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ABSTRACT
The ability to promptly and efficiently detect arbitrarily complex

patterns in massive real-time data streams is a crucial requirement

in many modern applications. The ever-growing scale of these

applications and the sophistication of the patterns involved makes it

imperative to employ advanced solutions that can optimize pattern

detection. One of the most prominent and well-established ways

to achieve the above goal is to apply complex event processing

(CEP) in a parallel manner, using a multi-core machine and/or a

distributed environment. However, the inherent tightly coupled

nature of CEP severely limits the scalability of the parallelization

methods currently available.

In this paper, we introduce a novel parallelization mechanism for

efficient complex event processing over data streams. This mech-

anism is based on a hybrid two-tier model combining multiple

layers of parallelism. By employing a fine-grained load balancing

model, this multi-layered approach leads to a substantial increase

in event detection throughput, while at the same time reducing the

latency and the memory consumption. An extensive experimental

evaluation on multiple real-life datasets shows that our approach

consistently outperforms state-of-the-art CEP parallelization meth-

ods by a factor of two to three orders of magnitude.

CCS CONCEPTS
• Information systems → Stream management; Query opti-
mization; • Computing methodologies→ Parallel algorithms;

Distributed algorithms.
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1 INTRODUCTION
Complex event processing (CEP) is a leading technology for robust

and high-performance real-time detection of arbitrarily complex

patterns in massive data streams [26, 27, 32]. It is widely employed

in many areas where the data is continuously generated in a stream-

ing manner and needs to be promptly and efficiently analyzed on-

the-fly. Online finance [29], credit card fraud detection [68], sensor

networks [36], healthcare industry [15], and IoT applications [79]

are among the many examples.

CEP engines treat the data items that make up the input streams

as primitive events arriving from event sources. As new primitive

events are observed, they are assembled into higher-level complex
events that match the user-defined patterns. Detecting complex

events is performed by collecting primitive events and incremen-

tally combining them into partial matches. As more events are added

to a partial match, a full pattern match is eventually formed and

reported. The loose order of constructing and extending partial

matches is defined by a graph-based structure, typically an automa-

ton or a tree, composed of a set of states. Each state represents

some intermediate stage of pattern detection. Figure 1 (and 1(b) in

particular) illustrates this principle.

As discussed by multiple authors [7, 45, 54], the processing time,

latency, and resource consumption of the CEP execution grows ex-

ponentially with the length of the pattern being detected. The main

factor contributing to this growth is the need to explicitly examine a

large number of sets of events to determine whether they comprise

valid pattern matches, which leads to a crucial performance bottle-

neck. The situation is exacerbated by the tight real-time constraints

imposed on these systems, as well as by a common requirement to

simultaneously process multiple patterns and streams. Therefore,

advanced optimization techniques are essential for achieving an

acceptable quality of service.

Parallelizing CEP evaluation flows is one of the most prominent

avenues for improving the performance of event processing appli-

cations. Various techniques for allocating the workload of a CEP

system to multiple execution units and managing their parallel

execution have been proposed, addressing multi-core and fully dis-

tributed scenarios. These solutions can be roughly divided into two

separate categories: data-parallel and state-parallel methods.

Data-parallel approaches [12, 37, 51] operate by splitting the

input data stream into different partitions according to predefined

criteria and routing each partition to a dedicated execution unit;

this unit may be a thread, a process, or a separate machine. Each

unit then applies the same pattern matching process on the data it

receives, and the resulting pattern matches are merged and jointly

returned to the end users. Figure 1(a) presents an example of a
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(a) Data parallelism (b) State parallelism (c) Hybrid parallelism

Figure 1: Parallelism classes: (a) input is split into partitions and handled separately by each execution unit; (b) each building block is

represented by a dedicated execution unit that receives a substream of events and performs a well-defined sequential task; (c) a two-layer

approach combining both data parallelism and state parallelism.

parallel CEP system architecture implemented according to this

paradigm. While this scheme was proven highly efficient in many

cases, its inherent limitation lies in the difficulty of designing a

good partitioning scheme. Since any subset of data items can repre-

sent a pattern match, at least a fraction of the sub-streams must be

duplicated to multiple units to avoid missing results and to guaran-

tee detection correctness. It is also exceptionally hard to achieve

fine-grained load balancing in presence of data skew.

The second category of CEP parallelization methods is known

as state-parallel [12, 25, 73]. This approach assigns a dedicated exe-

cution unit to each building block of the pattern detection model,

making it exclusively responsible for some functional part of the

sequential pattern matching algorithm. The units are arranged ac-

cording to a predefined topology and the intermediate results of the

pattern match construction process are passed between them. An

example is shown in Figure 1(b). This parallelization scheme avoids

the data stream duplication problem that plagues data-parallel meth-

ods. However, it imposes a hard limit on the degree of parallelism as

the number of execution units is bounded by the number of states.

In this paper, we propose HYPERSONIC: a HYbrid ParallElization

appRoach for Scalable cOmpLex eveNt processIng appliCations.

HYPERSONIC implements a new paradigm for parallelizing CEP

applications, which we refer to as a hybrid-parallel approach. In a

hybrid-parallel system, the execution units are organized in two

layers, and the workload distribution proceeds in two stages. First,

a state-parallel procedure allocates a set of execution units to each

state according to its expected load. Second, a data-parallel routine is

applied within each state to share the work performed by this state

between the individual units. This process is repeated continuously

during the system run. In this way, the system can dynamically

adapt to the ever-changing data arrival rates, system properties,

and resource availability. Figure 1(c) illustrates this scheme.

By providing two distinct layers of parallelism, our approach

combines the strengths of data-parallel and state-parallel solutions

while overcoming their limitations. Unlike that of a pure state-

parallel system, the degree of parallelism in HYPERSONIC is un-

bounded. In addition, no duplicate data transmission is required:

the outer parallelization layer mimics the evaluation flow of the

state-parallel approach and only passes the data once between ad-

jacent states, while the inner parallelization layer avoids the need
for an explicit partitioning scheme by utilizing shared memory

between execution units. This latter communication mechanism

is designed in a way allowing an extension to a fully distributed

share-nothing environment. The two-tier dynamic load balancing

scheme of HYPERSONIC ensures efficient allocation of execution

units to states and of the input data to execution units based on

up-to-date data characteristics and system load.

Rather than merely constituting a load balancing scheme, HY-

PERSONIC is an end-to-end system for efficient and scalable parallel

execution of complex event processing workloads. Any method for

CEP parallelization faces a multitude of CEP-specific challenges

stemming from the inherent tightly coupled nature of the problem.

These challenges include avoiding data duplication, enabling data

sharing between the execution units, and supporting highly com-

plex operators. As we elaborate later on, our solution successfully

tackles these challenges.

The contributions of this paper can be summarized as follows:

• A novel hybrid-parallel approach for efficiently distributing

CEP workloads between multiple execution units.

• A two-level load balancing scheme based on the above sys-

tem architecture, and a thorough analysis of its performance.

• Practical extensions to the basic hybrid-parallel method al-

lowing us to further improve the performance and the re-

source utilization of pattern detection.

• An extensive experimental evaluation of our method, demon-

strating its superiority over state-of-the-art CEP paralleliza-

tion mechanisms as well as a superlinear speedup over the

sequential baseline.

The remainder of this paper is organized as follows. Section 2

presents the necessary background and formally defines the tar-

geted problem. The core design of HYPERSONIC is described in

Section 3 with important extensions covered in Section 4. We re-

port the results of our experimental study in Section 5. Section 6

discusses the related work and Section 7 concludes the paper.
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(a) Sequence pattern (b) Kleene closure pattern (c) Negation pattern

Figure 2: Example NFAs: (a) a sequence of an order, a removal from storage, and a delivery of an item; (b) a sequence of one or more

duplicate orders, a removal, and a delivery; (c) a sequence of an order and a delivery with no subsequent order cancellation.

2 BACKGROUND AND TERMINOLOGY
2.1 Event and Pattern Model
The functionality of a CEP system revolves around the notion of an

event. A primitive event 𝑒 = {𝑇, {𝑎1, 𝑎2, ..., 𝑎𝑛}, 𝑡𝑠} is an indication

that a single action of interest happened at a specific point in time.

It is associated with a single event type𝑇 , contains a set of attributes
{𝑎𝑖 }𝑛𝑖=1 and the event occurrence timestamp 𝑡𝑠 . An input event
stream 𝐼 = {𝑒1, 𝑒2, ..} is a sequence of temporally ordered events

where every two events 𝑒𝑖 , 𝑒 𝑗 with timestamps 𝑡𝑠𝑖 , 𝑡𝑠 𝑗 respectively

satisfy 𝑡𝑖 < 𝑡 𝑗 if 𝑖 < 𝑗 [35].

A CEP system receives a large, potentially infinite event stream

arriving from one or more sources and is tasked with detecting

complex events - combinations of the primitive events conforming

to the user-defined patterns.
A pattern is an expression describing the situation of interest

that a user is willing to identify. While its precise format depends on

the declarative language in use [11, 16, 23, 74], a pattern commonly

consists of the structure defining how to combine the participating

events, the Boolean conditions to be satisfied by a pattern match,

and the time window𝑊 that sets the time frame within which the

complex event is to be detected. The pattern structure is an expres-

sion over a set of operators, including sequence (SEQ), conjunction

(AND), disjunction (OR), negation (NOT), and Kleene closure (KL).

Formally, a flat pattern 𝐹𝑃 = {𝐸,𝑂,𝑊 ,𝐶} is defined by a time

window𝑊 , a set 𝐸 = {𝐸1, 𝐸2, ..𝐸𝑚} of event types, an operator 𝑂

describing the desired relation between the event types and a set of

conditions on the event types 𝐶 = {𝐶1,𝐶2,𝐶𝑘 }. A set of primitive

events𝑚 = {𝑒1, 𝑒2, ..., 𝑒𝑙 } satisfying the operator semantics and the

conditions of a pattern 𝐹𝑃 is a match of 𝐹𝑃 . Nested patterns could

be created by utilizing multiple operators to form an arbitrarily

deep operator tree (that is, the pattern structure). A nested pattern
𝑁𝑃 = {𝐸, 𝑆,𝑊 ,𝐶} is formally defined similarly to a flat pattern, with

the operator 𝑂 replaced with an operator structure 𝑆 . Interested

readers are referred to [31] for more details.

As an example, consider a warehouse serving customer orders.

The RFID tag of a served item is scanned during certain actions,

such as removing an item from storage, loading it onto a forklift,

and registering it as ready for delivery. We are interested in tracking

items ordered in the last hour and ready to be delivered.

Under the above notations, we will define each item action as a

primitive event with the event types including𝑂 (ordering an item),

𝑅 (removing from storage), 𝐷 (delivery), and C (cancellation of an

order), among others. Event attributes could include the item ID,

the name of an employee performing the action, and the details of

the customer that ordered the item. A CEP pattern representing a

recent order ready to be shipped could then be formulated as "detect
a sequence of three events of types 𝑂 , 𝑅, and 𝐷 respectively within
one hour such that the item ID of all events is the same". Applying
this pattern on an event stream of log entries listing the registered

actions would yield a list of triplets comprising the complex events.

An additional part of the pattern definition is a selection strategy,
specifying how events are selected and consumed from the input

stream. There are several widely used selection strategies [34],

including Strict contiguity and Skip till next match, which differ by

the restrictions they impose on the event selection for a match. In

this paper, we exclusively assume the skip-till-any-match strategy

which poses no restrictions on event inclusion in a match. It was

shown in [76] that the runtime complexity of this policy if combined

with Kleene closure is exponential in relation to the time window

and as such the most challenging to support from the performance

standpoint.

2.2 CEP Evaluation Mechanism
CEP systems detect complex events satisfying the predefined pat-

terns by incrementally combining incoming primitive events into

partial matches that eventually grow into full pattern matches and
are returned to the end users. This process is handled by an evalua-
tion mechanism, a graph-based data structure defining either strict

or loose order in which events of different types are processed.

Widely employed evaluation mechanisms include NFAs (nondeter-

ministic finite automata) [6, 45, 74, 76], evaluation trees [42, 54],

and EPNs (event processing networks) [31, 60].

Figure 2(a) depicts an example of a NFA detecting the sequence

pattern from Section 2.1. Each state represents a particular step

during the pattern matching process, with every traversed edge

causing a new partial match creation. The transition from the initial

state is performed upon an arrival of an event of type𝑂 , prompting

the creation of a new partial match containing this event. Conse-

quently, the outgoing transition to state 𝑂𝑅 is traversed when an

event of type 𝑅 arrives satisfying the mutual condition with some

previously obtained event of type𝑂 . The traversal and the creation

of a new partial match within state 𝑅 takes place for each valid

(𝑂, 𝑅) pair. Finally, the outgoing transition to the accepting state

𝑂𝑅𝐷 is traversed by each (𝑂, 𝑅, 𝐷) triplet representing a full match.

In [6, 44], the authors have shown how any non-nested CEP

pattern can be translated into a chain-based automaton. Figures 2(b)

and 2(c) illustrate NFAs for patterns containing a Kleene closure and

a negation operator, respectively. For nested patterns, extensions

combining multiple sub-automata have been proposed [49].
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While the ideas presented in this paper could be applied to a CEP

system utilizing any evaluation mechanism, for ease of presentation

we will solely focus on NFAs from now on.

2.3 Problem Definition
The computational cost of CEP is inherently exponential in the

length and the complexity of the pattern. In the example depicted

in Figure 2(a), if the NFA creates 100 partial matches corresponding

to 100 past 𝑂 events, any new event of type 𝑅 will be evaluated

against all of them and up to 100 new partial matches could be

created. Consequently, 100 new events of type 𝑅 can create up to

10,000 partial matches, each of which will have to be evaluated

upon each arrival of an event of type 𝐷 .

To overcome this performance bottleneck, modern CEP systems

utilize a variety of advanced optimization techniques. Parallelizing

event detection over multiple cores, VMs, or servers (which we

commonly refer to as execution units) is a popular choice.
We will formalize the targeted problem as follows.

Given a CEP evaluation mechanism𝑀 , a workload of patterns 𝑃 =

{𝑝1, ..., 𝑝𝑛}, a set of homogeneous execution units 𝑈 = {𝑢1, ..., 𝑢𝑚},
and a set of performance metrics 𝑃𝑒𝑟 𝑓 , execute𝑀 over𝑈 to detect 𝑃
in a way optimizing the metrics in 𝑃𝑒𝑟 𝑓 .

In the remainder of this paper, we use throughput and peak

memory consumption as ourmetrics in 𝑃𝑒𝑟 𝑓 . As we show in Section

5, this choice also positively impacts the average detection latency.

The solution presented in the next section assumes |𝑃 | = 1, i.e.,

only a single pattern is provided. We will target an extension to

HYPERSONIC supporting multiple patterns in our future work

(Section 7).

3 HYBRID PARALLELIZATION APPROACH
3.1 Overview
Our method is based on a two-tier parallel architecture. Given

an automaton representing the pattern to be detected, the outer
parallelization layer allocates a fraction of the available execution

units to each state. The allocations are roughly proportional to the

expected state load. Within a state, the inner parallelization process

takes place by splitting the incoming data stream between the

locally available execution units in a data-parallel manner utilizing

a local load balancing strategy. To implement this approach, we

introduce an agent - a logical unit of execution responsible for

all calculations related to a given state. The outer layer is thus

responsible for state-parallelizing the agents, while the per-agent

inner layer executes the respective units in a data-parallel manner.

Figure 3 depicts a CEP system executing a HYPERSONIC au-

tomaton that detects a sequence of four event types in an event

stream. Agents, denoted from now on by 𝐴1, ..., 𝐴𝑚 , are marked

with circles. Event streams of all agents originate at the splitter,
a lightweight component partitioning the global input stream by

event type
1
. We assume the global stream to emit events in-order.

As described in Section 2.2, the task performed by a NFA state

is to match between events belonging to a particular type and

partial matches received from the state immediately preceding it

in the automaton. Hence, each agent receives two input streams:

1
Since the splitter only inspects one event at a time to make a routing decision, it

avoids the CEP scalability problem and can thus be implemented sequentially.

Figure 3: An instance of HYPERSONIC detecting a sequence of

four event types. Vertical arrows denote the event streams, while

horizontal arrows indicate the partial match streams.

the output stream of partial matches from the preceding agent and

a substream of the system input stream restricted to the required

event type
2
. The figure also shows the local storage buffers utilized

by the agents to keep recently arrived elements. We discuss these

buffers later on. Internally, each agent matches the new events with

the accepted partial matches. The successfully extended matches

are emitted into the output stream.

While the inner parallelization layer is based on a shared mem-

ory model, the outer layer is free of any such assumption. Adjacent

agents communicate via a producer-consumer queue shared be-

tween their respective execution units, where the output stream

of a preceding agent (producer) serves as the input stream of a

succeeding agent (consumer). This makes our method naturally

applicable to single-server and mixed (an agent runs on a single

server; different agents are distributed) environments. Supporting

a fully distributed use case will be the main focus of our future

research (Section 7).

In the remainder of this section, we will present the internal

structure of an agent, the operations it supports, the load balancing

mechanism for the outer (allocating execution units to agents) and

the inner (scheduling execution units inside of an agent) layers, and

the complexity analysis of our model.

3.2 Agent Internals
Unless otherwise stated, an agent receives two input streams and

produces a single output stream
3
. These inputs are thematch stream

(MS) and the event stream (ES). The match stream is essentially the

output stream of the previous agent in the sequence containing the

partial matches detected by that agent. The ES is a substream of the

global input stream restricted to the type processed by this agent.

It is emitted by the splitter as depicted in Figure 3.

Figure 4 illustrates the internal structure of the agent 𝐴2 from

Figure 3. The task of this agent is to match between newly arrived

events of the third type in the sequence and previously formed

2
The first agent in the sequence is an important exception. It has no preceding agent

and hence it receives two input substreams corresponding to the first two event types.

3
Extensions supporting more inputs and outputs are discussed in Section 4.
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pairs of events belonging to the first two types. These pairs are

received from the preceding agent via the corresponding MS.

Due to the parallel nature of our model, the mutual order in

which events and partial matches reach a given agent cannot be

guaranteed. In Figure 4, when a new event arrives from the ES,

not all potentially fitting partial matches could be available due to

delay in processing in the preceding agent. Therefore, events have

to be buffered upon arrival and later matched against new partial

matches to guarantee detection correctness. Symmetrically, partial

matches have to be stored and evaluated against later events.

An agent addresses this need by maintaining two local buffers,

an event buffer (EB or 𝐸𝐵𝑖 for agent 𝐴𝑖 ) and a match buffer (MB or
𝑀𝐵𝑖 for agent 𝐴𝑖 ), storing events and partial matches respectively.

A newly arrived input item (either an event or a partial match) is

first evaluated against the currently stored items in the opposite

buffer (an incoming event is matched with all the matches located

in the MB, and vice versa). The extended matches created from

this evaluation are immediately transferred to the output stream of

this agent. Then, the item that triggered the calculation is stored

in its dedicated buffer (EB for events and MB for matches), thus

allowing it to be combined with future items. This procedure closely

resembles a popular strategy for parallelizing streaming joins [48,

65, 71, 78]. Since an item is only compared with items received prior

to its arrival, every event-match pair is evaluated exactly once.

The above functionality is jointly performed by a number of

parallel execution units, normally assigned to an agent on system

startup
4
. At any given moment, each execution unit takes one of the

two roles: (1) an event worker or (2) a match worker. Units assuming

the role of event workers are responsible for receiving events from

the ES, comparing them against the current content of the MB, and

storing the events into the EB. Similarly, match workers receive,

evaluate, and buffer partial matches.

It can be observed that the described method requires simulta-

neous write access of a large number of execution units to two

potentially very large data structures: EB and MB. As every worker

can add or remove items, these buffers could quickly become a

major bottleneck due to the involved synchronization cost. We

avoid this issue by distributing EB and MB among the workers.

The distributed buffers can be seen in Figure 4. Each event worker

or match worker maintains a fragment of the EB or the MB re-

spectively. When, for example, an event worker receives a new

event, it iteratively contacts all match workers to get the access to

their respective MB fragments, then pushes the event to its own

EB fragment. This design makes all inter-worker synchronization

operations pairwise and improves the system throughput. In ad-

dition, it allows the system to support a fully distributed scenario

where execution units could be located on different servers.

To avoid duplicate storage of events, which can potentially be

of large size, we introduce agent-global buffers (AGBs). An agent-

global buffer contains all events that enter an agent, either via ES

or via MS (as a part of a partial match), while the EB and MB only

hold pointers to the content of the AGB.

As we explained in Section 2.1, pattern matches are only con-

sidered valid if they appear within a predefined time window𝑊 ,

that is, the maximal timestamp difference between the events in

4
We will cover dynamic execution unit allocation in Section 4.1.

Figure 4: Internal components of the agent 𝐴2 from Figure 3. For

simplicity of presentation, the agent-global buffer is not shown.

a match does not exceed𝑊 . Hence, the locally stored events and

matches must be purged from their respective buffers once they

expire. This is necessary to avoid the extreme growth of the buffers

and to guarantee evaluation correctness that could otherwise be

violated by returning expired events as a part of a pattern match.

HYPERSONIC purges expired events during its main evaluation

loop, based on the timestamp of the latest available partial match

(𝑡𝑙𝑎𝑡𝑒𝑠𝑡 ). We define the timestamp of a partial match as the times-

tamp of the earliest event it contains. The latest partial match is

estimated upon each traversal of an event worker over the match

buffer as part of its operation. An event whose timestamp 𝑡 satisfies

𝑡 +𝑊 < 𝑡𝑙𝑎𝑡𝑒𝑠𝑡 can be safely removed. We assume𝑊 to be large

enough to exceed possible processing and communication delay

between agents. This assumption typically holds in practice unless

𝑊 is extremely small, in which case the computation complexity

of CEP is low and no parallelization is required.

Removing partial matches is done in a similar manner and is

based on events arriving in-order. We find the timestamp of the

latest event and any partial match that precedes it by at least𝑊 is

removed.

The presented agent architecture requires a minor modification

for patterns containing Kleene closure operators. As shown in Fig-

ure 2(b), NFA states handling Kleene closure contain an additional

self-loop allowing them to repeatedly extend partial matches with

more occurrences of the same event type. We implement this by

routing all output matches emitted by a Kleene closure agent to its

match stream in addition to the match stream of the next agent
5
.

3.3 Execution Unit Allocation
We present below the two layers at which load balancing is per-

formed in a hybrid-parallel CEP system. At the outer (inter-agent)

layer, the pool of available execution units is divided between the

agents. At the inner (intra-agent) layer, each execution unit assumes

either a match worker or an event worker role.

5
Note that this structure assumes a single event type under Kleene closure. Nested

patterns, including multi-type Kleene closure operators, will be thoroughly addressed

in our future research (Section 7)

5
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Table 1: Table of notations.

𝐸𝑖 The 𝑖𝑡ℎ event type in a pattern processed by HYPER-

SONIC.

𝑊 The time window size of a pattern processed by

HYPERSONIC.

𝑆𝑖 The 𝑖𝑡ℎ state in a NFA detecting the pattern processed

by HYPERSONIC.

𝐴𝑖 The 𝑖𝑡ℎ agent in the processing chain, corresponding

to 𝑆𝑖 .

𝑀𝐵𝑖 Match buffer of 𝐴𝑖 .

𝐸𝐵𝑖 Event buffer of 𝐴𝑖 .

𝑒𝑖 Average arrival rate of events of type 𝐸𝑖 .

𝑠𝑖 Average selectivity of conditions verified at the NFA

state 𝑆𝑖 .

𝑚𝑖 Average number of partial matches entering agent 𝐴𝑖
from agent 𝐴𝑖−1

𝑐𝑜𝑚𝑝𝑖 Computational load on 𝐴𝑖 .

𝑠𝑦𝑛𝑐𝑖 Synchronization load on 𝐴𝑖 .

𝑙𝑜𝑎𝑑𝑖 Total load on 𝐴𝑖 .

𝑐𝑖 Average cost of a single comparison between an event

and a match on 𝐴𝑖 .

𝑎𝑐𝑐𝑖 Average number of 𝐴𝑖 ’s buffer accesses per time unit.

𝑏𝑖 Average cost of locking a buffer fragment in 𝐴𝑖 .

𝑞𝑖 Average cost of sending partial matches on the output

queue of 𝐴𝑖 .

𝑚
𝑝𝑟𝑒𝑣

𝑖
Average rate of partial matches arriving from the

preceding agent of 𝐴𝑖 (for Kleene closure agents).

𝑣𝑖 Average size of an event of type 𝐸𝑖 .

𝑝 The system-wide size of an event pointer.

𝑎𝑖 Average number of events in a partial match of𝑀𝐵𝑖 .

3.3.1 Outer Load Balancing. The goal of the outer load balancer

could be formalized as follows: given a set𝑈 = {𝑢1, ..., 𝑢𝑛} of homo-
geneous execution units, and a set 𝐴 = {𝐴1, ..., 𝐴𝑚} of agents derived
from the NFA detecting the given pattern, partition𝑈 into𝑚 subsets
{𝑈1, ...,𝑈𝑚} corresponding to the agents in 𝐴 to maximize system
performance according to the given set of metrics 𝑃𝑒𝑟 𝑓 .

To decide on the most efficient partition, our load balancer re-

quires additional statistical properties of the input stream, namely

the average arrival rate of each event type and the selectivity (suc-

cess rate) of each condition in the pattern. In this section, we as-

sume these statistics to be constant and hence easily measurable

by executing the system on a small fraction of the input stream.

Accommodating shift in statistics will be addressed in Section 4.1.

More formally, given a pattern containing event types 𝐸1, ..., 𝐸𝑘 ,

the (average) arrival rate 𝑒𝑖 of type 𝐸𝑖 refers to the (average) num-

ber of new instances of 𝐸𝑖 arriving per time unit. Given a chain-

structured NFA consisting of states 𝑆1, ..., 𝑆𝑚+1, we will denote as
state selectivity 𝑠𝑖 the fraction of match-event pairs matched in 𝑆𝑖
whose evaluation results in a new extended partial match.

Intuitively, our goal is to have the same load on each agent so

there are no agents sitting idle while others are overloaded. To

achieve this, we model the load on each agent and then allocate the

execution units proportionally to the calculated load. Note that, due

to the assumed homogeneity of the execution units, it is enough to

only calculate the sizes |𝑈1 |, ..., |𝑈𝑚 |. Let 𝑙𝑜𝑎𝑑𝑖 denote the load on

the 𝑖𝑡ℎ agent. Then, the following is the number of execution units

that the load balancer assigns to this agent:

|𝑈𝑖 | =
𝑙𝑜𝑎𝑑𝑖
𝑚∑
𝑗=1

𝑙𝑜𝑎𝑑 𝑗

· |𝑈 |.

We define the total agent load as the sum of its computation load

and synchronization load: 𝑙𝑜𝑎𝑑𝑖 = 𝑐𝑜𝑚𝑝𝑖 +𝑠𝑦𝑛𝑐𝑖 . To calculate 𝑐𝑜𝑚𝑝𝑖
and 𝑠𝑦𝑛𝑐𝑖 , we will first define the (average) partial match arrival
rate𝑚𝑖 as the (average) number of partial matches entering agent

𝐴𝑖 from agent 𝐴𝑖−1 per time unit.𝑚𝑖 can be recursively calculated

using the following rule:

𝑚𝑖 =

{
𝑒1, 𝑖 = 2;

2𝑚𝑖−1𝑒𝑖−1𝑠𝑖−1𝑊 𝑖 > 2.

The explanation to this rule is as follows. Each agent except for

the first one in the sequence receives 𝑒𝑖 incoming events and𝑚𝑖
incoming matches. Each event is matched against each buffered

match, and, on average, |𝑀𝐵𝑖 | =𝑚𝑖𝑊 . Considering the condition

selectivity, for each incoming event𝑚𝑖𝑊 · 𝑠𝑖 output matches are

generated for the total of 𝑒𝑖 ·𝑚𝑖𝑊 · 𝑠𝑖 . Similarly, the average size of

the event buffer is |𝐸𝐵𝑖 | = 𝑒𝑖𝑊 , and the incoming partial matches

contribute 𝑚𝑖 · 𝑒𝑖𝑊 · 𝑠𝑖 output matches. The first agent in the

sequence represents the first two states in a NFA and receives two

event substreams (Section 3.1). For convenience of notation, we

will start counting agents from 𝑖 = 2 and set |𝑈1 | = 0.

Following the same logic, it can be observed that the average

number of computations is proportional to the sum of the number

of comparisons between the events in ES and matches in MB, and

between the matches in MS and events in MB, i.e., 2𝑒𝑖𝑚𝑖𝑊 . Let 𝑐𝑖
denote the average cost of a single comparison between an event

and a match on agent 𝐴𝑖 . Obviously, 𝑐𝑖 differs between agents due

to the different sizes of partial matches and can be found empirically.

Then, the average number of computations per time unit is given

by 𝑐𝑜𝑚𝑝𝑖 = 2𝑐𝑖𝑒𝑖𝑚𝑖𝑊 .

As we described in Section 3.2, the average number of synchro-

nization actions on an agent depends on the number of times a

worker accesses a fragment of the buffer of the opposite role, that

we will denote as 𝑎𝑐𝑐𝑖 . For each incoming event, this is the number

of the allocated match workers, and vice versa. As these numbers

6
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are not known in advance during load calculation, we will use an

approximation assuming equal allocation. That is, for calculating

𝑎𝑐𝑐𝑖 we assume that each agent receives the same number of 𝑛/𝑚
workers and exactly one half was assigned each role, resulting in

𝑛/2𝑚 event and match workers.

Defining 𝑏𝑖 as the cost of locking a buffer fragment, we obtain

𝑎𝑐𝑐𝑖 = 𝑒𝑖 ·
𝑛

2𝑚
+𝑚𝑖 ·

𝑛

2𝑚
=
(𝑒𝑖 +𝑚𝑖 )𝑛

2𝑚
.

In addition, the synchronization load includes the cost of sending

partial matches using the concurrent queue at a rate of𝑚𝑖+1 at a
load cost of 𝑞𝑖 . Thus, the total synchronization load of an agent is

𝑠𝑦𝑛𝑐𝑖 = 𝑎𝑐𝑐𝑖𝑏𝑖 + 𝑞𝑖𝑚𝑖+1 =
(𝑒𝑖 +𝑚𝑖 )𝑛𝑏𝑖

2𝑚
+ 𝑞𝑖𝑚𝑖+1 .

For agents implementing a Kleene closure operator,𝑚𝑖 is calcu-

lated differently due to the presence of a self-loop. Due to lack of

space, we omit the intermediate steps and only present here the

final expression:

𝑚𝑖 =𝑚
𝑝𝑟𝑒𝑣

𝑖

©«1 +
𝑒𝑖𝑊∑︁
𝑗=1

(
(𝑒𝑖 ) 𝑗 (𝑠𝑖 ) 𝑗𝑊 𝑗

)ª®¬ ,
where𝑚

𝑝𝑟𝑒𝑣

𝑖
is the rate of partial matches arriving from the pre-

ceding agent.

3.3.2 Inner Load Balancing. The goal of the inner load balancer is

to assign the roles of event and match workers to these execution

units such that the throughput and the peak memory consumption

of 𝐴𝑖 are optimized.

Initially, worker roles are assigned to execution units using a

simple heuristic that chooses a half of the units at random to be

event workers, and the rest to be match workers. However, our

empirical evaluation results show that this strategy often leads to

workers becoming idle for long periods of time due to discrepan-

cies between the values of 𝑒𝑖 and 𝑚𝑖 , which ultimately leads to

suboptimal system performance.

Furthermore, even if a smarter strategy for assigning intra-agent

roles was implemented, it would not solve the problem in its en-

tirety. On-the-fly fluctuations in the input statistics could lead to

significant deviations of 𝑒𝑖 and 𝑚𝑖 from their initial values [41],

severely degrading the event detection process. As an example,

a sudden increase in 𝑒𝑖 could lead to a faster growth of 𝐸𝐵𝑖 , in-

creasing the number of events evaluated against each new partial

match. Consequently, the processing rate of partial matches would

slow down, leading to slower growth of 𝑀𝐵𝑖 . This would allow

the event workers to handle new events even faster due to fewer

evaluations needed, further increasing 𝐸𝐵𝑖 and exacerbating the

problem. The imbalance between the match workers and the event

workers would keep growing, with the former being overloaded

and the latter staying idle most of the time.

To improve the stability, flexibility, and adaptivity of our system,

we utilize the role-dynamic model. On startup, each execution unit

allocated to an agent receives a primary role and assumes the other

role to be its secondary. Primary roles are assigned by splitting the

units into two equal sets at random. At runtime, an execution unit

first tries to follow its primary role. If no work is currently available

(that is, the corresponding stream is empty), it temporarily proceeds

to the secondary role and checks the second input stream for input.

As we show in Section 5, this strategy allows to efficiently spread

the load on an agent and overcome runtime situations where one

of the input streams has a significantly higher rate than the other.

As the execution units alternate between their roles, they have

to simultaneously manage fragments of both the EB and the MB

and satisfy access requests for both from other units. While this

leads to more synchronization operations as compared to the basic

model, the benefits greatly outweigh this negative impact.

3.4 Complexity Analysis
The total number of calculations performed by the system per time

unit is given by

𝑚∑
𝑖=1

𝑐𝑜𝑚𝑝𝑖 , where 𝑐𝑜𝑚𝑝𝑖 is given by the formula

provided in Section 3.3.1. As expected, a larger time window, faster

arrival rate of events, and longer patterns all generate more calcu-

lations and increase this value.

Memory complexity is given by the sum of the sizes of all event

buffers and match buffers in the system. As discussed in Section 3.2,

all buffers only contain pointers of a constant size 𝑝 , while the actual

events are located in agent-global buffers. As each buffer stores

both events received from its agent stream as well as potentially

all events from the previous agents (received via MS), the size of

all agent-global buffers containing the actual events (Section 3.2) is

given by

𝑛∑
𝑖=1
(𝑒𝑖𝑣𝑖𝑊 +

𝑖−1∑
𝑗=1

𝑒 𝑗𝑣 𝑗𝑊 ), where 𝑣𝑖 is the average size of an

event that is handled by agent 𝐴𝑖
6
. The size of an event buffer 𝐸𝐵𝑖

is given by |𝐸𝐵𝑖 |𝑝 , where 𝑝 is the size of an event pointer, which

we assume to be a system-wide constant. Each partial match in

𝑀𝐵𝑖 contains pointers to events of types covered by the previous

agents in the sequence. Let 𝑎𝑖 be the average number of events in a

partial match of𝑀𝐵𝑖 . Then, the size of a match buffer𝑀𝐵𝑖 is given

by |𝑀𝐵𝑖 |𝑎𝑖𝑝 . For a non-Kleene agent, 𝑎𝑖 = 𝑎𝑖−1 + 1. For an agent

𝑖 containing a Kleene closure operator, the self-loop traversal is

taken into account, resulting in the following expression:

𝑎𝑖 = 𝑎𝑖−1 +
𝑒𝑖𝑊∑︁
𝑗=1

𝑚
𝐾𝐶 𝑗
𝑖
· 𝑗

𝑒𝑖𝑊∑
𝑘=1

𝑚
𝐾𝐶𝑘
𝑖
+𝑚𝑝𝑟𝑒𝑣

𝑖

+ 1,

where𝑚
𝐾𝐶 𝑗
𝑖

is the rate of partial matches arriving from the self-

loop that has exactly 𝑗 events of the type 𝐸𝑖 . Calculation of this

value is omitted due to lack of space.

By summing the sizes of all buffers, including the global event

buffer, we obtain the following expression for the memory com-

plexity of our mechanism:

𝑛∑︁
𝑖=1

©«𝑒𝑖𝑣𝑖𝑊 +
𝑖−1∑︁
𝑗=1

𝑒 𝑗𝑣 𝑗𝑊 + (𝑒𝑖𝑊 +𝑚𝑖𝑎𝑖𝑊 )𝑝ª®¬ .
Similarly to the throughput, the expected memory usage scales

with the time window, the arrival rates, and the pattern length.

The number of synchronization actions per time unit was also cal-

culated in the previous subsection and it equals
(𝑒𝑖+𝑚+𝑖)𝑛𝑏𝑖

2𝑚 +𝑞𝑖𝑚𝑖+1.
This expression is most affected by the time window, because a

6
As events of different types can contain different sets of attributes, their sizes could

also differ.
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(a)

(b)

Figure 5: An agent-dynamic execution unit allocation example.

Triangles denote execution units. (a) Initial allocation, agent 𝐴3 is

overloaded due to the shift in event arrival rates; (b) An idle worker

of 𝐴2 joins 𝐴3 after finding available items in EB or MB of 𝐴3.

larger window leads to more evaluations and therefore more syn-

chronization actions. Also, as expected, more workers in the system

require more synchronization.

4 OPTIMIZATIONS AND EXTENSIONS
The hybrid-parallel approach presented above combines the strengths

of state-parallel and data-parallel methods and overcomes their

weaknesses. It provides an unbounded degree of parallelism since

any number of execution units can be allocated to an agent. In ad-

dition, no complex synchronization protocol between the agents is

required as the different agents communicate via the match streams.

However, the hybrid parallelization scheme also inherits some

of the distinctive drawbacks of the other two approaches. Like

in any data-parallel method, it employs a complex execution unit

allocation scheme which is highly sensitive to fluctuations in the

statistical properties of the input stream. Similarly to state-parallel

mechanisms, the pipelined structure of its outer level imposes a

high lower bound on the event detection latency.

In this section, we present two system optimizations that aid

in minimizing the impact of runtime changes on the performance

and in reducing the detection latency. We experimentally evaluate

these optimizations in Section 5. In addition, we discuss how our

model could be extended to operate in more diverse scenarios.

4.1 Agent-Dynamic Execution Unit Allocation
As we discussed in Section 3.3.2, on-the-fly fluctuations in the mea-

sured stream statistics could render the initial allocation inefficient.

Here we address the outcome of this problem at the outer layer of

the hybrid model: some agents become idle for long periods of time,

while others collapse under heavy load.

To address this problem, we incorporate a solution that we call

the agent-dynamic model. In addition to the worker roles, now each

execution unit has a primary agent, the agent to which this unit

was assigned during the initial allocation (Section 3.3.1). The input

selection strategy is summarized in Algorithm 1. First, a worker

tries to get an item from its primary agent in line 2. It can get either

an event or a partial match as per the role-dynamic model explained

in Section 3.3. When no work is available on the primary agent

for both the primary and the secondary role of some execution

unit, it picks an agent at random and attempts to evaluate items

from its input streams, as shown in the lines 4-5. If the new agent

is also idle (that is, it has no available events or partial matches),

the random search continues. Once a non-idle agent is found, it

becomes the current agent of this execution unit, with the latter

effectively changing its allocation from the primary agent to the

current one. Finally, the function returns both the input and the

agent that was chosen to process it. That agentwould be the primary

agent in the subsequent call to the function.

1 get_input_item(primary_agent):

2 input← get_item_from_stream(primary_agent)

3 while (input == null):

4 primary_agent← get_random_agent()

5 input← get_item_from_stream(primary_agent)

6 return input, primary_agent

Algorithm 1: Agent-dynamic input selection algorithm.

Figure 5 illustrates the idea. In a system containing three agents

𝐴1, 𝐴2, 𝐴3 and nine execution units, initially three units are assigned

to each agent based on the known statistics. At somemoment during

the run, the input distribution changes and𝐴3 becomes overloaded,

while at the same time the load on 𝐴2 decreases (Figure 5(a)). As a

result, an idle worker on 𝐴2 picks a new agent at random. As the

load on 𝐴1 still matches the number of allocated workers, 𝐴3 ends

up being selected and hosts the worker from now on (Figure 5(b)).

Moving from one agent to another requires an execution unit to

initialize and maintain a new buffer fragment, while the previous

one expires only when all of its contained items expire. To avoid

situations in which an execution unit switches agents frequently

and holds a large number of buffer fragments, we limit the rate of

such "hops" to at most one per𝑊 . We also prevent the last event

worker and the last match worker of an agent from migrating.

An alternative solution for the presented problem would be to

implement a more intelligent algorithm, periodically estimating the

up-to-date load 𝑙𝑜𝑎𝑑𝑖 of each agent 𝐴𝑖 and routing idle execution

units to agents with the highest load. At the first glance, this strategy

could make the system immediately locate the bottlenecks and

converge faster. However, this advantage is not as significant as it

may seem. To identify the most loaded agent, an idle unit has to

inspect all, or at least a large fraction of load indicators. To that

end, it either has to contact multiple agents, or utilize some kind

of centralized memory, violating the fully decentralized design.

In addition, a load indicator could be updated at any time and

introduce potential race conditions, making the decisions of the

idle units unreliable.

8
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(a)

(b)

Figure 6: An example of agent fusion. Triangles denote execution

units. (a) Before fusion: agent 𝐴1 is overprovisioned despite only

having two assigned execution units; (b) After fusion: the new agent

𝐴1−2 now has four execution units of which two will possibly be

reallocated due to another iteration of the unit allocation procedure.

4.2 Agent Fusion

1 cost_allocation_with_fusion(agents, input_parameters):

2 allocations← allocate_workers(agents,

input_parameters)

3 for 𝑖 = 0; 𝑖 < agents.size ; 𝑖++:

4 if allocations[𝑖] < 2 :

5 if allocations[𝑖 − 1] < allocations[𝑖 + 1] :
6 𝐴← fuse_agents(𝐴𝑖−1, 𝐴𝑖 )
7 agents.remove(𝐴𝑖−1, 𝐴𝑖 )
8 else:

9 𝐴← fuse_agents(𝐴𝑖 , 𝐴𝑖+1)
10 agents.remove(𝐴𝑖 , 𝐴𝑖+1)
11 agents.add(𝐴)
12 allocations← allocate_workers(agents,

input_parameters)

13 return allocations

14 fuse_agents(𝐴𝑖 , 𝐴𝑖+1) :
15 𝐴← new_agent()

16 𝐴.𝐸𝑆 ← merge(𝐴𝑖 .𝐸𝑆,𝐴𝑖+1 .𝐸𝑆)
17 𝐴.𝑀𝑆 ← 𝐴𝑖 .𝑀𝑆

18 𝐴.output← 𝐴𝑖+1.output
19 return 𝐴

Algorithm 2:Worker allocation with fusion.

While HYPERSONIC does not define an upper bound on the

parallelism degree, it requires a minimal number of execution units

to operate. For each agent, at least one event worker and at least one

match worker are needed to guarantee that no results are lost. For a

pattern with𝑚 types, this results in a lower bound of 2𝑚−2workers
(Section 3.3.1). In addition, the detection latency is bounded from

below by the time needed to perform𝑚 − 2 inter-agent transfers of
a partial match.

Depending on the user requirements, this situation could be

acceptable when resource utilization of all agents is high. However,

it might cause "lightweight" agents to be overprovisioned. Given an

agent that matches between very rare event types or performing a

computationally light computation, the load calculation described

in Section 3.3.1 will typically assign this agent a tiny fraction of

execution units. However, the actual allocation will be different due

to the lower limit of two units. While the load balancing problem

could be solved with agent-dynamic allocation, the latency bound

would still persist despite the undeniable redundancy of this agent.

As an example, consider an instance of HYPERSONIC with three

agents 𝐴1, 𝐴2, 𝐴3. Further, assume that no condition is defined be-

tween the event types processed by 𝐴1, that is, its only job is to

forward pairs of events to 𝐴2. Even if we only allocate one match

worker and one event worker to 𝐴1, this might lead to underutiliza-

tion of resources. This scenario is presented in Figure 6(a).

As a solution, we introduce agent fusion. Fusion [38] refers to

merging two or more processing units into one as an optimization

step. In our case, fusion is performed by uniting two consecutive

agents, at least one of which is overprovisioned as described above,

into a single structure preserving their joint functionality. The

fusion procedure is shown in detail in Algorithm 2.

More formally, given a pair of agents 𝐴𝑖 and 𝐴𝑖+1 with input

streams and buffers as defined in Section 3.2, agent fusion is done as

follows. The fused agent𝐴𝑖 retains the input match stream𝑀𝑆𝑖 and

has two input event streams 𝐸𝑆𝑖 and 𝐸𝑆𝑖+1 (lines 16-17 in Algorithm
2). The output stream of 𝐴𝑖 is identical to that of the original 𝐴𝑖+1
(line 18 in Algorithm 2). In addition, 𝐴𝑖 contains two event buffers

and two match buffers corresponding to those of 𝐴𝑖 and 𝐴𝑖+1, and
all of their execution units, whose roles are reassigned following

the fusion operation. Each match worker now contains a fragment

of both𝑀𝐵𝑖 and𝑀𝐵𝑖+1, and each event worker contains a fragment

of 𝐸𝐵𝑖 and 𝐸𝐵𝑖+1.
The matching procedure in a fused agent emulates the joint

functionality of the two underlying agents. A new event 𝑒𝑖 arriving

from 𝐸𝑆𝑖 is stored in 𝐸𝐵𝑖 and evaluated against 𝑀𝐵𝑖 , with new

matches resulting from this evaluation written into𝑀𝐵𝑖+1 rather
than transferred to the next agent. Upon arrival of an event 𝑒𝑖+1
from 𝐸𝑆𝑖+1, it is stored in 𝐸𝐵𝑖+1, matchedwith the contents of𝑀𝐵𝑖+1
and the results are written to the output stream of 𝐴𝑖 . Matches

arriving from𝑀𝑆𝑖 are stored in𝑀𝐵𝑖 , then compared to the events

in 𝐸𝐵𝑖 , with each result written to𝑀𝐵𝑖+1 triggering a comparison

against 𝐸𝐵𝑖+1. As each worker in the fused agent maintains two

buffer fragments, having only two workers, rather than a minimum

of four, is sufficient for the agent to operate.

Figure 6(b) illustrates the idea. By merging the "lightweight"

agent 𝐴1 with the adjacent 𝐴2, we eliminate the need to allocate

two execution units to𝐴1. We also reduce the number of inter-agent

communication channels, thus lowering the latency.

Algorithm 2 depicts the application of the fusion mechanism

during the initial allocation phase. When the execution unit num-

ber |𝑈𝑖 | for some agent 𝐴𝑖 is smaller than 2, the fusing process

9
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is initiated (line 4). As the condition in line 5 states, 𝐴𝑖 is fused

with either the preceding or the succeeding agent (the one with the

smaller load, lines 6-10). Subsequently, the unit allocation procedure

is restarted in line 12.

5 EXPERIMENTAL EVALUATION
In this section, we present the results of our experimental study. We

evaluated HYPERSONIC against state-of-the-art parallel solutions

and assessed the impact of the extensions presented in Section 4.

5.1 Experimental Setup
All our experiments were conducted on two real-world datasets. The

first dataset was taken from the NASDAQ stock market historical

records [2]. Each record represented a single update to the price of

a stock. The data we used spanned a one month period covering

over 2100 stock identifiers with prices updated periodically. Our

input stream contained 6,239,997 primitive events where each event

is a stock price update consisting of a stock identifier, a timestamp,

and a current price. A separate event type was defined for each

identifier. The second dataset included 13,956,534 measurements

from smart home sensors utilized for recognizing human activities

[22]. An event is a sensor reading containing a timestamp, the

activity recorded by the sensor (that we defined as the event type),

and 33 additional attributes providing raw data such as the person

acceleration and the distance from predefined locations.

For each of the datasets, we created over 10 patterns varying in

structure and ranging between 3 and 7 participating event types.

Each pattern represented a sequence of primitive events, with about

20% of the patterns containing either a negation or a Kleene closure

operator on some event type. For the Kleene closure patterns, all

queries used were of the same length, because the Kleene closure

operator was the most demanding by a wide margin, and thus

changing the pattern’s length would not produce significantly dif-

ferent results. Each pattern included a number of dataset-specific

predicates, roughly equal to the pattern length, motivated by real-

world use cases related to the respective domain of each dataset as

we specify below.

For the stock dataset, the conditions were motivated by the

problem of detecting closely correlated stock tickers. To that end,

we augmented each eventwith an additional attribute named history
and containing an array of 20 last recorded stock prices. A condition

between stock ticker identifiers 𝐴 and 𝐵 was then formulated as

𝐶𝑜𝑟𝑟 (𝐴.ℎ𝑖𝑠𝑡𝑜𝑟𝑦, 𝐵.ℎ𝑖𝑠𝑡𝑜𝑟𝑦) > 𝑇 , where 𝐶𝑜𝑟𝑟 stands for Pearson’s

correlation coefficient [58] and 𝑇 is a predefined threshold. Table 2

lists the queries for used for the stocks dataset.

For the sensor dataset, the conditions were designed to detect

transitions between zones. A typical condition was of the form

𝐴.𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑋 < 𝐵.𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑌 , where 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑋,𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑌 denote

the attributes specifying the distance of the person from locations

such as a bathroom or a bedroom.

We selected throughput, latency, and memory consumption as

our performance metrics for this study. Throughput was defined as

the number of primitive events processed per second. To estimate

the memory consumption, we measured the peak memory required

by the system during evaluation. Finally, the latency of detecting

Table 2: Query templates used during the experiments.

Stocks Queries - A

𝑄𝐴
1

SEQ(𝑆1, 𝑆2,..., 𝑆𝑛) 𝑛 ∈ {3, 7}
WHERE ∀𝑖 ∈ {2, 𝑛}: Corr(𝑆𝑖 − 1, 𝑆𝑖) > T

𝑄𝐴
2

SEQ(𝑆1,..., KLEENE(𝑆 𝑗),..., 𝑆𝑛) 𝑛 ∈ {6}
WHERE ∀𝑖 ∈ {2, 𝑛}: Corr(𝑆𝑖 − 1, 𝑆𝑖) > T

𝑄𝐴
3

SEQ(𝑆1,...,NEG(𝑆 𝑗),..., 𝑆𝑛) 𝑛 ∈ {3, 7}
WHERE ∀𝑖 ∈ {2, 𝑛} \ { 𝑗}: Corr(𝑆𝑖 − 1, 𝑆𝑖) > T

Sensor Queries - B

𝑄𝐵
1

SEQ(𝑆1, 𝑆2,..., 𝑆𝑛) 𝑛 ∈ {3, 7}
WHERE ∀𝑖 ∈ {2, 𝑛}: 𝑆𝑖.distance > 𝑆𝑖−1.distance

𝑄𝐵
2

SEQ(𝑆1,..., KLEENE(𝑆 𝑗),..., 𝑆𝑛) 𝑛 ∈ {6}
WHERE ∀𝑖 ∈ {2, 𝑛}: 𝑆𝑖.distance > 𝑆𝑖−1.distance

𝑄𝐵
3

SEQ(𝑆1,...,NEG(𝑆 𝑗),..., 𝑆𝑛) 𝑛 ∈ {3, 7}
WHERE ∀𝑖 ∈ {2, 𝑛} \ { 𝑗}: 𝑆𝑖.distance > 𝑆𝑖−1.distance

a pattern match was calculated as the difference between the de-

tection time of the match and the arrival time of the latest event

comprising it. All metrics were acquired separately for each of the

generated patterns, and the presented results were then calculated

by taking the average.

We evaluated HYPERSONIC against a sequential baseline, a state-

parallel approach, and two state-of-the-art data-parallel methods,

RIP and LLSF. In a state-based system [12], each NFA state is as-

signed a single execution unit. RIP [12] divides the input stream

into batches according to the event sequence number in a round-

robin manner. LLSF (least-loaded-server-first) [75] utilizes a greedy

heuristic, allocating each event to the execution unit with the low-

est measured load. For more information on these and other CEP

parallelization methods, we refer the reader to Section 6.

In our implementation of all evaluated methods, we have thor-

oughly ensured that each method returns all matches in the dataset,

and only those matches. In all our experiments, we validated that

the matches emitted by all compared algorithms are identical and

include all existing matches, and only them.

The initial event arrival rates and condition selectivities required

for allocating the execution units (Section 3.3) were measured as a

preprocessing step using the techniques described in [41]. As we

discussed in Section 4.1, these values may frequently and signif-

icantly fluctuate during runtime. We demonstrate the impact of

these oscillations in a dedicated experiment (Figure 11).

All experiments were run on a single server with 24 physical

cores, 2.20 GHz CPU, and 16.0 GB RAM. The parallel systems were

given all 24 cores unless stated otherwise. All models and algorithms

were implemented in Java.

5.2 Experimental Results
5.2.1 State-of-the-art comparison. Figures 7-9 show the perfor-

mance metrics obtained during comparative evaluation of HYPER-

SONIC against the baseline sequential CEP evaluation mechanism,

the state-based approach, and the state-of-the-art RIP and LLSF

algorithms as presented in Section 5.1. The results are presented

using logarithmic scale. To assess the scalability of the examined
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 7: Relative throughput gain of HYPERSONIC, RIP, LLSF, and

the state-based method over a sequential baseline (logarithmic scale,

higher is better), applied on the stock dataset ((a)-(c)) and on the

sensor dataset ((d)-(f)), as a function of: (a),(d) time window; (b),(e)

number of cores; (c),(f) pattern length. HYPERSONIC outperforms

RIP by 2 to 3 orders of magnitude, and achieves 2 to 50 times higher

throughput than LLSF.

methods in various scenarios, we experimented with different de-

grees of parallelism (i.e., number of available cores) and pattern

time windows.

Throughput comparison is displayed in Figure 7. For clarity of

presentation, we report the results in terms of the relative through-

put gain of the parallel methods over the sequential baseline. In

addition to the time window and the number of cores, we also

repeated the experiments for patterns of different length.

HYPERSONIC consistently achieves a considerable throughput

gain over the non-parallelized system, reaching an improvement

of up to three orders of magnitude. A key factor in obtaining high

superlinear speedup is faster access of memory in HYPERSONIC, a

result of efficient parallelization of memory distribution and usage.

Indeed, memory is a major bottleneck of CEP systems, caused by

the high number of partial matches that need to be stored and fre-

quently accessed. In turn, large and frequently accessed memory

usage causes a high rate of misses in the memory hierarchy. HY-

PERSONIC memory balancing scheme avoids duplicate storage of

partial matches, which leads to close-to-optimal distribution of the

corresponding memory accesses (see Figure 9). In turn, per-core

memory and access reduction enable much better cache utilization,

leading to less cache misses and improving the average memory ac-

cess considerably (for more details, see also [62]). This leads to the

following "super-scalability" phenomenon: the higher the number

of cores assigned to HYPERSONIC the better it uses each of them

and the better are its chances for achieving superlinear speedup.

Figure 7 also shows that the obtained speedup is proportional

to the increase in pattern complexity, both in terms of longer time

(a) (b)

(c) (d)

(e)

Figure 8: Pattern detection latency of HYPERSONIC and state-of-

the-art methods, RIP and LLSF (logarithmic scale, lower is better),

applied on the stock dataset ((a),(b)) and on the sensor dataset

((c),(d)), as a function of: (a),(c) time window; (b),(d) number of

cores. For large windows and parallelism degrees, the latency of

HYPERSONIC is 2 to 60 times smaller than that of the runner-up.

windows and larger pattern lengths.This outcome was expected as

longer patterns (in terms of number of event types) as well as longer

time windows are known to lead to an exponential rise in per-event

computations, a well-established result in CEP research [39, 42,

45, 54, 59, 76]. Consequently, the computation to synchronization

action ratio grows with the pattern length and the window size,

which benefits parallel systems. Also, longer patterns have more

agents and hence less workers per agent, leading to lower inter-

agent synchronization degree.

Similar to the results mentioned above, Figures 7(b) and 7(e) show

that the hybrid-parallel approach also scales well when addingmore

execution units. In comparison, LLSF only displayed a steady and

consistent increase in the throughput gain as a function of the

pattern length, while RIP did not scale at all with the growth in

any of the considered parameters. The state-based approach scales

better than RIP and LLSF with the pattern complexity but fails

to scale with the number of cores as the additional cores are not

utilized by that approach. All in all, HYPERSONIC outperformed

the RIP algorithm by a factor of two to three orders of magnitude,

and achieved 2 to 50 times higher throughput than LLSF while

improving over the state-based method by up to 70 times.

Parallelized CEP mechanisms often suffer from increased latency

due to out-of-order pattern detection and the overhead of commu-

nication between the execution units. However, an efficient load

balancing scheme could greatly reduce the latency by decreasing
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the average time spent by a data item in an input queue while

waiting to be processed. The superiority of the two-tier load bal-

ancing strategy of HYPERSONIC can be observed in Figure 8 that

depicts the latency of the compared methods obtained during our

experiments as a function of the time window size and the number

of cores. Except for a few relatively simple scenarios (small time

window size for the stock dataset and low parallelism degree for

the sensor dataset) our method operates with the lowest latency.

Remarkably, there is no consistent runner-up, as both RIP and LLSF

struggled to maintain their advantage.

Figure 9 demonstrates the peak memory consumption of each

of the compared methods. The memory consumption of a parallel

system was approximated by independently measuring the highest

memory usage in each execution unit and summing the results.

The results fully match our analysis in Section 3.4, as the per-

formance deteriorates nearly linearly with an increase in the time

window. Additionally, while we expected all parallel runs to con-

sume more memory as compared to the sequential baseline due

to the simultaneous processing of events and partial matches, HY-

PERSONIC actually demonstrated a reduction in memory usage in

most experiments. This can be explained similarly to the latency

improvement: an efficient load balancing strategy minimizes the

waiting time of a data item and thus considerably reduces the av-

erage queue length. For large patterns, the partial matches are the

most dominant contributor to the memory consumption as they

represent sets of primitive events. By reducing the average time

a pattern match waits to be processed, HYPERSONIC decreases

the average number of simultaneously buffered partial matches. In

addition, since the procedure of purging expired partial matches is

performed in parallel by all participating execution units, it takes

less time on average for an expired match to be deleted.

Figure 10 shows the impact of our load balancing scheme on the

system performance. As described in 3.3, HYPERSONIC allocates

workers to agents based on their expected load. To demonstrate

the effectiveness of this allocation, we evaluated the throughput

of a restricted version of HYPERSONIC, where the load balancing

was disabled and all agents were given an equal number of workers.

This version was compared to the version of HYPERSONIC that

includes the load balancing described in Section 3.3. As can be

observed in Figure 10, the cost model allocation performs 1.8 to 3

times better than the trivial allocation.

5.2.2 Impact of extensions on the system performance. We tested

the effect of the extensions proposed in Section 4 on the perfor-

mance of HYPERSONIC. This study was conducted solely on the

stock dataset, and we experimented with varied window lengths

and number of cores.

Figure 11 depicts the impact of applying agent-dynamic execu-

tion unit allocation as opposed to only using role-dynamic alloca-

tion (Section 4.1). Applying this optimization results in the consis-

tent boost in throughput for every tested configuration. However, it

can be observed that HYPERSONIC benefits from this extension the

most when the parallelism degree is low. There are two reasons for

this observation. First, an idle execution unit degrades the system

performance by a larger fraction when the overall number of units

is lower. Because the agent-dynamic allocation utilizes the idle

units, systems where the relative importance of a single execution

(a) (b)

(c) (d)

(e)

Figure 9: Peak memory consumption of HYPERSONIC and state-of-

the-art methods, RIP and LLSF (logarithmic scale, lower is better),

applied on the stock dataset ((a),(b)) and on the sensor dataset

((c),(d)), as a function of: (a),(c) time window; (b),(d) number of

cores. For large windows and parallelism degrees, HYPERSONIC

consumes at least 5 times less memory than the runner-up.

Figure 10: Average relative throughput (higher is better) of HY-

PERSONIC as compared to a restricted version of HYPERSONIC

where the load balancing scheme is replaced with a trivial alloca-

tion. The graph is displayed as a function of the time window. Our

load balancing model allows to improve the throughput of "raw"

HYPERSONIC by a factor of up to 3. The error bars indicate the

minimal and the maximal values obtained over all patterns.

unit is higher gain more from utilizing this strategy. The second

reason is the synchronization overhead introduced by the agent-

dynamic allocation. This overhead grows with the total number of

the available execution units, resulting in smaller improvement in

the system throughput when this number is larger.
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(a) (b)

Figure 11: Throughput (higher is better) achieved by applying the

agent-dynamic allocation extension (Section 4.1) as compared to

the basic version, displayed as function of (a) the time window and

(b) the number of cores.

(a) (b)

Figure 12: Latency (lower is better) achieved by applying the fusion
extension (Section 4.2) as compared to the basic version, displayed

as function of (a) the time window and (b) the number of cores.

In Figure 12, we present the results of applying fusion on the

initial set of agents. The experiments were performed on a fixed

set of three patterns of length 6. For each pattern, we fixed a pair of

adjacent agents in advance and fused them on system initialization.

In all but one experiment, the fused evaluation mechanism achieved

lower average latency, returning pattern matches up to two times

faster than the version without the extension.

In addition, while the focus of the fusion optimization is on

decreasing the latency, we also witnessed a considerable increase

in the throughput. The performance boost is achieved thanks to

restarting the unit allocation process after applying the fusion. In

the revised allocation, the fused agent is allocated less workers than

the sum of the two agents that were fused (otherwise, it would

not have been fused). Those orphaned workers are now allocated

to other agents that were not overprovisioned and thus the extra

workers will contribute to faster processing at those agents.

6 RELATEDWORK
Complex event processing has been an increasingly active research

field in recent years [26, 27, 32]. Following the success of earlier data

stream management systems [4, 10, 19, 20], many CEP frameworks

were developed [5, 13, 24, 54, 74]. CEP functionality is widely avail-

able in many commercial stream processing products [9, 18, 66, 77],

as well as via dedicated open-source software libraries [1, 3, 29, 69].

All of these solutions utilize a graph-based evaluation structure

such as a NFA or a tree, making it possible to utilize HYPERSONIC

to further boost their performance and improve the scalability.

Numerous techniques have been proposed for optimizing the

performance of CEP and data stream processing in general [38].

Notable examples include rewriting the pattern into an equivalent,

yet more efficient representation [7, 45, 54, 68], sharing common

subexpressions to optimize simultaneous processing of multiple

similar patterns [7, 29, 50, 61, 77], and utilizing sophisticated data

structures to efficiently support Kleene closure [59, 76].

Parallelization approaches for CEP systems are being actively

researched [64]. RIP [12] and LLSF [75] evaluated in Section 5

are two prominent state-of-the-art solutions. RIP [12] applies a

data-parallel approach by partitioning the workload into multiple

intersecting windows. Each execution unit is allocated a fixed-sized

chunk of incoming events in a round-robin manner. To avoid losing

matches that overlap two adjacent chunks, some of the events are

replicated to two neighboring units. The authors also describe a

simple state-parallel algorithm and experimentally demonstrate

that it performs considerably worse than the data-parallel one.

Xiao et. al. [75] propose three data-parallel strategies for distributed

complex event processing: RR (round-robin), JSQ (join-the-shortest-

queue), and LLSF (least-loaded-server-first). They empirically show

that the latter strategy is superior to the other two.

Many other works explored the area of CEP parallelization.

Hirzel [37] proposed a data-parallel algorithm dividing the input

stream on the predefined event attributes. In contrast to the major-

ity of CEP parallelization methods, this approach only works on

patterns requiring all events in a match to agree on the value of a

certain attribute, denoted as ’partition key’ in the paper. This severe

restriction makes it impossible to directly evaluate [37] against HY-

PERSONIC. Mayer et. al. [51–53], split the workload into windows

that can be defined by an arbitrary predicate. [17] is a distributed

data-parallel extension of Cayuga [16]. Wang et. al. [72] presented

an event stream partitioning mechanism based on fixed-size sub-

windows. Other authors explored strategies based on state- and

task-level parallelism [25, 67, 80], as well as on embedded architec-

tures such as FPGAs [73] and GPUs [25]. None of the above works

consider a combination of data and state parallelism.

General stream processing (SP) is a broad term covering the

execution of arbitrary computations over data streams. Various

methods have been proposed for distributing the computations

performed by SP systems [33, 55, 56, 63, 70]. In particular, mul-

tiple authors addressed streaming joins [65, 71, 78]. Despite the

similarities between SP and CEP, the challenges associated with

parallelizing these two system types are fundamentally different. In

contrast to CEP, SP systems typically execute highly computation-

ally intensive tasks, put less emphasis on stateful operators, and

lack the dependencies caused by combining multiple items.

Parallel and distributed processing of large databases has been a

major research trend during the past decades [8, 46, 57]. The most

widely employed model providing such capabilities is MapReduce

[28, 30, 47]. Many other models have been proposed [14, 21].

7 CONCLUSIONS AND FUTUREWORK
In this paper, we presented HYPERSONIC, a novel method for par-

allelizing CEP applications. To the best of our knowledge, HYPER-

SONIC is the first to combine the strengths of the state-parallel and
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the data-parallel approaches while overcoming their major disad-

vantages. Our experiments demonstrated a significant throughput

improvement over the state-of-the-art methods, while achieving

lower latency and consuming less memory.

Our future research efforts will cover a number of essential exten-

sions to HYPERSONIC, including fully distributed execution, sup-

porting heterogeneous execution units, multi-pattern CEP, nested

patterns, as well as additional evaluation mechanisms such as trees

and EPNs.
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APPENDIX A - FORMAL STATEMENTS AND
PROOFS
Here we formally state and prove the claims presented in Sections

3.3 and 3.4.

Theorem 1 (Execution unit allocation is relative to agents’

load). Let |𝑈 | be the total number of execution units and let 𝑙𝑜𝑎𝑑𝑖
denote the load on the 𝑖𝑡ℎ agent. Then, the number of execution units
allocated to the 𝑖𝑡ℎ agent |𝑈𝑖 | is as follows:

|𝑈𝑖 | =
𝑙𝑜𝑎𝑑𝑖
𝑚∑
𝑗=1

𝑙𝑜𝑎𝑑 𝑗

· |𝑈 |,

where𝑚 is the total number of agents.

Proof. As we consider homogeneous execution units, each unit

can perform the same number of computational and synchroniza-

tion actions. Thus, the relative load on an agent, defined as the abso-

lute load divided by the total load, is the only factor that should be

taken into consideration when allocating execution units to agents.

Substituting the total load with the sum of the loads of all agents

load on all agents, we infer

|𝑈𝑖 | =
𝑙𝑜𝑎𝑑𝑖
𝑚∑
𝑗=1

𝑙𝑜𝑎𝑑 𝑗

· |𝑈 |.

□

Theorem 2 (Calculation of partial match arrival rate

from preceding agent). Let 𝐴2, 𝐴3 ...., 𝐴𝑚 an ordering of agents
in HYPERSONIC (i.e., such 𝐴𝑖−1 passes its output to 𝐴𝑖 for all 𝑖 ≤ 𝑚)
where𝑚 is the total number of agents. Let𝑚𝑖 be the average number
of partial matches that arrive at agent 𝐴𝑖 from agent 𝐴𝑖−1 per time
unit. Then,𝑚𝑖 can be calculated using 𝑒𝑖 , the average rate of events
arriving at agent 𝐴𝑖 , 𝑠𝑖 , the state selectivity, and𝑊 , the time window
of the query, as follows:

𝑚𝑖 =

{
𝑒1, 𝑖 = 2;

2𝑚𝑖−1𝑒𝑖−1𝑠𝑖−1𝑊 𝑖 > 2.

Proof. The first agent in the agent sequence receives events of

the second event type as its input stream, has no preceding agent

and receives partial matches of size one directly from the input

stream. We denote it as 𝐴2 to represent that agent 𝐴𝑖 indeed re-

ceives events of type 𝐸𝑖 as its event input. 𝐴2 match stream solely

composed of the events of type 𝐸1, thus its associated data arrival

rate equals to 𝑒1. Any agent 𝐴𝑖 such that 𝑖 > 2 receives a stream

of partial matches from its preceding agent 𝐴𝑖−1 which receives

partial matches at a rate of𝑚𝑖−1 and events at a rate of 𝑒𝑖−1 (both
by definition). For each partial match received, 𝐴𝑖−1 compares it

with every event in 𝐸𝐵𝑖−1 and outputs a fraction of the event-match

combinations proportional to the state selectivity 𝑠𝑖−1. Thus, the av-
erage rate of partial matches created by combining incoming partial

matches with buffered events is𝑚𝑖−1 |𝐸𝐵𝑖−1 |𝑠𝑖−1. Similarly, incom-

ing events are compared with every stored partial match in𝑀𝐵𝑖−1
and thus partial matches are created at a rate of 𝑒𝑖−1 |𝑀𝐵𝑖−1 |𝑠𝑖−1

due to incoming events. The size of an event buffer or match buffer

is determined by the rate of incoming items and their time of re-

moval from the buffer. Items exist in the buffers for roughly𝑊 time

units until they are removed, hence the size of an event buffer is

|𝐸𝐵𝑖−1 | = 𝑒𝑖−1𝑊 , similarly |𝑀𝐵𝑖−1 | = 𝑚𝑖−1𝑊 . By replacing these

values with the rate of created partial matches, we receive:

𝑚𝑖−1 |𝐸𝐵𝑖−1 |𝑠𝑖−1 + 𝑒𝑖−1 |𝑀𝐵𝑖−1 |𝑠𝑖−1 =

𝑚𝑖−1𝑒𝑖−1𝑠𝑖−1𝑊 + 𝑒𝑖−1𝑚𝑖−1𝑠𝑖−1𝑊 =

2𝑚𝑖−1𝑒𝑖−1𝑠𝑖−1𝑊

□

Theorem 3 (Calculation of the load imposed by synchro-

nization actions). Let 𝑠𝑦𝑛𝑐𝑖 denote the total load of synchroniza-
tion actions performed during a time unit, it is calculated as follows:

𝑠𝑦𝑛𝑐𝑖 = 𝑎𝑐𝑐𝑖𝑏𝑖 + 𝑞𝑖𝑚𝑖+1 =
(𝑒𝑖 +𝑚𝑖 )𝑛𝑏𝑖

2𝑚
+ 𝑞𝑖𝑚𝑖+1,

where 𝑎𝑐𝑐𝑖 denotes the total number of worker accesses of the buffers
of the opposite role. With the necessary assumption that each agent
receives 𝑛/𝑚 workers and that exactly half are assigned as event
workers and the other half are assigned as match workers, 𝑎𝑐𝑐𝑖 is
calculated as follows:

𝑎𝑐𝑐𝑖 = 𝑒𝑖 ·
𝑛

2𝑚
+𝑚𝑖 ·

𝑛

2𝑚
=
(𝑒𝑖 +𝑚𝑖 )𝑛

2𝑚
.

Proof. First, we will calculate 𝑎𝑐𝑐𝑖 . Each incoming event trig-

gers an access to every match buffer fragment in that agent. Under

the assumption that each agent receives the same 𝑛/𝑚 workers and

splits them equally between event workers and match workers, we

get that there are 𝑛/2𝑚 match workers and thus each incoming

event has to perform 𝑛/2𝑚 buffers accesses. Similarly, each incom-

ing partial match has to perform 𝑛/2𝑚 buffers accesses to event

buffer fragments. Thus, the total number of buffer accesses for an

agent 𝐴𝑖 is:

𝑎𝑐𝑐𝑖 = 𝑒𝑖 ·
𝑛

2𝑚
+𝑚𝑖 ·

𝑛

2𝑚
=
(𝑒𝑖 +𝑚𝑖 )𝑛

2𝑚
.

The total load of synchronization actions for 𝐴𝑖 is composed

of the buffer access load, which is 𝑎𝑐𝑐𝑖𝑏𝑖 , and the cost of writing

to the output queue. As 𝑚𝑖+1 is number of output queue write

operations actions, the output queue cost is 𝑞𝑖𝑚𝑖+1. Thus, the total
synchronization cost is:

𝑠𝑦𝑛𝑐𝑖 = 𝑎𝑐𝑐𝑖𝑏𝑖 + 𝑞𝑖𝑚𝑖+1 =
(𝑒𝑖 +𝑚𝑖 )𝑛𝑏𝑖

2𝑚
+ 𝑞𝑖𝑚𝑖+1 .

□

Theorem 4 (Calculation of the rate of partial matches

outputted by a Kleene closure agent). Let 𝐴𝑖 be an agent im-
plementing the Kleene closure operator and let𝑚𝑝𝑟𝑒𝑣

𝑖
be the rate of

partial matches arriving from the preceding agent. Then,𝑚𝑖 , the rate
of partial matches outputted by 𝐴𝑖 , is calculated as follows:

𝑚𝑖 =𝑚
𝑝𝑟𝑒𝑣

𝑖

©«1 +
𝑒𝑖𝑊∑︁
𝑗=1

(
(𝑒𝑖 ) 𝑗 (𝑠𝑖 ) 𝑗𝑊 𝑗

)ª®¬
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Proof. 𝐴𝑖 receives partial matches via a self-loop as well as from

the previous agents.𝑚𝑖 is comprised of partial matches created due

to input arriving from the previous agent(𝑚
𝑝𝑟𝑒𝑣

𝑖
) and from the

self-loop. Thus,

𝑚𝑖 =𝑚
𝑝𝑟𝑒𝑣

𝑖
+
𝑒𝑖𝑊∑︁
𝑗=1

𝑚
𝐾𝐶 𝑗
𝑖

where the rate of incoming partial matches that arrive from the

self-loop is denoted as𝑚
𝐾𝐶 𝑗
𝑖

, where 𝑗 is the number of events of

type 𝐸𝑖 , the type of the incoming events in 𝐴𝑖 . In other words, 𝑗 is

the number of times this partial match has "passed" through 𝐴𝑖 . As

stated in theorem 2, an arriving partial match triggers creation of

𝑒𝑖𝑠𝑖𝑊 new partial matches. Consequently,𝑚
𝑝𝑟𝑒𝑣

𝑖
partial matches

arriving from the previous agent result in

𝑚
𝐾𝐶1

𝑖
=𝑚

𝑝𝑟𝑒𝑣

𝑖
𝑒𝑖𝑠𝑖𝑊

new partial matches. These partial matches create additional partial

matches at a rate of𝑚
𝐾𝐶1

𝑖
𝑒𝑖𝑠𝑖𝑊 , which in turn create new partial

matches at a rate of𝑚
𝐾𝐶2

𝑖
𝑒𝑖𝑠𝑖𝑊 and thus we infer that

𝑚
𝐾𝐶 𝑗
𝑖

=𝑚
𝐾𝐶 𝑗−1
𝑖

𝑒𝑖𝑠𝑖𝑊

. Eliminating the recursion, we get

𝑚
𝐾𝐶 𝑗
𝑖

=𝑚
𝑝𝑟𝑒𝑣

𝑖
(𝑒𝑖 ) 𝑗 (𝑠𝑖 ) 𝑗𝑊 𝑗

. By summation over all values of 𝑗 , we obtain the following expres-

sion:

𝑚𝑖 =𝑚
𝑝𝑟𝑒𝑣

𝑖
+
𝑒𝑖𝑊∑︁
𝑗=1

𝑚
𝐾𝐶 𝑗
𝑖

=𝑚
𝑝𝑟𝑒𝑣

𝑖

©«1 +
𝑒𝑖𝑊∑︁
𝑗=1

(
(𝑒𝑖 ) 𝑗 (𝑠𝑖 ) 𝑗𝑊 𝑗

)ª®¬ .
□

Theorem 5 (Calculation of the average number of events

in a partial match). Let 𝐴𝑖 be an agent implementing the Kleene
closure operator and let 𝑚𝐾𝐶 𝑗

𝑖
denote the rate of partial matches

arriving from the self-loop that has exactly 𝑗 events of the type 𝐸 𝑗 .
Additionally, let 𝑎𝑖 be the average number of events in a partial match
inside the match buffer𝑀𝐵𝑖 . Then, 𝑎𝑖 is calculated recursively as

𝑎𝑖 = 𝑎𝑖−1 +
𝑒𝑖𝑊∑︁
𝑗=1

𝑚
𝐾𝐶 𝑗
𝑖
· 𝑗

𝑒𝑖𝑊∑
𝑘=1

𝑚
𝐾𝐶𝑘
𝑖
+𝑚𝑝𝑟𝑒𝑣

𝑖

+ 1.

Proof. First we state that a Kleene closure agent adds to a partial

match at least one event and up to |𝐸𝐵𝑖 | events, so that the total

number of events is 𝑎𝑖 = 𝑎𝑖−1 + 1 + 𝑋 where 𝑋 is the additional

number of events due to traversals on the self-loop. To calculate

this value, we need to first calculate 𝑃 𝑗 which is the probability

a partial match stored at a Kleene closure agent has 𝑗 events of

the type processed by this agent (which is only possible after 𝑗

traversals of the self-loop). The total number of partial matches

stored at a time unit is:

𝑆𝑡𝑜𝑡𝑎𝑙 =

𝑒𝑖𝑊∑︁
𝑘=1

𝑚
𝐾𝐶𝑘
𝑖
+𝑚𝑝𝑟𝑒𝑣

𝑖
,

that is, the sum of all the incoming partial matches from the previous

agent as well as from the self-loop. As𝑚
𝐾𝐶 𝑗
𝑖

indicates the rate of

partial matches created with exactly 𝑗 events of the type processed

by 𝐴𝑖 , we infer 𝑃 𝑗 =
𝑚
𝐾𝐶𝑗

𝑖

𝑆𝑡𝑜𝑡𝑎𝑙
. All that remains is to add the 𝑃 𝑗 to 𝑎𝑖

weighted according to the number of additional events 𝑗 , resluting

in the following expression:

𝑎𝑖 = 𝑎𝑖−1 +
𝑒𝑖𝑊∑︁
𝑗=1

𝑃 𝑗 · 𝑗 + 1 = 𝑎𝑖−1 +
𝑒𝑖𝑊∑︁
𝑗=1

𝑚
𝐾𝐶 𝑗
𝑖
· 𝑗

𝑒𝑖𝑊∑
𝑘=1

𝑚
𝐾𝐶𝑘
𝑖
+𝑚𝑝𝑟𝑒𝑣

𝑖

+ 1.

□

Theorem 6 (Calculation of the memory consumption of

HYPERSONIC). Let 𝑣𝑖 denote the average size of an event of the
type handled by agent 𝐴𝑖 and let 𝑝 be a system-wide constant denot-
ing the size of an event pointer. Then, the memory consumption of
HYPERSONIC is calculated as follows:

𝑛∑︁
𝑖=1

©«𝑒𝑖𝑣𝑖𝑊 +
𝑖−1∑︁
𝑗=1

𝑒 𝑗𝑣 𝑗𝑊 + (𝑒𝑖𝑊 +𝑚𝑖𝑎𝑖𝑊 )𝑝ª®¬ .
Proof. Each HYPERSONIC agent 𝐴𝑖 utilizes three data struc-

tures, namely 𝐸𝐵𝑖 ,𝑀𝐵𝑖 and 𝐴𝐺𝐵𝑖 . The total memory consumption

is thus the sum of the sizes of these buffers over all agents. 𝐴𝐺𝐵𝑖
stores all events entering an agent while 𝐸𝐵𝑖 and 𝑀𝐵𝑖 only store

pointers. The events located in 𝐴𝐺𝐵𝑖 arrive with a rate of 𝑒𝑖 . Each

event is of size 𝑣𝑖 and is stored for a period of𝑊 . 𝐴𝐺𝐵𝑖 also stores

all the events that arrive on the match stream as parts of partial

matches and thus has to store up to 𝑒 𝑗𝑊 events for every agent 𝐴 𝑗

that precedes 𝐴𝑖 , for a total size of
𝑖−1∑
𝑗=1

𝑒 𝑗𝑣 𝑗𝑊 .

The size of the event and match buffers is given by ( |𝐸𝐵𝑖 +
|𝑀𝐵𝑖 |𝑎𝑖 )𝑝 , that is, the total number of pointers in 𝐸𝐵𝑖 and 𝑀𝐵𝑖
multiplied by the constant system-wide pointer size. A partial match

has 𝑎𝑖 events on average and hence the number of pointers is also

multiplied by this number. Summing over all three buffers and over

all agents, we get:

𝑛∑︁
𝑖=1

( |𝐴𝐺𝐵𝑖 | + (|𝐸𝐵𝑖 | + |𝑀𝐵𝑖 |𝑎𝑖 )𝑝) = .

𝑛∑︁
𝑖=1

©«𝑒𝑖𝑣𝑖𝑊 +
𝑖−1∑︁
𝑗=1

𝑒 𝑗𝑣 𝑗𝑊 + (𝑒𝑖𝑊 +𝑚𝑖𝑎𝑖𝑊 )𝑝ª®¬ .
□
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