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Abstract11

A language L is random-self-reducible if deciding membership in L can be reduced (in polynomial12

time) to deciding membership in L for uniformly random instances. It is known that several “number13

theoretic” languages (such as computing the permanent of a matrix) admit random self-reductions.14

Feigenbaum and Fortnow showed that NP-complete languages are not non-adaptively random-self-15

reducible unless the polynomial-time hierarchy collapses, giving suggestive evidence that NP may16

not admit random self-reductions. Hirahara and Santhanam introduced a weakening of random17

self-reductions that they called pseudorandom self-reductions, in which a language L is reduced to18

a distribution that is computationally indistinguishable from the uniform distribution. They then19

showed that the Minimum Circuit Size Problem (MCSP) admits a non-adaptive pseudorandom20

self-reduction, and suggested that this gave further evidence that distinguished MCSP from standard21

NP-Complete problems.22

We show that, in fact, the Clique problem admits a non-adaptive pseudorandom self-reduction,23

assuming the planted clique conjecture. More generally we show the following. Call a property of24

graphs π hereditary if G ∈ π implies H ∈ π for every induced subgraph of G. We show that for any25

infinite hereditary property π, the problem of finding a maximum induced subgraph H ∈ π of a26

given graph G admits a non-adaptive pseudorandom self-reduction.27
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1 Introduction33

A language L is randomly-self-reducible if L admits a “worst-case” to “average-case” reduction34

on the uniform distribution — that is, if we can reduce solving the problem on any worst-35

case instance to solving the problem on uniformly-random instances in polynomial time.36

For example, it was famously shown by Lipton [29] that the problem of computing the37

permanent of a matrix admits a random-self-reduction. Many other central examples of38

random-self-reducibility come from cryptography — such as the discrete logarithm and the39

quadratic non-residuosity problems [1] — where it is typically exploited to strengthen several40

cryptographic assumptions from average-case hardness to worst-case hardness without loss41

of generality.42

A central open question in complexity theory is whether or not any NP-Complete set43

admits a random self-reduction [6, 14, 18]. This is closely related to the problem of whether or44
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58:2 Pseudorandom Self-Reductions for NP-Complete Problems

not the hardness of distributional languages in NP can be based on typical NP-Completeness45

assumptions (and, in particular, if “natural” NP-Complete problems are still hard over46

natural input distributions) [2]. Feigenbaum and Fortnow [13] famously showed that if an47

NP-Complete language is non-adaptively random-self-reducible (meaning that the queries to48

the random distribution must not be allowed to adaptively depend on earlier queries), then49

the polynomial hierarchy collapses to the third level. Feigenbaum and Fortnow’s result was50

improved by Bogdanov and Trevisan [8] to show that if an NP-Complete set is non-adaptively51

self reducible to any polynomial-time sampleable distribution, then the polynomial hierarchy52

similarly collapses to the third level. Bogdanov and Trevisan’s result shows that if we can base53

the distributional hardness of an NP-language on standard worst-case NP-Completeness, then54

the reduction witnessing this theorem must be adaptive. Along these lines, it is important to55

mention recent work by Hirahara, which showed that showing that average-case hardness of56

NP can at least be based on exponential hardness of NP [20].57

In a recent paper, Hirahara and Santhanam [21] introduced a generalization of random self-58

reducibility that they called pseudorandom self-reducibility; now, the algorithm that performs59

the reduction is allowed to reduce to a distribution that is computationally indistinguishable60

from the uniform distribution. Under standard cryptographic assumptions they showed that61

the Minimum Circuit Size Problem (MCSP) admits a pseudorandom self-reduction (and,62

furthermore, their reduction is easily seen to be non-adaptive). There is much other evidence63

indicating that any reduction that would prove MCSP is NP-Complete must be surprisingly64

different from “standard” reductions [4, 32, 22, 3], and so, comparing this with the prior65

results about random self-reducibility for NP, Hirahara and Santhanam suggested that their66

pseudorandom self-reduction for MCSP further distinguished it from other NP-Complete67

problems.68

1.1 Our Results69

In this work we show that, somewhat surprisingly, the classic NP-Complete Clique problem70

does admit a non-adaptive pseudorandom self-reduction under a non-uniform variant of71

planted clique conjecture. Let G(n, p) denote the usual Erdős-Rényi random graph, and let72

G(n, p, k) denote the distribution obtained by first sampling G ∼ G(n, p) and then choosing73

a random set of k vertices and planting a clique on those vertices.74

▶ Conjecture 1 (Non-Uniform Planted Clique Conjecture). There is some 0 < ε0 < 1/2 such75

that, letting k = nε0 , for every sequence of polynomial-size circuits {Cn}76 ∣∣∣∣ Pr
G∼G(n,1/2)

[Cn(G) = 1] − Pr
H∼G(n,1/2,k)

[Cn(H) = 1]
∣∣∣∣ ≤ 1

n
.77

Our main result is the following (as the formal definition of a pseudorandom self-reduction78

is somewhat technical we refer the reader to Section 2):79

▶ Theorem 2. The Clique problem admits a non-adaptive pseudorandom self-reduction,80

assuming the Non-Uniform Planted Clique Conjecture.81

In fact, using our techniques, we can prove something a bit stronger. A graph property82

π is a set of graphs closed under isomorphism. A graph property π is hereditary if G ∈ π83

implies H ∈ π for each induced subgraph H of G, and it is non-trivial if both π and its84

complement are infinite. Consider the following decision problem:85

▶ Definition 3. Let π be an infinite, hereditary graph property. The π-induced subgraph86

problem, denoted π-SUB, is defined as follows. As input, we receive an undirected graph G,87
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as well as a positive integer k. The goal is to decide if G contains an induced subgraph H88

such that H ∈ π and H has at least k vertices.89

First, it is easy to see that the π-SUB is more general than the Clique problem, since the90

Clique problem is simply the case where π is the set of all complete graphs. The π-induced91

subgraph problem has been considered in several previous works [28, 11, 9, 30], where it92

was shown that it is NP-Complete and hard to approximate within a factor n1−ε for every93

infinite hereditary π. We show the following:94

▶ Theorem 4. For every non-trivial, hereditary π, the π-SUB problem admits a pseudorandom95

self-reduction, assuming the Non-uniform Planted Clique Conjecture.96

To the best of our knowledge, this is the first worst-case to average-case reduction for97

any NP-Complete problem to a distribution that is “near” uniform, in any reasonable sense.98

However, as we will see next in our technical overview, our reduction relies crucially on99

some very special properties of the Clique problem (properties that are shared by the π-SUB100

problem), and because of this it appears to be difficult to extend it to other NP-Complete101

problems.102

1.2 Technical Overview103

We now sketch our reduction, specialized to the Clique problem. Our reduction relies crucially104

on the following special properties of the Clique problem that seem to distinguish it among105

NP-Complete problems:106

Very Hard to Approximate. Approximating the size of the largest clique in a graph is107

NP-Hard even within a multiplicative n1−ε factor for all ε > 0.108

Small Value on Random Instances. When G ∼ G(n, 1/2), then the size of the largest109

clique in G is 2 log n (up to lower-order terms) with high probability (see e.g. [31]).110

It seems that nearly all standard NP-Complete problems break one of these two require-111

ments. For instance, the Colouring problem is hard to approximate, but, random graphs112

require a large number of colours to properly colour. On the other hand, random instances113

of the MAX-k-SAT problem have been very well-studied and it is easy to find random114

instances (below the “SAT threshold”) which are easy to satisfy; but, it is well known that115

the MAX-k-SAT problem is easy to approximate by simply choosing a random assignment.116

On to discussing our reduction for Clique. By standard hardness-of-approximation results,117

we can assume that the Gap-Clique promise problem — where we must distinguish between118

graphs containing cliques of size n1−εk or graphs in which every clique has size at most k119

— is hard. Our reduction then proceeds as follows: we choose a random subset U ⊆ V of120

vertices of G (say, of size nϵ0 for some appropriate constant ϵ0) and randomize all edges with121

at most one endpoint inside of U . If G originally contained a large clique (of size ≫ n1−εk),122

then a large portion of that clique will intersect U with high probability, and by using the123

fact that random graphs have very small cliques, it follows that solving the clique problem on124

the resulting graph will yield a good approximation to the size of the clique on the original125

graph G. Note here we have crucially used both properties (1) and (2) listed above.126

The novel part of the reduction is proving that it is pseudorandom modulo the Planted127

Clique Conjecture. To do this we use the following “Xor-trick” (a form of this trick also128

played a role in the pseudorandom self-reduction for MCSP by Hirahara and Santhanam129

[21]). Suppose that the reduction was not pseudorandom, so that we obtain a sequence of130

graphs {Gn} and a family of boolean circuits Cn such that Cn can distinguish between the131

ITCS 2022



58:4 Pseudorandom Self-Reductions for NP-Complete Problems

above “planted” distribution (obtained by taking Gn and randomizing all edges outside a132

random subset of vertices) and uniformly random graphs G ∼ G(n, 1/2). Using this family133

of circuits Cn we will construct a new family of circuits C ′
n that can detect the existence of134

planted cliques in random graphs, violating the Planted Clique Conjecture. The new family135

C ′
n is defined as follows: given a graph H as input, C ′

n takes the Xor of the edge-set of the136

complement graph H with the edge-set of Gn. If H was a uniformly random graph, then the137

result will be a uniformly random graph. If, however, H had a planted clique, then H will138

have a planted independent set. Thus, taking the Xor of H with Gn will result in a random139

graph with uniformly random edges except for a random subset of Gn. We can therefore140

apply the family of circuits Cn that differentiates between the “planted” distribution and141

uniformly random graphs and differentiate between planted cliques and random graphs.142

Now that we have discussed our reduction, note that a worst-case to average-case reduction143

for any problem implies that an efficient algorithm solving the average-case problem also144

implies an efficient algorithm that solves the worst-case problem. Of course, approximating145

the value of the largest clique on a G(n, 1/2) graph is actually easy: as we have discussed146

above, the size of the largest clique is (2 − o(1)) log n with high probability, and a simple147

greedy algorithm will find a clique of size roughly log n with high probability [26]. However,148

in our case, if the Planted Clique conjecture is true then this good approximation algorithm149

does not imply a good approximation algorithm for the Max-Clique problem as, intuitively,150

the pseudorandomness “fools” the polynomial-time algorithm into thinking that there is a151

clique of size ≈ 2 log n, when in fact the graph actually contains a much larger clique. On152

the other hand, if the Planted Clique conjecture is false, then a polynomial-time algorithm153

could perhaps distinguish the output graphs of the reduction from G(n, 1/2), but, in order154

to solve Clique it must find a very large clique inside the randomly planted portion, which155

still could be a very hard problem.156

1.3 Related Work157

The planted clique problem is a well-studied problem in both complexity theory and algorithms158

that was introduced independently by Jerrum [24] and Kučera [27]; although, the hardness159

of finding cliques in random graphs was initially observed by Karp, who observed that there160

is no known polynomial-time algorithm finding cliques of size ≈ 2 log n in random graphs161

[26], even though they exist with probability 1 − o(1). It is well-known that the planted162

clique problem can be solved by a quasipolynomial-time algorithm that simply enumerates163

all potential cliques of size O(log n). As for polynomial-time algorithms, a classic result due164

to Alon, Krivelevich and Sudakov [5] finds planted cliques of size Ω(n1/2) using semidefinite165

programming. The planted clique problem has also been used in prior works as a hardness166

assumption in complexity theory and cryptography (see, e.g. [25, 17]), and it is known167

to be hard to solve in both the Lovász-Shrijver and Sum-of-Squares convex programming168

hierarchies [12, 7].169

There has been much work regarding the study of average-case self-reducibility of NP170

problems. Thanks to the negative results by Feigenbaum and Fortnow [13] and Bogdanov171

and Trevisan [8], the power of non-adaptive random reductions inside of NP is now fairly172

well understood: it is known that any such problem must lie in NP/poly ∩ coNP/poly [8].173

There have also been some positive results. Feigenbaum, Fortnow, Lund and Spielman174

showed that under plausible assumptions, there is a function in NP \ P which is adaptively175

random-self-reducible but not nonadaptively random-self-reducible [14]. Hemaspaandra,176

Naik, Ogihara and Selman showed that if NP ̸⊆ BPE then there is a set in NP \ BPP177

which is adaptively random-self-reducible, but neither nonadaptively random-self reducible178
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nor self-reducible [18]. Hirahara recently gave a worst-case to average-case reduction from179

the Minimum Time-Bounded Kolmogorov Complexity problem (MinKT) (which is widely180

believed to lie outside of NP) to a distributional problem inside of NP [19]. Another recent181

result of Hirahara shows that average-case hardness of problems in NP can be based on182

sufficiently strong exponential hardness of the closely related class UP [20]. We refer to183

Bogdanov and Trevisan [8] for an excellent (if somewhat dated) survey of the average-case184

complexity of NP, and to Hirahara [20] for a modern discussion of frontier open questions.185

Worst case to average case reductions for problems in P were studied in [15]. They showed186

a subclass of problems in P which admit a random self reductions, such as counting the187

number of fixed-size cliques in a graph.188

2 Preliminaries189

If D is a probability distribution, we denote by x ∼ D an element sampled according to D. A190

promise problem is a pair Π = (ΠYES, ΠNO), where ΠYES, ΠNO ⊆ {0, 1}∗ and ΠYES∩ΠNO = ∅.191

A language L ⊆ {0, 1}∗ is consistent with the promise problem Π = (ΠYES, ΠNO) if ΠYES ⊆ L192

and ΠNO ⊆ L̄.193

In this paper, graphs are simple and undirected. Denote by G(n) the set of all graphs194

over n vertices. We assume that a graph G with n vertices is encoded using a binary string195

of length
(

n
2
)
. We denote by ω(G) the largest clique in G.196

We borrow some definitions from [21].197

▶ Definition 5. (Indistinguishability). Let C be a (uniform or non-uniform) complexity class,198

and {Dn}n∈N, {D′
n}n∈N two sequences of distributions such that for all n, Dn and D′

n are199

supported on {0, 1}n. We say that {Dn} and {D′
n} are indistinguishable by C, if for all A ∈ C200

and for all sufficiently large n,201

| Pr
x∼Dn

[A(x) = 1] − Pr
x∼D′

n

[A(x) = 1]| ≤ 1
n

.202

203

▶ Definition 6. (Pseudorandom Self-Reducibility, [21]). Let C be a complexity class. Let204

Q = (ΠYES, ΠNO) be a promise problem, where ΠYES, ΠNO ⊆ {0, 1}∗, and let L ⊆ {0, 1}∗
205

be a language. Q is said to be pseudorandomly reducible to L with respect to C if there206

are constants q, ℓ and polynomial time computable functions g : {0, 1}∗ → {0, 1}∗ and207

h : {0, 1}∗ → {0, 1}∗ satisfying the following conditions:208

1. For every sequence {(xn, in)}n∈N where xn ∈ {0, 1}n and 1 ≤ in ≤ nq for all n ∈ N, the209

distributions {g(in, xn, Unℓ)}n∈N and {Un}n∈N are indistinguishable by C.210

2. For large enough n and for every x ∈ (ΠYES ∪ ΠNO) ∩ {0, 1}n:211

Q(x) = h(x, r, L(g(1, x, r)), L(g(2, x, r)), . . . , L(g(nq, x, r))),212
213

with probability at least 1 − 2−n when r ∼ Unℓ .214

The reduction is non-adaptive if the later queries to random instances cannot depend on215

earlier queries to random instances.216

2.0.0.1 Probabilistic bounds.217

The Chernoff-type bound we use in this paper is stated below.218

▶ Theorem 7. (Chernoff’s inequality, [10]). Let X = X1 +. . .+Xn where Xi are independent219

random variables taking values in {0, 1}. Then220

Pr[|X − E[X]| ≥ 1
2E[X]] ≤ 2e−E[X]/16.221

222

ITCS 2022



58:6 Pseudorandom Self-Reductions for NP-Complete Problems

In addition, we will need the following result by Hoeffding (Theorem 4 in [23]).223

▶ Lemma 8. Let S = (s1, . . . , sN ) be a finite population of N real points, X1, . . . , Xn denote224

a uniformly random sample without replacement from S and Y1, . . . Yn denote a uniformly225

random sample with replacement from S. If f : R → R is continuous and convex, then226

E[f
( n∑

i=1
Xi

)
] ≤ E[f

( n∑
i=1

Yi

)
].227

Lemma 8 implies that we can use Chernoff’s inequality for the random variables {Xi}, even228

though they are dependent1.229

3 Non-uniform Planted Clique230

In this section we state our hardness assumption, which essentially says that polynomial size231

circuits cannot distinguish between a random graph, and a random graph with a planted232

clique of size nϵ0 , for some ϵ0 ∈ (0, 1
2 ).233

For a graph G and a parameter 0 < ϵ < 1, we define the distribution P (G, ϵ) by picking234

a random subset of vertices of G of size nϵ, keep the induced subgraph generated by this set,235

and randomize all edges not contained inside of G. Formally,236

▶ Definition 9. (Planted Subgraph Distribution). Let G = (V, E) be a graph with n vertices,237

and let ϵ ∈ (0, 1). The distribution P (G, ϵ) is defined to be the output distribution of the238

following algorithm. Start with the graph G = (V, E). Then, pick uniformly at random a239

subset S ⊂ V of vertices of size ⌈nϵ⌉. Output a graph G′ = (V ′, E′) where V ′ = V and240

Pr[{u, v} ∈ E′] =


1
2 if u /∈ S or v /∈ S,

1 if {u, v} ∈ E and u, v ∈ S,

0 if {u, v} /∈ E and u, v ∈ S.

241

242

Let {Kn}n∈N be the sequence of complete graphs over n vertices, and let G(n, 1
2 ) be the243

uniform distribution over graphs with n vertices. Note that the distribution P (Kn, ε) is244

exactly the same distribution as G(n, 1/2, nε) (that is, choosing a random graph and planting245

a random clique the same as starting with a complete graph and randomizing all edges246

outside of random small set). The Planted Clique Conjecture states that there is a constant247

ϵ0 ∈ (0, 1
2 ) such that there is no polynomial time algorithm that can distinguish between248

G(n, 1
2 ) and P (Kn, ϵ0) with high probability2. In this paper we use a slightly stronger version249

of the Planted Clique Conjecture that requires hardness for polynomial-size circuits.250

▶ Conjecture 10. There exists some ϵ0 ∈ (0, 1
2 ) such that there is no sequence of polynomial251

size circuits {Cn}n∈N satisfying252

| Pr
G∼G(n, 1

2 )
[Cn(G) = 1] − Pr

G′∼P (Kn,ϵ0)
[Cn(G′) = 1]| ≤ 1

n
.253

254

1 Taking the function f(x) = etx, we get that E[ΠetXi ] ≤ E[ΠetYi ], where the random variables {Yi} are
independent. Thus the Chernoff bound can be derived for the random variables {Xi} as well.

2 Some papers states this conjecture for all ϵ ∈ (0, 1
2 ), but for our purposes it is enough to assume the

weaker version of the conjecture.
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We observe that the non-uniform planted clique conjecture is equivalent to the following255

conjecture where we replace the sequence of graphs {Kn} with any fixed sequence of graphs256

{Gn}.257

▶ Conjecture 11. There exists some ϵ0 ∈ (0, 1
2 ) such that for any sequence of graphs over n258

vertices {Gn}n∈N, there is no sequence of polynomial size circuits {Cn}n∈N satisfying259

| Pr
G∼G(n, 1

2 )
[Cn(G) = 1] − Pr

G′∼P (Gn,ϵ0)
[Cn(G′) = 1]| ≤ 1

n
.260

261

▷ Claim 12. Conjectures 10 and 11 are equivalent.262

Proof. Clearly, Conjecture 11 implies Conjecture 10. We show the converse direction.263

Assume by way of contradiction that Conjecture 11 is false, and we show that Conjecture264

10 is false. In particular, assume that there is a sequence {Gn}n∈N of graphs and a sequence265

{Cn}n∈N of polynomial size circuits, such that266

| Pr
G∼G(n, 1

2 )
[Cn(G) = 1] − Pr

G′∼P (Gn,ϵ0)
[Cn(G′) = 1]| >

1
n

.267

Define the boolean circuit C ′
n(G) = Cn(G⊕Gn ⊕Kn), where ⊕ is the symmetric difference268

of edge sets of graphs. If G ∼ P (Kn, ε0) then G ⊕ Kn ⊕ Gn is distributed according to269

P (Gn, ε0), and if G ∼ G(n, 1/2) then G ⊕ Kn ⊕ Gn is also distributed according to G(n, 1/2).270

This implies that the sequence of circuits {C ′
n}n∈N can distinguish between a random graph271

and a random graph with a planted clique of size nϵ0 , contradicting Conjecture 10. ◀272

4 Self-Reductions for Clique273

Before proving the general theorem, we demonstrate our method on the language CLIQUE:274

we show that CLIQUE is pseudorandomly self-reducible. Thanks to the hardness of ap-275

proximation results for CLIQUE [33, 16], it is enough to consider the promise problem276

GAP-CLIQUEβ , defined below.277

▶ Definition 13. For β ∈ (0, 1), define the promise problem GAP-CLIQUEβ = (ΠYES, ΠNO)278

by279

ΠYES = {G : G is a graph with n vertices and ω(G) ≥ n1−β},280
281

and282

ΠNO = {G : G is a graph with n vertices and ω(G) < nβ}.283
284

▶ Theorem 14 ([33]). For any β > 0 the GAP-CLIQUEβ problem is NP-Hard under285

polynomial-time many-one reductions.286

We proceed to stating the main theorem of this section, which shows that GAP-CLIQUEβ287

is pseudorandomly self-reducible. By combining this with the above NP-Hardness result288

and the fact that GAP-CLIQUEβ is itself a subproblem of Clique we immediately obtain289

pseudorandom self-reducibility of Clique.290

▶ Theorem 15. If the Planted Clique Conjecture holds, then for every β ∈ (0, ϵ0), where ϵ0291

is the constant from Conjecture 11, GAP-CLIQUEβ is pseudorandomly self-reducible with292

respect to SIZE(poly).293

ITCS 2022



58:8 Pseudorandom Self-Reductions for NP-Complete Problems

Before we prove the theorem, we will need the following lemma showing that if we take a294

graph with a large clique and choose a random subset of vertices U and randomize every295

edge with at most one endpoint in U , then the size of the largest clique will not be badly296

perturbed with high probability.297

▶ Lemma 16. Let G = (V, E) be a graph over n vertices and β ∈ (0, ϵ0). Set δ := ϵ0 − β. Let298

P (G, ϵ0) be the planted distribution for G defined in Definition 9. Then, for large enough n:299

1. If ω(G) ≥ n1−β, then300

Pr
G′∼P (G,ϵ0)

[ω(G′) ≥ 1
2nδ] ≥ 1 − 2e− nδ

16 = 1 − o(1).301

302

2. If ω(G) < nβ, then303

Pr
G′∼P (G,ϵ0)

[ω(G′) <
1
2nδ] ≥ 1 − 2− 1

36 n2δ

= 1 − o(1).304

305

Proof. We start by proving the first statement. Let G′ be the graph obtained from G by306

P (G, ϵ0), let S, |S| = nϵ0 be the set of vertices in G′ preserved by P (G, ϵ0), and let T ,307

|T | ≥ n1−β be the set of the maximal clique vertices in G. We have,308

Pr[ω(G′) ≥ 1
2nδ] ≥ Pr[|T ∩ S| ≥ 1

2nδ].309
310

For a vertex v ∈ T , define an indicator random variable Xv, such that Xv = 1 if and only311

if v ∈ S. Note that Pr[Xv = 1] = nϵ0−1. We have,312

E[|T ∩ S|] =
∑
v∈T

EXv ≥ n1−β

n1−ϵ0
= nδ.313

314

By Lemma 8 we can use the Chernoff bound for the random variables Xv, even though they315

are dependent. Thus, for n large enough,316

Pr[||T ∩ S| <
1
2nδ] ≤ Pr[||T ∩ S| − E|T ∩ S|| ≥ 1

2E|T ∩ S|]317

≤ 2e−E|T ∩S|/16 ≤ 2e− nδ

16 .318
319

We move to the second part of the Lemma. Intuitively, with high probability, the largest320

clique in G′ is of size at most ω(G) + 2 log n: on the set S of preserved vertices the largest321

clique is of size at most ω(G), and with high probability the largest clique outside S is322

roughly of size 2 log n. Thus, the probability that ω(G′) ≥ 1
2 nδ is tiny. We formalize this323

intuition. Denote by G′ \ S the induced subgraph obtained by removing the vertices in S324

from G′. For large enough n,325

Pr[ω(G′) ≥ 1
2nδ] ≤ Pr[ω(G′ \ S) ≥ 1

2nδ − nβ ] ≤ Pr[ω(G′ \ S) >
1
3nδ]326

≤
(

n
1
3 nδ

)
1

2( 1
3 nδ

2 )
.327

328

Using
(

n
m

)
≤ nm we get:329 (

n
1
3 nδ

)
1

2( 1
3 nδ

2 )
≤ n

1
3 nδ

2−( 1
3 nδ

2 ) ≤ 2− 1
36 n2δ

. ◀330
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4.0.0.1 Proof of Theorem 15.331

We show that there is a pseudorandom reduction from GAP-CLIQUEβ to CLIQUE. We332

need to define the functions h and g, as required by Definition 6.333

4.0.0.2 The function g.334

On input (i, G, r), where 1 ≤ i ≤ nq, G is an encoding of a graph with n vertices, and r is a335

random binary string composed of n4 blocks of size
(

n
2
)

each, g uses the i’th block of the336

random bits in r in order to sample a graph G′ ∼ P (G, ϵ0), for ϵ0 as in Lemma 16. Then, g337

outputs G′.338

4.0.0.3 The function h.339

The function h simply computes the majority of the queries gi and answers accordingly.340

We show that the functions h and g satisfy the requirements of Definition 6. We341

need to prove that the queries are pseudorandom, and that the reduction works with high342

probability. The fact that the queries are pseudorandom follows immediately from Conjecture343

11. Considering any G output by the function g the graph G′ is distributed according to344

P (G, ϵ0). By Conjecture 11 (which is equivalent to the Planted Clique Conjecture) the345

graph G′ is indistinguishable from a uniformly random graph, and thus the queries are346

pseudorandom.347

The reduction succeeds with high probability by Lemma 16 and a standard Chernoff348

bound argument.349

5 Self-Reductions for Hereditary Properties350

Instead of searching for the largest clique in a graph, we can search for the largest induced351

subgraph satisfying some property (e.g. largest planner subgraph, largest connected subgraph,352

etc.). Formally, a graph property π is a set of graphs, closed under isomorphism. A property353

π is non-trivial if both π and its complement are infinite. For a property π and a graph G,354

denote by απ(G) the size of the largest set of nodes inducing a graph in π. The promise355

problem for π is defined in the natural way,356

▶ Definition 17. For β ∈ (0, ϵ0), where ϵ0 is the constant from Conjecture 113, define the357

promise problem GAP-πβ = (ΠYES, ΠNO) by358

ΠYES = {G : G is a graph with n vertices and απ(G) ≥ n1−β},359
360

and361

ΠNO = {G : G is a graph with n vertices and απ(G) < nβ}.362
363

For which graph properties can the pseudorandom self reduction from the previous section364

work? A more careful look at the previous result shows that in order for the reduction to365

work, it is sufficient for the property π to satisfy:366

3 We choose to address only the case where β ∈ (0, ϵ0), since our reduction only works in this range.
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1. Stability. A graph property π is stable if whenever a graph G has a “large” subgraph in367

the property π, then P (G, ϵ0) also has a “large” subgraph in the property, where P (G, ϵ0)368

is the distribution defined in Definition 9. Formally,369

απ(G) ≥ n1−β =⇒ Pr
G′∼P (G,ϵ0)

[απ(G′) ≥ 1
2nδ] ≥ 2

3 ,370

371

where ϵ0 is the constant from Conjecture 11, β ∈ (0, ϵ0) and δ = ϵ0 − β. Intuitively, it372

means that a “YES” instance is mapped to a “YES” instance.373

2. Non-density4. For a graph property π, denote by grπ(n) := |π ∩ G(n)| the number of374

graphs over n vertices in the property. A graph property π is non-dense if there exists a375

constant ϵ > 0 such that for large enough n376

grπ(n) ≤ 2(1−ϵ)(n
2).377

378

Intuitively, we need this requirement in order to make sure that in the process of379

randomizing “most” of the input graph, with high probability we did not create a large380

subgraph in the property. It means that a “NO” instance is mapped to a “NO” instance.381

3. Hard to Approximate. The conditions above give a pseudorandom self reduction for the382

promise problem GAP-π. In case we want to obtain a pseudorandom self reduction for the383

language π-SUB mentioned in the introduction, we need to use hardness of approximation384

results.385

We now characterize a family of graph properties satisfying the three above requirements.386

▶ Definition 18. A graph property π is hereditary if whenever a graph G is in π, then every387

induced subgraph of G is also in π.388

▶ Theorem 19. Let π be a non-trivial hereditary graph property. Then π is stable, non-dense389

and hard to approximate.390

First, we sketch the proof that π is stable, as it is essentially the same as in the case of391

Clique.392

Proof. Let π be a non-trivial hereditary graph property. Let G be a graph so that απ(G) ≥393

n1−β , and let H be the largest subgraph of G in the property π. As shown in the proof394

of Lemma 16, with probability at least 1 − 2e− nδ

16 , G′ ∼ P (G, ϵ0) contains a subgraph of395

H with 1
2 nδ vertices. Since π is a hereditary property, this subgraph is also in π, and so396

απ(G′) ≥ 1
2 nδ with probability at least 1 − o(1). ◀397

The hardness of approximation for non-trivial hereditary properties was proven by Lurid398

and Yannakakis [30], and was later improved by Feige and Kogan [11]. The result in [11] can399

be derandomized in the same manner as in [33] in order to obtain the following theorem.400

▶ Theorem 20. For every nontrivial hereditary property π and for every β > 0, the π-SUB401

problem cannot be approximated within a factor of n1−β, unless P = NP.402

Additionally, Bollobás and Thomason showed in [9, Theorem 8] that for a hereditary403

property π, if grπ(n) = 2cn(n
2) then cn is monotonically decreasing, therefore the following404

result follows:405

4 We call this “non-density” rather than “sparsity” since the level of density we can afford is really quite
high!
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▶ Theorem 21. Let π be a non-trivial hereditary property, then there exists some ϵ1 > 0406

such that for n large enough407

grπ(n) < 2(1−ϵ1)(n
2)

408
409

Thus, every non-trivial hereditary property is non-dense.410

To see why this requirement guarantees that a “NO” instance is mapped to a “NO”411

instance with high probability, observe the following claim.412

▷ Claim 22. Let π be a non-trivial graph property. Then for every δ > 0,413

Pr
G∼G(n, 1

2 )
[απ(G) ≥ nδ] = o(1).414

415

Proof. Let ϵ1 > 0 satisfying grπ(n) ≤ 2(1−ϵ1)(n
2), then:416

Pr
G∼G(n, 1

2 )
[απ(G) ≥ nδ] ≤

(
n

nδ

)
grπ(nδ)

2(nδ

2 )
≤ nnδ

2−ϵ1(nδ

2 ) = o(1). ◀417

Therefore Lemma 16 still holds for any non-trivial hereditary property, and so for every418

non-trivial hereditary property the language π-SUB admits a pseudorandom self-reduction.419
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