[t−3]

]]

= E

[
〈∇f(x̄t−1),

1

N

N∑
i=1

E
[
gt−2
i (τ)|ξ[t−3]

]
〉

]

= E

[
〈∇f(x̄t−1),

1

N

N∑
i=1

∇fi
(
x̄t−2

)
〉

]
,



where the second line follows the law of total expectation
and the third follows from x̄t−1 being determined by ξ[t−3]

and linearity of expectation.
Bounding (C). By the definition of

f(x) =
∑N

i=1 fi(x) we have,

(C) =
1

N2
E

∥∥∥∥∥
N∑
i=1

∇fi(x̄t−1)−∇fi
(
x̄t−2

)∥∥∥∥∥
2


≤ 1

N
E

[
N∑
i=1

∥∥∇fi(x̄t−1)−∇fi
(
x̄t−2

)∥∥2

]

≤ L2

N

N∑
i=1

E
[∥∥x̄t−1 − x̄t−2

∥∥2
]

= L2E
[∥∥ηḡt−3(τ)

∥∥2
]

= L2η2E

∥∥∥∥∥ 1

N

N∑
i=1

gt−3
i (τ)

∥∥∥∥∥
2


≤ L2η2E

[
1

N

N∑
i=1

∥∥gt−3
i (τ)

∥∥2

]
≤ L2η2G2 ,

where the second and sixth lines are by using
∥∥∥∑N

i=1 zi

∥∥∥2

≤
N
∑N

i=1 ‖zi‖
2. The third line is due to the smoothness of

each fi, and the forth and fifth are by the definition of x̄t

and ḡ.
Combining the above bounds implies,

E[f(x̄t)] ≤ E[f(x̄t−1)]− η

2
E
[
‖∇f(x̄t−1)‖2

]
+
η3L2G2

2

+
Lη2σ2

2N
− η − η2L

2
E

∥∥∥∥∥ 1

N

N∑
i=1

∇fi
(
x̄t−2

)∥∥∥∥∥
2


≤E[f(x̄t−1)]− η

2
E
[
‖∇f(x̄t−1)‖2

]
+
η3L2G2

2
+
Lη2σ2

2N
,

where the second inequality follows from 0 < η ≤ 1
L .

Rearranging and dividing by η
2 yields,

E
[
‖∇f(x̄t−1)‖2

]
≤2

η

(
E[f(x̄t−1)]− E[f(x̄t)]

)
+
η2L2G2

4
+
Lησ2

N
.

Summing over T and dividing by T gives

1

T

T∑
t=1

E
[
‖∇f(x̄t−1)‖2

]
≤ 2

ηT

(
E[f(x̄0)]− E[f(x̄T )]

)
+
η2L2G2

4
+
Lησ2

4N

≤ 2

ηT

(
f(x̄0)− f∗

)
+
η2L2G2

4
+
Lησ2

N
.

where the last inequality uses f∗ being the minimum of the
minimization problem.

4.3. LAGA-SGD with Momentum

Momentum [38] is a widely adopted SGD variation
that has been demonstrated to accelerate SGD convergence
and reduce oscillation [48]. Previous empirical works [43]
[10] suggest that momentum is crucial for achieving high
final test accuracy when training on large mini-batch sizes.
Mathematically, momentum is similar to an exponentially-
weighted moving average of past gradients. We denote the
momentum vector as m̄t = γm̄t−1 + ḡt−1(τ), where γ is
the momentum coefficient.

Algorithm 4 LAGA-SGDM

1: Compute gradient gti(τ)← 1
τ

∑τ
j=1∇Fi

(
x̄t; ξti,j

)
2: Update momentum m̄t ← γm̄t−1 + ḡt−1(τ)
3: Update parameters x̄t+1 ← x̄t − ηm̄t

4: Non-Blocking AllReduce ḡt(τ)← 1
N

∑N
i=1 g

t
i(τ)

Algorithm 4 describes the LAGA-SGDM (LAGA with
SGD-Momentum) algorithm in details. Notice that m̄ is
equal across all workers since it is updated with the same
average gradient ḡ and initialized to zero.

Recent works [33] [18] show that lag and momentum do
not work well together. In asynchronous settings, where the
lag is more significant, training with momentum reduces the
convergences speed and might cause complete divergence
[59] [7].

To remedy, we start by observing that the lag causes
LAGA to compute the gradient on x̄t but rather apply
it on x̄t+1. [34] proposed Nesterov Accelerated Gradient
(NAG), which computes the gradient after taking into account
the momentum vector trajectory. In NAG, the gradient is
computed on y = x− ηγm̄t−1 but applied on x, where the
former already includes the momentum vector impact on the
next update step. [8] reparameterized NAG so the gradient
∇F (y; ξ) is both computed and applied on the same set of
parameters y, but still maintain the same benefits of NAG.
We apply the same methodology of [8] to LAGA-SGDM
and define ȳt , x̄t − ηγm̄t−1.

ȳt+1 = ȳt + ηγm̄t−1 − ηγm̄t − ηm̄t

= ȳt + ηγm̄t−1 − ηγm̄t − ηγm̄t−1 − ηḡt−1(τ)

= ȳt − η
(
γm̄t + ḡt−1(τ)

)
(9)

Equation (9) shows the reparameterized update step of
LAGA-SGDM. We name this variation as LAGA-SGDN
(LAGA with SGD-NAG).

Algorithm 5 LAGA-SGDN

1: Compute gradient gti(τ)← 1
τ

∑τ
j=1∇Fi

(
x̄t; ξti,j

)
2: Update momentum m̄t ← γm̄t−1 + ḡt−1(τ)
3: Update parameters ȳt+1 ← ȳt − η

(
γm̄t + ḡt−1(τ)

)
4: Non-Blocking AllReduce ḡt(τ)← 1

N

∑N
i=1 g

t
i(τ)

Algorithm 5 describes in details the LAGA-SGDN al-
gorithm. The model parameter vector ȳ is used for both



computing the gradient and applying it, but it maintains
the same essential properties to that of NAG. In the next
section we present empirical results which show the benefits
of LAGA-SGDN in final accuracy and convergence speed.

5. Experiments

In this section we conduct an empirical evaluation of
LAGA, where we analyse the training speed of LAGA as
well as its convergence rate and final accuracy. Our evaluation
consists of the following algorithms:

• SSGD: The synchronization is executed right after
the computations of the backpropagation.

• SSGD-OPT: The synchronization is overlapped with
the computations of the backpropagation [29].

• LAGA: The synchronization is executed with a non-
blocking call in the background.

We conduct our experiments on a system with eight
NVIDIA® GeForce® RTX 2080 Ti GPUs [2] that each
have 11GB of internal memory. We run our code on the
PyTorch [36] framework, which is a highly popular and
open-sourced deep learning framework for training neural
networks. All algorithms utilize the efficient NCCL [23] for
fast and optimized AllReduce operations. For consistency
and reproducibility, we run all of our experiments on the
exact same publicly available Docker [32] image (provided
by Horovod [42]). This simplifies the reproducibility of our
software setup.

We provide an open-source implementation of LAGA
written in both PyTorch and Horovod [42] frameworks.
Horovod is a highly popular open-sourced distributed neural
network framework which is heavily used by the machine
learning industry. Providing an implementation for both
frameworks expands the compatibility of LAGA for future
research directions and adaptations. We note that although
LAGA is implemented with an AllReduce operation, it is
also fully compatible in the parameter-server setting which
has recently received several efficient implementations [60]
[11] [25] [50] [37] [28].

5.1. Communication Efficiency

In this section we focus on the training speed of the
different algorithms. We evaluate on a wide range of neural
architectures which provide interesting insights about their
properties. For accurate and comparable measurements, each
experiment in this section was computed 5000 times, which
we present with both the mean and the 95% confidence
interval (marked as the black lines on-top of the bar plots).

We first analyse the idle time. Figure 4 shows the idle
time of the different algorithm on various neural architecture
and gradient accumulation settings. On Wide ResNet-101-2
[57] with τ = 1, LAGA has 3.89x less idle time than SSGD
and 2.67x less than SSGD-OPT. Increasing τ on communi-
cation intensive neural architecture, such as VGG-16, results
in even higher gains for LAGA, where in the VGG-16 neural

architecture with τ = 4, LAGA has 5.24x and 4.54x fewer
idle time compared to SSGD and SSGD-OPT respectively.
Finally, on the highly popular and communication friendly
ResNet-50 neural architecture with τ = 1 (as demonstrated
in Figure 3), LAGA reduces the idle time by 2.3x and 1.45x
compared to SSGD and SSGD-OPT respectively. We note
that on newer and faster computational devices (with the
same communication bandwidth) the idle time reduction
would be even higher.

Next, we analyse the scalability (also known as scaling
efficiency), which we define as the wall-clock-time ratio to
that of a linear scalable algorithm. Intuitively, a communi-
cation efficient algorithm would have a scalability of close
to one. Figure 5 shows the scalability of the algorithms on
a wide variety of different neural architectures. Figure 5b
shows the scalability when training with τ = 2, where we
notice that LAGA achieves near linear scalability on certain
neural architectures and outperforms both SSGD and SSGD-
OPT. Neural architectures with a high Tcomm, such as VGG-
19 [46] (Figure 3), are difficult to scale; however, LAGA
manages to achieve near linear scalability whereas SSGD
and SSGD-OPT achieve a significantly lower scalability.
Notice that the scalability of all algorithms improves as we
increase τ , which empirically justifies our theoretical analyse
in Section 3. These results are in correspondence to Figure 4,
lowering the idle time results in higher scalability.

Figure 6 shows the speedup gains of LAGA on different
τ compared to SSGD without accumulations. As τ increases
the speedup gains of LAGA grow as well, reaching a speedup
of up to 2.96x. Notice that when τ = 4 the speedup gains of
LAGA start to saturates since LAGA is near linear scalability
and the amount of gradient accumulations is already close
to τLAGA. We note that neural architectures with a higher
communication overhead have a higher τLAGA and therefore
enjoy speedup gains on even larger amount of gradient
accumulations.

5.2. Final Accuracy and Convergence Rate

In the previous section we saw that LAGA trains faster
than SSGD alternatives and scales better when joint with
gradient accumulation. In this section, we focus on the
convergence rate and final accuracy with respect to epochs
rather than time, where synchronous algorithms usually
dominate thanks to their fast convergence speed.

Our accuracy evaluations focus on the ResNet-50 [19]
neural architecture on the ImageNet [40] dataset, which is a
highly popular benchmark in image classification [4] [54].

The training follows the same schedule and hyperparam-
eters as [17], which we detail below. Each worker computes
the gradient on a batch size of 32 and the batches are
shuffled after each epoch. The initial learning-rate is 0.1
(when τ = 1) and is scaled linearly with respect to τ .
Furthermore, the learning-rate is gradually warmed-up during
the early iterations (first 5 epochs) and is decayed by 0.1 at
epochs 30, 60, and 80. The training is spanned across 90
epochs in total, with a momentum coefficient of 0.9 and a



ResNet-152| =1
ResNet-152| =4

ResNet-50| =1
ResNet-50| =4

VGG-16| =1
VGG-16| =4

Wide ResNet-101-2| =1

Wide ResNet-101-2| =4

Architecture

0.0

0.5

1.0

1.5

Id
le

 T
im

e 
(m

s)

SSGD
SSGD-OPT
LAGA

Figure 4: The idle time (ms) due to communication overhead. Increasing τ reduces the idle time for all algorithms and
neural architectures, where LAGA is the least idle in all the settings.

VGG-16 VGG-19
ResNet-18

ResNet-50
ResNet-152

Wide ResNet-101-2

Architecture

0.2

0.4

0.6

0.8

1.0

S
ca

la
bi

lit
y

SSGD
SSGD-OPT
LAGA

(a) τ = 1

VGG-16 VGG-19
ResNet-18

ResNet-50
ResNet-152

Wide ResNet-101-2

Architecture

0.2

0.4

0.6

0.8

1.0
S

ca
la

bi
lit

y

(b) τ = 2

VGG-16 VGG-19
ResNet-18

ResNet-50
ResNet-152

Wide ResNet-101-2

Architecture

0.2

0.4

0.6

0.8

1.0

S
ca

la
bi

lit
y

(c) τ = 4

Figure 5: A scalability comparison of the different algorithms.

VGG-16 VGG-19
ResNet-18

ResNet-50
ResNet-152

Wide ResNet-101-2

Architecture

0

2

S
pe

ed
up

= 1
= 2

= 4
= 8

Figure 6: Speedup of LAGA.

TABLE 1: ResNet-50 ImageNet Final Test Accuracy

#Accumulations SSGD LAGA-SGDM LAGA-SGDN

1 76.4% 76.44% 76.3%

2 76.24% 75.95% 76.28%

4 76.23% 75.63% 76.28%

weight-decay coefficient of 1e− 4. The training code will
be publicly available in our published code repository.

Figure 7a compares the training convergence. LAGA-
SGDM converges slightly slower than SSGD due to the
lag which hurts the accuracy of the gradient. LAGA-SGDN
remedies this issue and therefore converges at almost the
same rate as SSGD. Correspondingly, Figure 7b compares
the test accuracy convergence, where once again, LAGA-
SGDM falls short of SSGD and LAGA-SGDN. This shows
the importance of NAG when training with LAGA. We note
that additional techniques for mitigating the lag, such as
[61], are compatible with LAGA.

Table 1 details the final test accuracy with different

gradient accumulations. When τ = 1 LAGA-SGDM is
on par with SSGD and LAGA-SGDN, and even slightly
outperforms them. However, when trained with more gradient
accumulations, the final accuracy of LAGA-SGDM starts to
deteriorate. Conversely, SSGD and LAGA-SGDN maintain
high final accuracy even when τ grows. Maintaining high
accuracy with large values of τ is important since increasing
τ improves the scalability (Figure 5).

6. Conclusions

In this paper we presented LAGA, a novel and efficient
algorithm that leverages gradient accumulation to further
hide the communication overheads. We conducted a thorough
study on a variety of neural architectures and showed that
LAGA achieves near linear scaling with a speedup of up
to 2.96x and 5.24x less idle time on the ImageNet dataset.
We provide an open-source implementation of LAGA in
both PyTorch and Horovod frameworks for a wide-range
compatibility. We showed that LAGA can achieve the same
final accuracy and convergence speed as SSGD. Finally, we
provided a theoretical convergence proof for LAGA, which
achieves the same theoretical convergence rate to that SSGD.

The scaling of large neural networks, such as Transformer
based architectures [15], is an ongoing challenge [25] due
to high communication to computation ratio (large ψ).
In such cases, LAGA would benefit high speedup gains.
Future works that combine LAGA with communication
reduction algorithms [52] [41] [53] can further reduce the
communication overhead.



0 20 40 60 80
Epoch

2

4

6

Tr
ai

n 
Lo

ss

70 75 80 85 90
1.0
1.1 LAGA-SGDM

LAGA-SGDN
SSGD

(a) Train Loss Convergence

0 20 40 60 80
Epoch

20

40

60

Te
st

 A
cc

ur
ac

y

70 80 90
75.5
76.0
76.5

LAGA-SGDM
LAGA-SGDN
SSGD

(b) Test Accuracy Convergence

Figure 7: Results of ResNet-50 on ImageNet where τ = 4.

Acknowledgements

The work on this paper was supported in part by the
Israeli Ministry of Science, Technology, and Space and by
The Hasso Plattner Institute at the Technion. K.Y. Levy
acknowledges support from the Israel Science Foundation
(grant No. 447/20).

References

[1] Nvidia apex. GitHub. Note: https://github.com/NVIDIA/apex.

[2] Nvidia® geforce® rtx 2080 ti. https://www.nvidia.com/en-
eu/geforce/graphics-cards/rtx-2080-ti/.

[3] A. F. Aji and K. Heafield. Making asynchronous stochastic gradient
descent work for transformers. In Proceedings of the 3rd Workshop
on Neural Generation and Translation, 2019.

[4] T. Akiba, S. Suzuki, and K. Fukuda. Extremely large minibatch
sgd: Training resnet-50 on imagenet in 15 minutes. arXiv preprint
arXiv:1711.04325, 2017.

[5] S. Alqahtani and M. Demirbas. Performance analysis and com-
parison of distributed machine learning systems. arXiv preprint
arXiv:1909.02061, 2019.

[6] A. A. Awan, C.-H. Chu, H. Subramoni, and D. K. Panda. Optimized
broadcast for deep learning workloads on dense-gpu infiniband clusters:
Mpi or nccl? In Proceedings of the 25th European MPI Users’ Group
Meeting, pages 1–9, 2018.

[7] S. Barkai, I. Hakimi, and A. Schuster. Gap-aware mitigation of gradient
staleness. In International Conference on Learning Representations,
2020.

[8] Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu. Advances in
optimizing recurrent networks. In IEEE International Conference on
Acoustics, Speech and Signal Processing, 2013.

[9] K. S. Chahal, M. S. Grover, K. Dey, and R. R. Shah. A hitchhiker’s
guide on distributed training of deep neural networks. Journal of
Parallel and Distributed Computing, 2020.

[10] K. Chen and Q. Huo. Scalable training of deep learning machines
by incremental block training with intra-block parallel optimization
and blockwise model-update filtering. In 2016 ieee international
conference on acoustics, speech and signal processing (icassp), pages
5880–5884. IEEE, 2016.

[11] Y. Chen, Y. Peng, Y. Bao, C. Wu, Y. Zhu, and C. Guo. Elastic
parameter server load distribution in deep learning clusters. SoCC ’20,
New York, NY, USA, 2020. Association for Computing Machinery.

[12] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. a.
Ranzato, A. Senior, P. Tucker, K. Yang, Q. Le, and A. Ng. Large scale
distributed deep networks. In F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems, volume 25. Curran Associates, Inc., 2012.

[13] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. Optimal
distributed online prediction using mini-batches. Journal of Machine
Learning Research, 2012.

[14] W. Falcon. Pytorch lightning. GitHub. Note:
https://github.com/PyTorchLightning/pytorch-lightning, 2019.

[15] W. Fedus, B. Zoph, and N. Shazeer. Switch transformers: Scaling to
trillion parameter models with simple and efficient sparsity. arXiv
preprint arXiv:2101.03961, 2021.

[16] E. Gebremeskel. Analysis and comparison of distributed training
techniques for deep neural networks in a dynamic environment, 2018.

[17] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He. Accurate, large minibatch
sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677,
2017.

[18] I. Hakimi, S. Barkai, M. Gabel, and A. Schuster. Taming mo-
mentum in a distributed asynchronous environment. arXiv preprint
arXiv:1907.11612, 2019.

[19] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[20] J. R. Hermans, G. Spanakis, and R. Möckel. Accumulated gradient
normalization. In Asian Conference on Machine Learning, pages
439–454. PMLR, 2017.

[21] E. Hoffer, I. Hubara, and D. Soudry. Train longer, generalize better:
closing the generalization gap in large batch training of neural
networks. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017.

[22] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu, et al. Gpipe: Efficient training of giant
neural networks using pipeline parallelism. In Advances in Neural
Information Processing Systems, 2019.

[23] S. Jeaugey. Optimized inter-gpu collective operations with nccl 2,
2017.

[24] X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou, L. Xie, Z. Guo,
Y. Yang, L. Yu, et al. Highly scalable deep learning training system
with mixed-precision: Training imagenet in four minutes. arXiv
preprint arXiv:1807.11205, 2018.

[25] Y. Jiang, Y. Zhu, C. Lan, B. Yi, Y. Cui, and C. Guo. A unified
architecture for accelerating distributed DNN training in heterogeneous
gpu/cpu clusters. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20). USENIX Association, 2020.

[26] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P.
Tang. On large-batch training for deep learning: Generalization gap
and sharp minima. arXiv preprint arXiv:1609.04836, 2016.

[27] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.



[28] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed,
V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su. Scaling distributed
machine learning with the parameter server. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and Implementation,
OSDI’14, page 583–598, USA, 2014. USENIX Association.

[29] S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li, A. Paszke,
J. Smith, B. Vaughan, P. Damania, and S. Chintala. Pytorch distributed:
Experiences on accelerating data parallel training. VLDB Endow., 2020.

[30] Y. Lin, S. Han, H. Mao, Y. Wang, and B. Dally. Deep gradient
compression: Reducing the communication bandwidth for distributed
training. In International Conference on Learning Representations,
2018.

[31] I. Loshchilov and F. Hutter. Decoupled weight decay regularization.
In International Conference on Learning Representations, 2019.

[32] D. Merkel. Docker: Lightweight linux containers for consistent
development and deployment. Linux J., 2014(239), Mar. 2014.

[33] I. Mitliagkas, C. Zhang, S. Hadjis, and C. Ré. Asynchrony begets
momentum, with an application to deep learning. In 2016 54th Annual
Allerton Conference on Communication, Control, and Computing
(Allerton), pages 997–1004. IEEE, 2016.

[34] Y. Nesterov. A method for unconstrained convex minimization problem
with the rate of convergence o (1/kˆ 2). In Doklady AN USSR, volume
269, pages 543–547, 1983.

[35] D. K. Panda, A. A. Awan, and H. Subramoni. High performance
distributed deep learning: a beginner’s guide. In Proceedings of the
24th Symposium on Principles and Practice of Parallel Programming,
pages 452–454, 2019.

[36] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. In Advances
in neural information processing systems, 2019.

[37] Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu, and
C. Guo. A generic communication scheduler for distributed dnn
training acceleration. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles, SOSP ’19, page 16–29, New York, NY,
USA, 2019. Association for Computing Machinery.

[38] B. Polyak. Some methods of speeding up the convergence of iteration
methods. USSR Computational Mathematics and Mathematical
Physics, 1964.

[39] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He. Zero: Memory
optimizations toward training trillion parameter models. In Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’20. IEEE Press, 2020.

[40] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein, A. C. Berg, and
F. Li. ImageNet large scale visual recognition challenge. International
Journal of Computer Vision, 2015.

[41] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim, A. Krish-
namurthy, M. Moshref, D. Ports, and P. Richtarik. Scaling distributed
machine learning with in-network aggregation. In 18th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
21), pages 785–808. USENIX Association, Apr. 2021.

[42] A. Sergeev and M. Del Balso. Horovod: fast and easy distributed
deep learning in tensorflow. arXiv preprint arXiv:1802.05799, 2018.

[43] C. J. Shallue, J. Lee, J. Antognini, J. Sohl-Dickstein, R. Frostig, and
G. E. Dahl. Measuring the effects of data parallelism on neural network
training. Journal of Machine Learning Research, 20(112):1–49, 2019.

[44] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and
B. Catanzaro. Megatron-lm: Training multi-billion parameter language
models using gpu model parallelism. arXiv preprint arXiv:1909.08053,
2019.

[45] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, et al. Mastering the
game of go without human knowledge. nature, 550(7676):354–359,
2017.

[46] K. Simonyan and A. Zisserman. Very deep convolutional networks
for large-scale image recognition. In Y. Bengio and Y. LeCun, editors,
3rd International Conference on Learning Representations, 2015.

[47] S. L. Smith, P.-J. Kindermans, and Q. V. Le. Don’t decay the learning
rate, increase the batch size. In International Conference on Learning
Representations, 2018.

[48] I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton. On
the importance of initialization and momentum in deep learning.
In Proceedings of the 30th International Conference on Machine
Learning, 2013.

[49] K. Tanaka, Y. Arikawa, T. Ito, K. Morita, N. Nemoto, F. Miura,
K. Terada, J. Teramoto, and T. Sakamoto. Communication-efficient
distributed deep learning with gpu-fpga heterogeneous computing. In
2020 IEEE Symposium on High-Performance Interconnects (HOTI),
pages 43–46. IEEE, 2020.

[50] I. Thangakrishnan, D. Cavdar, C. Karakus, P. Ghai, Y. Selivonchyk,
and C. Pruce. Herring: Rethinking the parameter server at scale for
the cloud. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’20.
IEEE Press, 2020.

[51] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, and
J. S. Rellermeyer. A survey on distributed machine learning. ACM
Computing Surveys (CSUR), 53(2):1–33, 2020.

[52] T. Vogels, S. P. Karimireddy, and M. Jaggi. Powersgd: Practical
low-rank gradient compression for distributed optimization. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

[53] H. Xu, C.-Y. Ho, A. M. Abdelmoniem, A. Dutta, E. Bergou, K. Karat-
senidis, M. Canini, and P. Kalnis. Grace: A compressed communication
framework for distributed machine learning. In Proc. of 41st IEEE
Int. Conf. Distributed Computing Systems (ICDCS), 2021.

[54] Y. You, Z. Zhang, J. Demmel, K. Keutzer, and C.-J. Hsieh. Imagenet
training in 24 minutes. arXiv preprint arXiv:1709.05011, 2017.

[55] H. Yu, S. Yang, and S. Zhu. Parallel restarted sgd with faster
convergence and less communication: Demystifying why model
averaging works for deep learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2019.

[56] K. Yu, T. Flynn, S. Yoo, and N. D’Imperio. Layered sgd: A
decentralized and synchronous sgd algorithm for scalable deep neural
network training. arXiv preprint arXiv:1906.05936, 2019.

[57] S. Zagoruyko and N. Komodakis. Wide residual networks. In E. R. H.
Richard C. Wilson and W. A. P. Smith, editors, Proceedings of the
British Machine Vision Conference (BMVC), pages 87.1–87.12. BMVA
Press, September 2016.

[58] W. Zeng, X. Ren, T. Su, H. Wang, Y. Liao, Z. Wang, X. Jiang, Z. Yang,
K. Wang, X. Zhang, et al. Pangu-α: Large-scale autoregressive
pretrained chinese language models with auto-parallel computation.
arXiv preprint arXiv:2104.12369, 2021.

[59] W. Zhang, S. Gupta, X. Lian, and J. Liu. Staleness-aware async-sgd
for distributed deep learning. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence, IJCAI’16,
page 2350–2356. AAAI Press, 2016.

[60] W. Zhao, D. Xie, R. Jia, Y. Qian, R. Ding, M. Sun, and P. Li.
Distributed hierarchical gpu parameter server for massive scale deep
learning ads systems. In I. Dhillon, D. Papailiopoulos, and V. Sze,
editors, Proceedings of Machine Learning and Systems, volume 2,
pages 412–428, 2020.

[61] S. Zheng, Q. Meng, T. Wang, W. Chen, N. Yu, Z.-M. Ma, and
T.-Y. Liu. Asynchronous stochastic gradient descent with delay
compensation. In D. Precup and Y. W. Teh, editors, Proceedings of
the 34th International Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pages 4120–4129.
PMLR, 06–11 Aug 2017.


	Introduction
	Problem Setting
	Communication Overhead Analysis
	LAGA
	The Importance of Gradient Accumulation
	Theoretical Convergence Proof of LAGA
	LAGA-SGD with Momentum

	Experiments
	Communication Efficiency
	Final Accuracy and Convergence Rate

	Conclusions
	References

