
DARLING: Data-Aware Load Shedding in Complex Event
Processing Systems

Koral Chapnik
Technion, Israel Institute of

Technology
Haifa, Israel

skoralch@campus.technion.ac.il

Ilya Kolchinsky
Technion, Israel Institute of

Technology
Haifa, Israel

ikolchin@cs.technion.ac.il

Assaf Schuster
Technion, Israel Institute of

Technology
Haifa, Israel

assaf@technion.ac.il

ABSTRACT
Complex event processing (CEP) is widely employed to detect user-
defined combinations, or patterns, of events in massive streams of
incoming data. Numerous applications such as healthcare, fraud
detection, and more, use CEP technologies to capture critical alerts,
threats, or vital notifications. This requires that the technologymeet
real-time detection constraints. Multiple optimization techniques
have been developed to minimize the processing time for CEP,
including parallelization techniques, pattern rewriting, and more.
However, these techniques may not suffice or may not be applicable
when an unpredictable peak in the input event stream exceeds the
system capacity. In such cases, one immediate possible solution is
to drop some of the load in a technique known as load shedding.

We present a novel load shedding mechanism for real-time com-
plex event processing. Our approach uses statistics that are gathered
to detect overload. The solution makes data-driven load shedding
decisions to drop the less important events such that we preserve
a given latency bound while minimizing the degradation in the
quality of results. An extensive experimental evaluation on a broad
set of real-life patterns and datasets demonstrates the superiority
of our approach over the state-of-the-art techniques.

PVLDB Reference Format:
Koral Chapnik, Ilya Kolchinsky, and Assaf Schuster. DARLING:
Data-Aware Load Shedding in Complex Event Processing Systems. PVLDB,
15(3): 541 - 554, 2022.
doi:10.14778/3494124.3494137

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/koralchapnik/darling.git.

1 INTRODUCTION
The discovery of complex combinations, or patterns, in data items
can be used to capture critical alerts, potential threats, vital notifica-
tions, or rare and unique opportunities. Complex event processing
(CEP) is a technology aimed at the efficient real-time detection of
such complex data patterns over massive input data streams. Online
finance [6, 52], fraud detection [11, 54], and security monitoring are

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 3 ISSN 2150-8097.
doi:10.14778/3494124.3494137

Figure 1: Fraud detection process. Clients attempt to perform
transactions using a credit card (1). The data is sent to the
card’s issuer bank and the CEP system (2). The CEP system
detects a fraud attempt and immediately alerts the bank (3),
which refuses the transaction (4,5).

among the many applications employing CEP technologies. Figure
1 illustrates the use of CEP in the fraud detection domain.

In fraud detection, for example, online data items of credit card
usage continuously stream into a CEP engine from one or more
data sources. Such data items arriving from input event streams are
referred to as primitive events, or simply events. Each event belongs
to an event type, which defines a set of attributes to be associated
with an event. For example, one could defined BigTransReq as a
type representing a transaction request for a large sum; its attributes
could then be (𝑐𝑎𝑟𝑑𝐼𝐷, 𝑎𝑚𝑜𝑢𝑛𝑡).

CEP patterns specify scenarios of interest to be detected. For
example, assume we want to detect a potential fraud attempt by
recognizing a sequence of two failed CVV attempts, followed by a
successful CVV attempt. In fraud attempts, this may typically be
followed by an initial small transaction request and then a second
large transaction request for an amount greater than $10, 000, and at
least 10 times greater than the preceding small transaction request
amount. All this occurs within a time window of five minutes. Such
a pattern could be formally written as follows:
𝑃𝐴𝑇𝑇𝐸𝑅𝑁 (1) 𝑆𝐸𝑄 (𝐶𝑣𝑣𝑅𝑒 𝑓 𝑢𝑠𝑒𝑑1 𝑎, 𝐶𝑣𝑣𝑅𝑒 𝑓 𝑢𝑠𝑒𝑑2 𝑏,

𝐶𝑣𝑣𝐶𝑜𝑛𝑓 𝑖𝑟𝑚𝑒𝑑 𝑐, 𝑆𝑚𝑎𝑙𝑙𝑇𝑟𝑎𝑛𝑠𝑅𝑒𝑞 𝑑, 𝐵𝑖𝑔𝑇𝑟𝑎𝑛𝑠𝑅𝑒𝑞 𝑒)
𝑊𝐻𝐸𝑅𝐸 (𝑒.𝑎𝑚𝑜𝑢𝑛𝑡 > 𝑑.𝑎𝑚𝑜𝑢𝑛𝑡 × 10) ∧ (𝑒.𝑎𝑚𝑜𝑢𝑛𝑡 > 10, 000)

∧(𝑎.𝑐𝑎𝑟𝑑𝐼𝐷 = 𝑏.𝑐𝑎𝑟𝑑𝐼𝐷 = 𝑐.𝑐𝑎𝑟𝑑𝐼𝐷 = 𝑑.𝑐𝑎𝑟𝑑𝐼𝐷 = 𝑒.𝑐𝑎𝑟𝑑𝐼𝐷)
𝑊𝐼𝑇𝐻𝐼𝑁 5𝑚𝑖𝑛𝑢𝑡𝑒𝑠

Detecting pattern matches while maintaining low latency is cru-
cial in a variety of application domains. In our example above, a
failure to quickly detect a fraud attempt could allow a fraudster to

https://doi.org/10.14778/3494124.3494137
https://github.com/koralchapnik/darling.git
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3494124.3494137

use the credit card of the victim. The maximum acceptable detec-
tion latency bound in this case is the time it takes from the large
transaction request until the card issuing bank responds to the
request. Fraud alerts received after the transaction approval will be
useless as the money has already been withdrawn.

Many optimization techniques have been proposed to minimize
the processing latency in CEP systems [16, 19, 20, 28, 40, 55, 56],
including pattern rewriting, sub-expression sharing, and paralleliza-
tion. However, a sudden and unpredictable peak in the rate of in-
coming events may exceed the system capacity, rendering the above
optimizations useless and leading to inevitable data loss. In these
cases, an immediate action must be taken to minimize this data loss
and ensure that the remaining pattern matches are still detected
within the required latency bound.

One possible solution for the above situation could be to dynam-
ically scale up the application or to overprovision it in advance.
However, with the recent advances in edge processing and IoT, CEP
is often handled at the edge by a multitude of small and inexpensive
devices with restricted resources. Therefore, the aforementioned
approach would not be applicable in many common use cases where
scaling up or over-provisioning resources is not possible.

In this paper, we discuss an alternative solution, which is to
drop some of the load. This process is also known as load shedding.
Dropping load prevents the formation of large queues and keeps
the detection latency below the desired latency bound. While some
fraction of the data is still lost, correctly performed load shedding
attempts to minimize the loss of ’important’ data items. Achieving
the perfect balance between maintaining the latency bound and
minimizing this loss is the main challenge in practically applying
load shedding. In the fraud detection example, load must be shed
in a way that maintains as many fraud alerts as possible. This can
be achieved by dropping the events that are less likely to be part of
a pattern match such as Pattern (1). Additionally, the load shedding
process must incur minimal overhead.

Load shedding has gained much attention in the area of clas-
sic data stream processing [30, 31, 38, 39, 41, 44, 51, 53]. However,
CEP imposes new difficulties and amplifies the existing challenges
in producing optimal load shedding decisions. CEP systems must
capture the correlations and dependencies created by combining
multiple data items. For example, if we revisit Pattern (1), dropping
all events indicating an incorrect CVV code (CvvRefused event
types) will result in zero detected matches. In general, the contri-
bution of each event to the overall load and to the system output
depends on the combination of multiple parameters.

Load shedding in CEP has been studied by numerous authors
[27, 47–49, 58]. However, these works share a number of limitations.
First, most authors assume a strong connection between an event’s
importance and either its position in the window [48, 49], the im-
portance of a partial match containing it [58], or its frequency of
appearance [27]. These assumptions do not always hold. In addition,
all published methods except [58] lack a semantic load shedding
mechanism, and all existing works that use a cost model based on
partial matches [47, 49, 58] perform poorly in real-life CEP settings,
as we experimentally evaluate in this paper.

We present a novel, scalable, and efficient load shedding mech-
anism for CEP systems. DARLING (DAta dRiven Load sheddING)
partitions the input event stream into dedicated buffers from which

the CEP engine consumes events. Considering arrival rates, cross-
buffer correlations, and estimated processing complexity, DARLING
assigns a global constraint on the size of the input event stream and
local constraints on the size of each of these buffers. The former
is utilized to detect overload situations, and the latter constraints
dictate from which buffers to drop events and how much to drop. In
addition, DARLING estimates the importance of each event with a
utility function computed via data-driven statistical methods, which
allows it to drop the least important events first.

We conducted an extensive experimental study comparing DAR-
LING to three state-of-the-art CEP load shedding methods. The
experiments, covering three real-world datasets and a broad set of
patterns, demonstrated the scalability of our approach and its supe-
riority over the examined methods in terms of latency, percentage
of detected matches, and processing overhead.

2 BACKGROUND AND TERMINOLOGY
2.1 Complex Event Processing
The goal of a complex event processing (CEP) system is to mon-
itor massive high-speed data streams for combinations of events
satisfying user-specified patterns.

A pattern is defined by a combination of primitive events, op-
erators, predicates, and a time window. The most commonly used
operators in CEP are sequence, conjunction, disjunction, negation
(i.e., absence of an event from some position in the match) and
Kleene closure (i.e., one or more instances of an event).

As an example, the following pattern from the fraud detection
domain consists of a sequence of three event types that represent
small, medium, and large transaction requests:
𝑃𝐴𝑇𝑇𝐸𝑅𝑁 (2) 𝑆𝐸𝑄 (𝑆𝑚𝑎𝑙𝑙𝑇𝑟𝑎𝑛𝑠 𝑎, 𝑀𝑒𝑑𝑖𝑢𝑚𝑇𝑟𝑎𝑛𝑠 𝑏, 𝐵𝑖𝑔𝑇𝑟𝑎𝑛𝑠 𝑐)
𝑊𝐻𝐸𝑅𝐸 (𝑎.𝑐𝑎𝑟𝑑𝐼𝐷 = 𝑏.𝑐𝑎𝑟𝑑𝐼𝐷 = 𝑐.𝑐𝑎𝑟𝑑𝐼𝐷) ∧ (𝑎.𝑎𝑚𝑜𝑢𝑛𝑡 > 100)
∧(𝑏.𝑎𝑚𝑜𝑢𝑛𝑡 > 𝑎.𝑎𝑚𝑜𝑢𝑛𝑡 × 10) ∧ (𝑐.𝑎𝑚𝑜𝑢𝑛𝑡 > 𝑏.𝑎𝑚𝑜𝑢𝑛𝑡 × 100)

𝑊𝐼𝑇𝐻𝐼𝑁 5𝑚𝑖𝑛𝑢𝑡𝑒𝑠

CEP engines use an evaluation mechanism to create an internal
representation of the pattern, defining the loose order by which
events are combined during the pattern matching process. The most
common evaluation mechanisms are trees [37], non-deterministic
finite automata [55], and event processing networks [21].

In a tree evaluation mechanism, each leaf represents an event
type. For clarity, we denote the leaf name as the corresponding
event type name. Primitive events continuously stream into the
system, arrive at the appropriate leaf, and are processed up the tree.
Each node in the tree contains a set of conditions to be satisfied
by the combinations of incoming events, including time window
constraints and pattern predicates. When all conditions are satisfied
by some combination, it is stored at the node as a partial match (PM)
and transferred up the tree where the matching procedure repeats.
Partial matches that reach the tree root and satisfy its conditions
become full matches and are reported to the user.

Figure 2 displays a tree evaluation process for Pattern 2. Assume
all events have the same cardID attribute. When event 𝑎1 arrives in
the system, it is routed to the corresponding leaf 𝑆𝑚𝑎𝑙𝑙 , and tested
against its conditions. Since 𝑎1 .𝑎𝑚𝑜𝑢𝑛𝑡 > 100, a new partial match
𝑃𝑀1 is created. When 𝑏1 arrives at 𝑀𝑒𝑑𝑖𝑢𝑚 leaf, since there are
no conditions to be satisfied, a new partial match 𝑃𝑀2 is created

Figure 2: Example of tree evaluationmechanism. Events from
the input event stream are routed to the corresponding leaves
and processed up the tree, creating combinations of events
that form PMs when satisfying the node conditions.

and saved in the node. 𝑃𝑀2 is then combined with 𝑃𝑀1 to form a
combination (𝑎1, 𝑏1), which is tested against the conditions in the
parent node 𝑆𝐸𝑄1. Since the combination satisfies the conditions,
it forms a new partial match 𝑃𝑀3, at 𝑆𝐸𝑄1. At the moment, no
events of type 𝐵𝑖𝑔𝑇𝑟𝑎𝑛𝑠 have arrived; hence, there are no partial
matches to be combined with 𝑃𝑀3 and the processing of 𝑏1 ter-
minates. When an event 𝑐1 is processed, it creates 𝑃𝑀4, which is
then combined with 𝑃𝑀3. This new combination satisfies the root
conditions, creating a match (𝑎1, 𝑏1, 𝑐1) that is reported to the user.

The number of partial matches created during evaluation is
influenced by numerous factors. One major factor is the distribution
of event attribute values. Revisiting Figure 2, when a new event 𝑏2
arrives in the system and creates 𝑃𝑀5, 𝑃𝑀5 is combined with 𝑃𝑀1.
However, no partial match is formed as 𝑏2 .𝑎𝑚𝑜𝑢𝑛𝑡 ≯ 𝑎1 .𝑎𝑚𝑜𝑢𝑛𝑡 ×
10. The event attributes essentially impact the predicate selectivity -
the probability that a combination of events will pass the predicate.

Additional factors directly proportional to the number of PMs
created are the window size and the arrival rates of the different
event types. The window size determines the maximum possible
time difference between two events in a match. The event type
arrival rate specifies the number of primitive events of this type
that arrive in the system per time unit.

Each newly arrived event is evaluated against all the relevant
PMs in the system. Thus, the more PMs are stored, the longer it
takes to process an event, thereby reducing the detection latency.

2.2 Load Shedding
As we defined in Section 1, load shedding is a technique used to re-
duce latencies in overload situations under a resource-constrained
environment. In general terms, load shedding is performed by drop-
ping objects from the system. While load shedding is vital for main-
taining the latency bound, dropping objects can have a drastic effect
on the quality of results. Therefore, a load shedding algorithm must
quickly detect situations where the risk of violating the defined
latency bound is present, shed load with minimal degradation of
system output, and incur minimal performance overhead.

3 PROBLEM DEFINITION
In a system that monitors numerous patterns, the patterns can have
different levels of importance. For example, in a healthcare scenario,
signals from life-support systems would be much more sensitive
to lost matches than those from other smart sensors. Moreover, in
multi-user systems, some of the users may be eligible for higher
quality-of-service (e.g., premium member) and thus their patterns
are considered more important than those of regular users. We
encode these a-priori defined priorities in the form of weights.

We formalize the load shedding problem in CEP as the following
optimization problem. Given an evaluation mechanism 𝜒 , a set of 𝑛
input event streams 𝑆 = {𝑆1, ..., 𝑆𝑛}, a set of patterns to be detected
𝑃 = {𝑝1, ..., 𝑝𝑘 }, their corresponding weights𝑊 = {𝑤1, ...,𝑤𝑘 }, a
bound Λ for the metric to be maintained, and a predicate _ to check
if the metric is below the allowed bound, the goal is to find a load
shedding decision function 𝜓 : 𝑂 → {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} that receives
an event and returns an indication to either shed it (𝑇𝑟𝑢𝑒) or keep
it in the system for further processing (𝐹𝑎𝑙𝑠𝑒). We denote𝜓0 as a
decision function that never drops an event.

Let _ : (𝑃, 𝑆, 𝜒,𝜓) → {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} be a predicate that measures
the metric to be maintained while the patterns in 𝑃 are monitored
over 𝑆 using 𝜒 with the decision function𝜓 . The predicate returns
𝑇𝑟𝑢𝑒 if the metric was maintained below the defined bound Λ
during the system run-time and 𝐹𝑎𝑙𝑠𝑒 otherwise.

As explained in Sections 1 and 2, load shedding drops objects
from the system and consequently affects the system output. As-
sume 𝑆𝐶𝑂𝑅𝐸 : (𝑃,𝑊 , 𝑆, 𝜒,𝜓) → R is a function that represents
the score of the system, namely, how well the system performs.

Using the above notations, we formally define the load shedding
problem in CEP as follows:

𝐴𝑅𝐺𝑀𝐴𝑋𝜓 𝑆𝐶𝑂𝑅𝐸 (𝑃,𝑊 , 𝑆, 𝜒,𝜓)
𝑠 .𝑡 . _(𝑃, 𝑆, 𝜒,𝜓) = 𝑇𝑟𝑢𝑒

(1)

Our goal is to keep the detection latency of a match below a
user-defined latency bound Λ = 𝐿𝑚𝑎𝑥 . The detection latency 𝑙 (𝑚)
of match𝑚, is defined as the time it takes from the arrival of the
latest event to complete the match𝑚, until𝑚 is detected by the
system. Specifically, if 𝑡𝑑𝑒𝑡 (𝑚) is the time when the system detected
the match𝑚, and 𝑒.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 is the arrival time of event 𝑒 , then:

𝑙 (𝑚) = 𝑡𝑑𝑒𝑡 (𝑚) −𝑚𝑎𝑥 {𝑒.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∀𝑒 ∈𝑚} (2)

We define𝑀 (𝑃, 𝑆, 𝜒,𝜓) as the set of matches detected by the sys-
tem for all the patterns when applying the load shedding decision
function𝜓 , and𝑀𝑝𝑖 (𝑃, 𝑆, 𝜒,𝜓) as the set of matches of pattern 𝑝𝑖
that were detected by the system. Then, the predicate _ will indicate
whether the detection latency is preserved:

_(𝑃, 𝑆, 𝜒,𝜓) =
{
𝑇𝑟𝑢𝑒 ∀𝑚 ∈ 𝑀 (𝑃, 𝑆, 𝜒,𝜓) : (𝑙 (𝑚) ≤ 𝐿𝑚𝑎𝑥)
𝐹𝑎𝑙𝑠𝑒 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3)

The system score reflects the rate of detected matches associated
with the patterns’ importance, which is encoded in the form of
weights. Therefore, we represent the system score as:

𝑆𝐶𝑂𝑅𝐸 (𝑃,𝑊 , 𝑆, 𝜒,𝜓) =
∑𝑖=𝑘
𝑖=1 |𝑀𝑝𝑖 (𝑃, 𝑆, 𝜒,𝜓) ∩𝑀𝑝𝑖 (𝑃, 𝑆, 𝜒,𝜓0) |𝑤𝑖∑𝑖=𝑘

𝑖=1 |𝑀𝑝𝑖 (𝑃, 𝑆, 𝜒,𝜓0) |𝑤𝑖

(4)

Figure 3: Load shedding process in DARLING. As new event 𝑏8 arrives in the system and the global constraint 𝑁𝑖𝑛 is violated (a),
the event’s utility value is calculated using the statistics gathered (b). The system then routes the event to the corresponding
buffer of event type 𝐵 (c). Since buffer 𝐵 is full and its local constraint is violated, the event 𝑏6 with the lowest utility value is
dropped from the system (d), and 𝑏8 is added to the buffer (e) for further processing.

The intersection in the numerator is necessary to avoid considering
false positive matches that do not appear in𝑀𝑝𝑖 (𝑃, 𝑆, 𝜒,𝜓0). Such
matches can be generated, for example, when events that appear
under the negation operator are dropped. The negation operator
essentially requires the absence of an event from some position in
the match. Therefore, dropping this event can create a false positive
match if the other conditions of the pattern are satisfied.

4 DARLING
4.1 Load Shedding in DARLING
DARLING addresses three integral components of load shedding: (1)
detecting overload, (2) deciding how much to drop, and (3) deciding
which objects to drop.

At periodic intervals, when it has enough resources available,
DARLING gathers statistics on the distribution of attribute values,
event-type arrival rates, and selectivity of the conditions.

Using these statistics, DARLING computes 𝑁𝑖𝑛 , the maximum
number of queued events in the input event stream before latencies
exceed 𝐿𝑚𝑎𝑥 . The value 𝑁𝑖𝑛 is a global constraint for the size of the
input event stream, and indicates the need to drop events (1); its cal-
culation is detailed in Section 4.2.1. For each event type, DARLING
creates a buffer that accumulates events of the corresponding type
for further processing by the evaluation mechanism. Taking into
consideration the effect of each event type on the system score, and
the correlations between the different event types, DARLING splits
𝑁𝑖𝑛 between the different event types buffers, such that the buffer
of event type𝑇 will have a maximum size of 𝑁𝑇 , and

∑
𝑇 𝑁𝑇 = 𝑁𝑖𝑛 .

The values of 𝑁𝑇 are used as local constraints for the buffer sizes
to determine which buffer will drop events, and how much to drop
(2). The calculations of 𝑁𝑇 are explained in Sections 4.2.2 and 4.2.3.

When the global constraint is violated, the local constraints are
verified. If the local constraint of a buffer is violated, events must be
dropped from this buffer. When events are dropped, this essentially
prevents them from being used to detect matches that contain them,
thereby reducing the number of detected matches. To minimize the
degradation in the rate of detected matches, DARLING drops only
the less important events (3). To determine which events are less
important for the detected matches, DARLING calculates a utility
value per event. The higher the utility value of an event, the more

important it is. These values are calculated on-the-fly using utility
functions that were created in the statistics gathering phase. The
calculation of utilities is explained in Section 4.3.

Dropping the events with the lowest utility from the buffer re-
quires that we maintain sorted buffers, which is time-consuming.
To perform fast load shedding decisions, we introduce new aux-
iliary data structures for each event type buffer, with negligible
memory overhead. We describe these data structures in Section 4.4.

Figure 3 illustrates the flow of DARLING in overload situations
where the global constraint 𝑁𝑖𝑛 is violated. In non-overload mode,
when 𝑁𝑖𝑛 is not exceeded, utility values are not calculated and
events are simply appended to their corresponding buffers.

To account for data drift, the statistics gathering phase is acti-
vated upon concept drift detection [24, 25, 31]. The values of 𝑁𝑖𝑛 ,
𝑁𝑇 , and the utility values are updated accordingly, and any excess
load dropped is based on the new utility calculations.

4.2 Setting Global and Local Constraints
DARLING sets a global constraint 𝑁𝑖𝑛 on the size of the queued
events from the input event stream; an overload situation is indi-
cated when its value is exceeded. Furthermore, DARLING creates a
separate buffer for each event type 𝑇 with a local constraint 𝑁𝑇 to
indicate the maximum buffer size in overload situations.

Next, we explain how to set the global and local constraints to
preserve detection latencies, as defined in Equation (2) under a
given latency bound 𝐿𝑚𝑎𝑥 .

In general, latencies grow in response to high resource utilization.
More specifically, in CEP, computing complicated predicates over
a potentially exponential number of partial matches can overload
the processor and cause latencies to increase.

For simplicity, the following calculations assume an underly-
ing tree evaluation mechanism 𝜒 for a single pattern. To simplify
our explanation, we assume the pattern is purely conjunctive, con-
taining an AND operator and a conjunction between the pattern
conditions. This follows previous work [33] that describes how a
pattern or nested patterns containing SEQ, OR, NOT, and Kleene
closure operators can be represented and detected as either a pure
conjunctive pattern or their union. Potential extensions of DAR-
LING to multiple patterns and additional evaluation mechanisms
are described in Section 4.5.

Figure 4: Example for poor split of 𝑁𝑖𝑛 to 𝑁 ′
𝑇

4.2.1 Calculating 𝑁𝑖𝑛 . Assume that 𝑧 is the average time used
to process a single event in a steady state of the system, and is
calculated during the system run-time.

Now, assume w.l.o.g. a match𝑚 whose latest event is 𝑒𝑛 , namely,
𝑎𝑟𝑔𝑚𝑎𝑥𝑒 {𝑒.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∀𝑒 ∈𝑚} = 𝑒𝑛 , and that 𝑒𝑛 is the n-th event
queued in the input event stream. The detection latency of𝑚, 𝑙 (𝑚)
is measured from the moment 𝑒𝑛 arrives at the system until the
system has finished processing it. Essentially, this is the amount of
time it takes to process all 𝑛−1 events in the input event stream that
precede 𝑒𝑛 ’s arrival, plus the time to process event 𝑒𝑛 . As mentioned
above, in a steady state, the average time used to process an arbitrary
event is 𝑧, hence the time needed to process 𝑛 events is 𝑛 × 𝑧. To
avoid exceeding 𝐿𝑚𝑎𝑥 , we require that 𝑙 (𝑚) ≤ 𝐿𝑚𝑎𝑥 . Consequently,
the following must hold:

𝑛 × 𝑧 ≤ 𝐿𝑚𝑎𝑥 =⇒ 𝑛 ≤ 𝐿𝑚𝑎𝑥

𝑧
=⇒ 𝑁𝑖𝑛 =

𝐿𝑚𝑎𝑥

𝑧

4.2.2 Calculating 𝑁𝑇 . Our motivation for not dividing 𝑁𝑖𝑛 equally
between the different buffers stems from the fact that processing
events of different types can take different amounts of time. This
time period will depend on the system state and the number of
PMs that exist in the system, the complexity of the conditions, the
attributes’ content, and arrival rates for various event types.

In Figure 4, assume the arrival rates: 𝑅𝐴 = 2, 𝑅𝐵 = 5, 𝑅𝐶 = 5.
Moreover, assume that 𝑁𝑖𝑛 = 12 containing 2, 5, and 5 events of
types 𝐴, 𝐵, and 𝐶 , respectively. If we split 𝑁𝑖𝑛 equally between the
buffers, each event type will have a local constraint of 𝑁 ′

𝐴
= 𝑁 ′

𝐵
=

𝑁 ′
𝐶
= 4. When the 6th event of type 𝐶 arrives in the system, the

global constraint is violated and the local constraints are tested to
see where excess load should be dropped. In this case, the buffer of
𝐶 , which contains 6 events, will drop 2 events. Clearly, this would
make no sense because the buffer of 𝐴 has 2 available slots. In this
case, the red lines would serve as better local constraints. We next
introduce a superior method for splitting 𝑁𝑖𝑛 among event type
buffers and minimizing the unnecessary dropping of events.

Assume that 𝑍 (𝑇) (Section 4.2.3) is the average time used to
process a single arbitrary event of type 𝑇 , 𝑅(𝑇) is the arrival rate
of event type 𝑇 , and that 𝑇𝑌𝑃𝐸𝑆 is the set of event types in the
pattern. Moreover, assume that 𝛽 ∈ [0, 1] indicates the proportion

of the global constraint 𝑁𝑖𝑛 after which we start to drop events. 𝛽 is
a user-defined parameter employed as a safety factor to guarantee
that 𝐿𝑚𝑎𝑥 is not violated. Hence, the local constraint for each buffer
of event type 𝑇 is:

𝑁𝑇 =
𝑍 (𝑇) × 𝑅(𝑇)∑

𝑇 ′∈𝑇𝑌𝑃𝐸𝑆 𝑍 (𝑇 ′) × 𝑅(𝑇 ′) × 𝑁𝑖𝑛 × 𝛽

4.2.3 Calculating 𝑍 (𝑇). We first introduce some preliminary nota-
tions. Given a tree evaluation mechanism 𝜒 and an event type𝑇 , we
define 𝐶𝑡𝑦𝑝𝑒 (𝑇) as the set of conditions that contains attributes of
event type𝑇 , and𝐶𝑛𝑜𝑑𝑒 (𝑁) as the conditions set in node𝑁 ∈ 𝜒 . For
example, in Figure 4, 𝐶𝑡𝑦𝑝𝑒 (𝐴) = {𝑐1, 𝑐2, 𝑐4}, 𝐶𝑡𝑦𝑝𝑒 (𝐵) = {𝑐2, 𝑐3},
and 𝐶𝑡𝑦𝑝𝑒 (𝐶) = {𝑐3, 𝑐4}. Moreover, 𝐶𝑛𝑜𝑑𝑒 (𝐴) = {𝑐1}, 𝐶𝑛𝑜𝑑𝑒 (𝐵) =
𝐶𝑛𝑜𝑑𝑒 (𝐶) = ∅, 𝐶𝑛𝑜𝑑𝑒 (𝑁1) = {𝑐2}, and 𝐶𝑛𝑜𝑑𝑒 (𝑁2) = {𝑐3, 𝑐4}.

Note that in a tree or DAG evaluation mechanism, each leaf
represents an event type 𝑇 . All conditions in 𝐶𝑡𝑦𝑝𝑒 (𝑇) appear in
the nodes on the path from the corresponding leaf representing𝑇 to
the root, which we refer to as 𝑃𝐴𝑇𝐻𝜒 (𝑇). In Figure 4, 𝑃𝐴𝑇𝐻𝜒 (𝐴) =
{𝐴, 𝑁1, 𝑁2}, 𝑃𝐴𝑇𝐻𝜒 (𝐵) = {𝐵, 𝑁1, 𝑁2}, and 𝑃𝐴𝑇𝐻𝜒 (𝐶) = {𝐶, 𝑁2}.

The processing time used to calculate each condition 𝑐𝑖 depends
on the condition’s complexity. For example, in Figure 4, calculating
condition 𝑐4 will take more processing time than calculating 𝑐1.
Therefore, we assume that the evaluation of each condition 𝑐𝑖 takes
𝑓𝑖 time units, where 𝑓𝑖 can be easily calculated.

When a new event 𝑒𝑇 of type 𝑇 arrives in the system, it trig-
gers the formation of new partial matches. The number of partial
matches formed in each node depends on the other existing partial
matches in the system. This means that the arrival of 𝑒𝑇 creates a
different number of new PMs at different nodes on 𝑃𝐴𝑇𝐻𝜒 (𝑇). As-
sume that 𝑃𝑀 (𝑁,𝑇) represents the average number of new partial
matches formed in node 𝑁 , caused by the arrival of a new event
of type 𝑇 . Moreover, assume that 𝑃𝑀 (𝑁) is the average number of
partial matches accumulated in node 𝑁 . In what follows, we show
how to compute 𝑃𝑀 (𝑁,𝑇) and 𝑃𝑀 (𝑁). Let 𝑉𝑛 be the processing
time it takes to create a new partial match (i.e., create a new object)
and insert it into the system, and 𝑉𝑟 be the processing time it takes
to remove a partial match from the system.

We use the following formulas to calculate 𝑍 (𝑇), the average
time it takes to process a new event of type 𝑇 :

𝐿𝑐𝑜𝑛𝑑 (𝑁) =
∑︁

𝑐𝑖 ∈𝐶𝑛𝑜𝑑𝑒 (𝑁)
𝑓𝑖 (5)

𝐿𝑝𝑒𝑒𝑟 (𝑁) = 𝐿𝑐𝑜𝑛𝑑 (𝑝𝑎𝑟𝑒𝑛𝑡 (𝑁)) ×
∏

𝑁 ′∈𝑝𝑒𝑒𝑟𝑠 (𝑁)
𝑃𝑀 (𝑁 ′) (6)

𝑍 (𝑇) =
∑︁

𝑁 ∈𝑃𝐴𝑇𝐻𝜒 (𝑇)
(𝐿𝑝𝑒𝑒𝑟 (𝑁) +𝑉𝑛 +𝑉𝑟) × 𝑃𝑀 (𝑁,𝑇) (7)

𝐿𝑐𝑜𝑛𝑑 (𝑁) represents the processing time needed to evaluate all the
conditions of node 𝑁 for a single combination of primitive events.
𝐿𝑝𝑒𝑒𝑟 (𝑁) represents the processing time needed to combine a single
PM in node𝑁 with all the corresponding partial matches in the peer
nodes of 𝑁 (𝑝𝑒𝑒𝑟𝑠 (𝑁)), and to evaluate the parent node conditions
on the newly created combinations. Equation (7) describes the total
processing time used for all calculations resulting from the arrival
of 𝑒𝑇 to the system. For each node 𝑁 in the path from the leaf
of 𝑇 to the root, we calculate the number of new partial matches
created in 𝑁 from the arrival of 𝑒𝑇 to the system, 𝑃𝑀 (𝑁,𝑇). For

each new partial match, we calculate the time it takes to combine it
with all PMs in the peer nodes and evaluate the parent conditions,
𝐿𝑝𝑒𝑒𝑟 (𝑁), and the time to create and insert the PM in the system,
and then remove it from the system when it is expired.

To complete the formulation, we only need to show how to com-
pute 𝑃𝑀 (𝑁,𝑇) and 𝑃𝑀 (𝑁). We start by explaining the calculation
of 𝑃𝑀 (𝑁,𝑇). Assume 𝑃𝑀 (𝑁) represents the average number of
PMs existing at node 𝑁 , and that 𝑆𝐸𝐿(𝑐𝑖) represents the selectiv-
ity of condition 𝑐𝑖 . Then, the selectivity of node 𝑁 is: 𝑆𝐸𝐿(𝑁) =∏

𝑐𝑖 ∈𝐶𝑛𝑜𝑑𝑒 (𝑁) 𝑆𝐸𝐿(𝑐𝑖). For a leaf node 𝐿, the average number of
new PMs created in 𝐿 as an event of type 𝑇 arrives is 𝑆𝐸𝐿(𝐿), pro-
vided 𝐿 is the corresponding leaf of event type 𝑇 ; otherwise 0:

𝑃𝑀 (𝐿,𝑇) = 𝑆𝐸𝐿(𝐿) × 1𝐿=𝑇 (8)

The number of new PMs created in node 𝑁 due to the arrival of an
event of type 𝑇 can be calculated as:

𝑃𝑀 (𝑁,𝑇) = 𝑆𝐸𝐿(𝑁) ×
∏

𝑁 ′′∈𝑠𝑜𝑛𝑠 (𝑁)∩𝑃𝐴𝑇𝐻𝜒 (𝑇)
𝑃𝑀 (𝑁 ′′,𝑇)

×
∏

𝑁 ′∈𝑠𝑜𝑛𝑠 (𝑁)\𝑃𝐴𝑇𝐻𝜒 (𝑇)
𝑃𝑀 (𝑁 ′)

(9)

Where 𝑠𝑜𝑛𝑠 (𝑁) represents the children of node 𝑁 . The number of
new combinations created is the number of new PMs in the child
belonging to 𝑃𝐴𝑇𝐻𝜒 (𝑇) multiplied by the existing PMs in the other
children. Multiplying this number of all possible new combinations
by the selectivity of 𝑁 will result in the number of new PMs created
in 𝑁 as an event of type 𝑇 arrived.

Similarly, given the arrival rate 𝑅(𝑇) of event type 𝑇 and the
window size𝑤 , the expected number of partial matches 𝑃𝑀 (𝑁) in
node 𝑁 can be calculated as follows:

𝑃𝑀 (𝑁) =
{
𝑅(𝑁) × 𝑆𝐸𝐿(𝑁) ×𝑤 𝑁 𝑖𝑠 𝑎 𝑙𝑒𝑎𝑓

𝑆𝐸𝐿(𝑁) ×∏
𝑁 ′∈𝑠𝑜𝑛𝑠 (𝑁) 𝑃𝑀 (𝑁 ′) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(10)

For an event type 𝑇 under the Kleene closure operator, we con-
sider its arrival rate as 2𝑅 (𝑇) in Equation (10) and multiply by
2𝑅 (𝑇)×𝑤 Equation (8) since it creates exponential number of events.

4.3 Utility Calculation
DARLING’s objective is to maintain a given latency bound 𝐿𝑚𝑎𝑥

while trying to maximize the percentage of detected matches (Equa-
tion (4)). Therefore, the utility values should reflect the importance
of an event to the rate of detected matches. Next, we explain how
to create a utility function for each event type; this utility function
is used later for on-the-fly utility assignment.

Assume that each event type 𝑇 has a list of 𝑛𝑇 attributes with
some global order: 𝐴𝑡𝑡𝑟𝑠𝑇 = {Λ𝑇

𝑖
,∀𝑖 ∈ [0, 𝑛𝑇]}, where Λ𝑇𝑖 repre-

sents the i-th attribute of 𝑇 . Moreover, assume that the probability
density function (PDF) of each attribute Λ𝑇

𝑖
is known or can be

estimated during the statistics gathering phase, denoted by 𝜑𝑇
𝑖
.

Given condition 𝑐 , which contains a set of attributes, 𝐴𝑡𝑡𝑟𝑠𝑐 =

{Λ𝑇𝑗

𝑖
}, with known PDFs Φ𝑐𝑜 = {𝜑𝑇𝑗

𝑖
} (Φ𝑐𝑜 is the set of original PDFs

for 𝑐’s attributes), we create a new set of PDFs for the condition 𝑐:

Φ𝑐𝑛 = {𝜙Λ
𝑇𝑗

𝑖
𝑐 ,∀Λ𝑇𝑗

𝑖
∈ 𝐴𝑡𝑡𝑟𝑠𝑐 }

Each PDF 𝜙
Λ
𝑇𝑗

𝑖
𝑐 ∈ Φ𝑐𝑛 takes a value of attribute Λ

𝑇𝑗

𝑖
= 𝑥 as its

argument and returns the probability of this value passing condition
𝑐 , given the known PDFs of the other attributes that appear in 𝑐:

𝜙
Λ
𝑇𝑗

𝑖
𝑐 (𝑥) = 𝑃 (𝑐 (Λ𝑇𝑗

𝑖
= 𝑥) = 𝑇𝑟𝑢𝑒 | Φ𝑐𝑜 \ {𝜑𝑇𝑗

𝑖
})

To illustrate the above, assume a condition 𝑐 := 𝐴.𝑝𝑟𝑖𝑐𝑒 <

𝐵.𝑝𝑟𝑖𝑐𝑒 , where 𝐴𝑡𝑡𝑟𝑠𝑐 = {𝐴.𝑝𝑟𝑖𝑐𝑒 (Λ𝐴
1), 𝐵.𝑝𝑟𝑖𝑐𝑒 (Λ𝐵

1)} such that
𝐴.𝑝𝑟𝑖𝑐𝑒 ∼ N(`𝐴1 , 𝜎

𝐴
1
2), 𝐵.𝑝𝑟𝑖𝑐𝑒 ∼ N(`𝐵1 , 𝜎

𝐵
1
2), and 𝜑𝐴1 , 𝜑

𝐵
1 are the

corresponding PDFs of these normal distributions. Next, we illus-

trate the computation of 𝜙Λ
𝑇𝑗

𝑖
𝑐 . For the attribute 𝐴.𝑝𝑟𝑖𝑐𝑒:

𝜙
Λ𝐴
1

𝑐 =
(1)

𝑃 (𝑐 (𝐴.𝑝𝑟𝑖𝑐𝑒) | Φ𝑐𝑜 \ {𝜑𝐴1 }) =
(2)

𝑃 (𝐴.𝑝𝑟𝑖𝑐𝑒 < 𝐵.𝑝𝑟𝑖𝑐𝑒 | 𝜑𝐵1)

=
(3)

𝑃 (𝐴.𝑝𝑟𝑖𝑐𝑒 < 𝜑𝐵1) =
(4)

1 −𝐶𝐷𝐹𝜑𝐵
1
(𝐴.𝑝𝑟𝑖𝑐𝑒)

Transition (1) stems from the definition of 𝜙 , and transitions (2) and
(3) are simple assignments. In transition (4) we used the cumulative
distribution function (CDF) of 𝐵.𝑝𝑟𝑖𝑐𝑒: 𝐶𝐷𝐹𝜑𝐵

1
. Eventually, 𝜙Λ

𝐴
1

𝑐

gets a value of attribute Λ𝐴
1 (𝐴.𝑝𝑟𝑖𝑐𝑒) and returns the probability

that it will pass the condition 𝑐 . A similar calculation is performed
for 𝜙Λ

𝐵
1

𝑐 = 𝐶𝐷𝐹𝜑𝐴
1
(𝐵.𝑝𝑟𝑖𝑐𝑒). The creation of Φ𝑐𝑛 is performed peri-

odically, depending on changes in the attributes’ PDFs Φ𝑐𝑜 .
Recall from Section 4.2.3 that 𝐶𝑡𝑦𝑝𝑒 (𝑇) represents all conditions

in the pattern that contain attributes of event type 𝑇 . The utility
function of event 𝑒 of type 𝑇 is:

𝑈𝑇 (𝑒𝑇) =
∏

𝑐𝑘 ∈𝐶𝑡𝑦𝑝𝑒 (𝑇)
𝜙
Λ𝑇
𝑖

𝑐𝑘
(𝑒𝑇 [𝑖]) ∈ [0, 1] (11)

where 𝑖 is the index of attribute Λ𝑇
𝑖
of event type 𝑇 that appears in

condition 𝑐𝑘 , namely Λ𝑇
𝑖
∈ 𝐴𝑡𝑡𝑟𝑠𝑐𝑘 , and 𝑒𝑇 [𝑖] represents the value

of this attribute in event 𝑒𝑇 . In effect, the utility function 𝑈𝑇 (𝑒𝑇)
gets an event 𝑒𝑇 of type 𝑇 and represents the probability that 𝑒𝑇
will pass all conditions and be part of a match.

Continuing the above example, assume a pattern 𝑆𝐸𝑄 (𝐴, 𝐵)
𝑊𝐻𝐸𝑅𝐸 𝐴.𝑝𝑟𝑖𝑐𝑒 < 𝐵.𝑝𝑟𝑖𝑐𝑒 , such that 𝐴.𝑝𝑟𝑖𝑐𝑒 ∼ N(500, 3002) and
𝐵.𝑝𝑟𝑖𝑐𝑒 ∼ N(400, 2002). Moreover, assume two input events of type
𝐴: 𝑎1 (𝑝𝑟𝑖𝑐𝑒 = 200), 𝑎2 (𝑝𝑟𝑖𝑐𝑒 = 700). Then, using 𝜙

𝐴.𝑝𝑟𝑖𝑐𝑒
𝑐 , and

𝜙
𝐵.𝑝𝑟𝑖𝑐𝑒
𝑐 , we get 𝑈𝐴 (𝑎1) = 0.8413, 𝑈𝐴 (𝑎2) = 0.066. Considering

the attributes’ distributions, 𝑎1 is indeed more likely to appear in
matches and is thus assigned a higher utility value.

Calculating the utility values has a negligible effect on the per-
formance of DARLING in overload mode. The utility calculation for
event 𝑒𝑇 of type 𝑇 is performed on-the-fly by evaluating Equation
(11) using 𝑒𝑇 , and depends on |𝐶𝑡𝑦𝑝𝑒 (𝑇) |. Assume that evaluating
each 𝜙 ∈ Φ𝑐𝑛 for arbitrary condition 𝑐 takes 𝑦 time units. Then,
evaluating𝑈𝑇 (𝑒𝑇) takes 𝛼𝑇 = |𝐶𝑡𝑦𝑝𝑒 (𝑇) | × 𝑦 time units.

4.4 Auxiliary Data Structures
To enable lightweight load shedding decisions, we introduce new
auxiliary data structures that enable DARLING to quickly drop the
events of lowest utility.

For each buffer of event type 𝑇 , DARLING creates b𝑇 arrays:
𝑈𝑡𝑖𝑙𝐴𝑟𝑟0

𝑇
, ...,𝑈 𝑡𝑖𝑙𝐴𝑟𝑟

b𝑇
𝑇

. When event 𝑒𝑇 of type 𝑇 with utility 𝑢 ∈

Figure 5: An example of auxiliary data structures for event
type A, when the number of arrays is b𝐴 = 100. Scaled utility
values appear in square brackets.

[0, 1] arrives at the system, DARLING scales its utility to 𝑢 ′ =

𝑢 × b𝑇 ∈ [0, b𝑇]. The event is then appended to the buffer of𝑇 , and
a pointer to 𝑒𝑇 is appended to the corresponding array:𝑈𝑡𝑖𝑙𝐴𝑟𝑟

⌊𝑢′⌋
𝑇

.
Figure 5 depicts these data structures for event type𝐴. We create

b𝐴 = 100 auxiliary arrays containing pointers for events from
the buffer of 𝐴. 𝑈𝑡𝑖𝑙𝐴𝑟𝑟 𝑖 will contain pointers to events having
⌊𝑢×b𝑇 ⌋ = 𝑖 . When event 𝑎1 with a utility value of𝑢 = 0.305 arrives
at the system, its utility is scaled to 𝑢 ′ = 𝑢 × 100 = 30.5 and its
pointer is appended to the corresponding buffer𝑈𝑡𝑖𝑙𝐴𝑟𝑟

⌊30.5⌋
𝐴

.
If the global constraint is violated, and the buffer size of event

type 𝑇 is greater than its local constraint 𝑁𝑇 , the event with min-
imum utility is dropped from the buffer. This drop is performed
by accessing the minimum-utility array, which is non-empty, and
dropping a random event from there. In Figure 5, assume that the
global constraint is violated. When event 𝑎51 arrives at the system
and the local constraint 𝑁𝐴 = 50 is violated, we access the lowest
utility buffer 𝑈𝑡𝑖𝑙𝐴𝑟𝑟0

𝐴
and drop a random event from there (𝑎2).

Now, 𝑎51 can be added to array𝑈𝑡𝑖𝑙𝐴𝑟𝑟
⌊60.3⌋
𝐴

= 𝑈𝑡𝑖𝑙𝐴𝑟𝑟60
𝐴
.

As the number of arrays b𝑇 increases, the probability of collisions
decreases, i.e., the probability that ⌊𝑢1×b𝑇 ⌋ = ⌊𝑢2×b𝑇 ⌋ for𝑢1 ≠ 𝑢2.
This means that less events will be in the same array and enable
more accurate and granular dropping by utility values. However,
the system consumes more memory when it creates more arrays.

The complexity of inserting and dropping events from these
data structures involves appending a value to an array, removing
a random value from the array, and maintaining the minimum-
utility array, which is negligible and does not depend on the array
size. The memory used by these data structures for event type 𝑇 is
(𝑁𝑇 + b𝑇) × 𝐵 where 𝐵 is the number of bytes needed for storing
a pointer. The overall memory complexity of the data structures
is

∑
𝑇 ∈𝑇𝑌𝑃𝐸𝑆 (𝑁𝑇 + b𝑇) × 𝐵 bytes, which is negligible overhead

compared to the buffers and the exponential PMs memory usage.
The auxiliary data structures are created upon demand and used

only during overload situations. We denote 𝛾𝑇 as the threshold
that indicates the need to create the auxiliary data structures for
the buffer of event type 𝑇 . As explained previously, each buffer
of event type 𝑇 has a local constraint 𝑁𝑇 on its size. To create
the auxiliary data structures, we need to calculate utility values
for each event in the buffer and assign the event’s pointer to the
corresponding array. Recall that 𝛼𝑇 is the time needed to calculate

the utility value for a single event of type 𝑇 . Hence, 𝑁𝑇 × 𝛼𝑇 is the
time it takes to calculate utilities for all events in the buffer of 𝑇 .
During this time, the number of events from the buffer that should
have been processed is ⌈𝑁𝑇 ×𝛼𝑇

𝑍 (𝑇) ⌉. Therefore, we start creating the
new auxiliary data structures before the overload, when the buffer
size reaches the threshold 𝛾𝑇 = 𝑁𝑇 − ⌈𝑁𝑇 ×𝛼𝑇

𝑍 (𝑇) ⌉.

4.5 Potential Extensions
In this section, we describe the extensions that are natively sup-
ported by the design of DARLING and will be addressed in our
future work.

Popular evaluation mechanisms. The widely used evalua-
tion mechanisms listed in Section 2.1 are represented by a directed
acyclic graph (DAG) and only differ in the restrictions on the al-
lowed graph topology. To adapt DARLING to these mechanisms,
the cost model (Equations (5) - (10)) should be extended to ac-
commodate additional graph typologies. It should include proper
evaluation of the number of PMs created during processing by the
new graph topology (Equations (8)-(10)), the corresponding path in
which an event is evaluated (Equations (6)-(7)), and the location of
the conditions (Equation (5)). We invite the reader to refer to [33]
for more details on the cost model.

Multi-pattern scenario.Multi-pattern CEP is an active research
area [34, 43, 57]. Support for multi-patterns will affect both the cost
model and the utility calculation in DARLING. In multi-pattern CEP,
each pattern can have a different importance and a different latency
bound requirement. Extending DARLING to comply with different
latency bounds will require creating a separate input buffer (Section
4.2.1) and a respective constraint per latency bound requirement.
Events will have to be routed to the input buffers according to the
tightest constraint on the latency bound for their type.

The local constraints (Section 4.2.2) on the event types’ buffers
should capture the importance of the different patterns. This can
be achieved by weighting the equation in Section 4.2.2, with the
maximum weight related to each event type. That will enable less
shedding of events related to more important patterns, with respect
to the system’s core as defined in Equation (4). As discussed in [34],
a multi-pattern evaluation mechanism can be represented as a DAG
or a forest of DAGs. Extending the cost model for graphs, as defined
above, will enable the precise calculation of 𝑍 (𝑇) for multi-pattern.

As explained in Section 4.3, each event has a utility value that
reflects its probability of being part of a match for a specific pattern,
as defined in Equation (11). For a multi-pattern scenario, the utility
of an event belonging to multiple patterns can be computed as a
weighted average or as the maximum of its utilities as computed
for the different patterns that contain it.

Parallel and distributed CEP. DARLING can be executed in
parallel and/or on distributed nodes [45] without any scalability
issues. This follows from the core design choice of DARLING of
dropping events upon their arrival to the system. The only over-
head in deploying DARLING with a distributed or parallelized CEP
mechanism would be in the statistics gathering phase and when
updating the cost model, where the parallelized or distributed com-
ponents must synchronize. Nevertheless, this overhead is small
since it happens only upon detection of concept drift, and when
the system has enough available resources.

5 EXPERIMENTAL EVALUATION
5.1 Experimental Setup
Experimental environment. To simulate a resource-constrained
environment, we packed our code in Docker containers. Each con-
tainer was built from an Alpine3.12 Linux image. Unless stated
otherwise, we limited the resources for each container to 1 CPU
and 4 GB RAM. The Docker containers ran on an Ubuntu 18.04.5
machine equipped with 377 GB RAM and 80 CPUs, each having 20
cores. Each experiment comprised two containers communicating
through a TCP raw socket. The first was a generator container
that read the dataset from a file and sent the events through the
socket at dynamic rates. The second was a processor container,
that contained the core logic, including CEP and load shedding. All
algorithms were implemented in Python 3.8.3.

Compared algorithms. We compared DARLING to a baseline
algorithm and three state-of-the-art algorithms [48, 49, 58]:

• Random baseline - handles overload situations by randomly
dropping partial matches from the system.

• eSPICE [48] - drops events from individual windows by using
the event type and its position in the window to calculate the event
utility for each window.

• hSPICE [49] - drops events from partial matches inside win-
dows; they use the event type, its position inside the window, and
the partial match state to calculate the event utility for each partial
match in each window.

• ICDE’20 [58] - combines state-based and input-based tech-
niques for load shedding. State-based shedding is achieved by choos-
ing a "shedding set" with the lowest-utility PMs. After dropping all
the PMs of the shedding set, input-based shedding is implemented
by continuing to drop all the input events that are part of a PM
in the shedding set. PMs are divided into classes of consumption
and contribution values, using the event attributes as features. This
algorithm is referred to as Zhao et. al. in Section 5.2.

Datasets. We used three real-world datasets in the experiments.
The first dataset was taken from historical records of the NASDAQ
stock market [1]. The data contains a one-year period of updates
to stock prices, covering over 2500 stock identifiers with prices
updated on a per-minute basis (409,622,891 events). Each event
consists of a stock identifier (used as the event type), a timestamp,
trading volume, and prices at open, close, high, and low points.

The second dataset was taken from the DEBS 2013 Grand Chal-
lenge [2]. The data originates from wireless sensors embedded in
the soccer players’ shoes and a ball used during a single match;
the data spans the duration of the entire game. The sensors for
the players produced data at a frequency of 200Hz, while the sen-
sor in the ball produced data at a frequency of 2000Hz. Each row
in the dataset contains a sensor identifier, which is used for the
event type, along with timestamp, location coordinates, velocity,
and acceleration. This dataset contains 49,576,080 records.

The third dataset contains bus GPS data collected from across
Dublin by the Dublin City Council’s traffic control [3]; the data
spans a one-month period and covers more than 80 line IDs, which
were used as event types. This dataset contains 33,097,325 records
and each record includes a timestamp and 11 additional attributes
updated every few seconds or milliseconds. We augmented the data
with the distance of the bus from Dublin city center.

Table 1: Real-world queries for the experiments. Each query
operates within a time window of 60minutes for the stock
dataset, 5 × 1010 picoseconds for the soccer dataset, and 107
milliseconds for the bus dataset.

Stocks Queries - A
𝑄𝐴
1 SEQ(𝑆1, 𝑆2,..., 𝑆𝑛)

WHERE ∀𝑖 ∈ {2, 𝑛}: 𝑆𝑖.volume > 𝑆𝑖−1.volume × 𝐶

𝑄𝐴
2 SEQ(𝑆1,..., KLEENE(𝑆 𝑗),..., 𝑆𝑛)

WHERE ∀𝑖 ∈ {2, 𝑛}: 𝑆𝑖.open > 𝑆𝑖−1.open × 𝐶

𝑄𝐴
3 SEQ(𝑆1,...,NEG(𝑆 𝑗),..., 𝑆𝑛) WHERE 𝑆 𝑗.open < 𝑋

AND ∀𝑖 ∈ {2, 𝑛}: 𝑆𝑖.open > 𝑆𝑖−1.open × 𝐶

Soccer Queries - B
𝑄𝐵
1 SEQ(GoalB, Ball, GoalA) WHERE 𝑑𝑖𝑠𝑡 (𝐺𝑜𝑎𝑙𝐵, 𝐵𝑎𝑙𝑙) < 𝑋

AND GoalB.v > GoalA.v × 𝐶

𝑄𝐵
2 SEQ(Goal, 𝐷1,...,𝐷𝑛)

WHERE ∀𝑖 ∈ {1, 𝑛}: 𝑑𝑖𝑠𝑡 (𝐺𝑜𝑎𝑙, 𝐷𝑖) < 𝑋

𝑄𝐵
3 SEQ(Goal, 𝐷1,...,KLEENE(𝐷 𝑗),...,𝐷𝑛)

WHERE ∀𝑖 ∈ {1, 𝑛}: 𝐷𝑖−1.v < 𝐷𝑖.v

𝑄𝐵
4 SEQ(GoalB, NEG(GoalA), Ball)

WHERE 𝑑𝑖𝑠𝑡 (𝐺𝑜𝑎𝑙𝐵, 𝐵𝑎𝑙𝑙) < 𝑋 AND GoalA.v < 𝐶

Bus Queries - C
𝑄𝐶
1 SEQ(𝐿1, 𝐿2,..., 𝐿𝑛)

WHERE ∀𝑖 ∈ {2, 𝑛}: 𝐿𝑖.dist > 𝐿𝑖−1.dist × 𝐶

𝑄𝐶
2 SEQ(𝐿1,...,KLEENE(𝐿𝑗),..., 𝐿𝑛)

WHERE ∀𝑖 ∈ {2, 𝑛}: 𝐿𝑖.dist > 𝐿𝑖−1.dist × 𝐶

𝑄𝐶
3 SEQ(𝐿1,...,NEG(𝐿𝑗),..., 𝐿𝑛) WHERE 𝐿𝑗.delay > 𝑋

AND ∀𝑖 ∈ {2, 𝑛}: 𝐿𝑖.dist > 𝐿𝑖−1.dist × 𝐶

Queries: Table 1 lists the query templates used for each dataset.
In the stock dataset, 𝑄𝐴

1 is a query template that represents a se-
quence of 𝑛 stock symbols whose trading volume is increasing by
a factor of 𝐶 . 𝑄𝐴

2 represents a sequence of stock symbols with a
Kleene closure operator, where the open value increases by a factor
of𝐶 .𝑄𝐴

3 represents a sequence of 𝑛−1 stocks without 𝑆 𝑗 , or with 𝑆 𝑗
having 𝑆 𝑗 .𝑜𝑝𝑒𝑛 < 𝑋 . These patterns may imply different relations
and correlations between the participating stocks.

In the soccer game queries, 𝑄𝐵
1 represents a sequence for the

goalkeeper of team A, a ball event, and the goalkeeper of team B,
where the ball is closer to goalkeeper B and the speed of goalkeeper
B is higher than the speed of goalkeeper A, hence, teamAmay score
a goal against team B. 𝑄𝐵

2 represents the sequence of a goalkeeper
and 𝑛 defenders from that team; it detects when the distance of all
defenders is less than 𝑋 from the goalkeeper, meaning no possible
goal. 𝑄𝐵

3 represents the sequence of a goalkeeper and 𝑛 defenders
whose velocity is increasing, and includes a Kleene closure operator.
𝑄𝐵
4 detects a sequence of goalkeeper B and the ball, where there is

either no event of goalkeeper A between them, or one exists but
goalkeeper A’s velocity is lower than 𝐶 . These patterns monitor
real-time actions such as possible goal (𝑄𝐵

1 ,𝑄
𝐵
2 and𝑄𝐵

4) and defense
actions (𝑄𝐵

2 and 𝑄𝐵
3).

In the bus dataset, queries𝑄𝐶
1 and𝑄𝐶

2 detect a sequence of 𝑛 line
IDs with increasing distance from Dublin center. 𝑄𝐶

2 also contains
a Kleene closure. 𝑄𝐶

3 detects a sequence of 𝑛 lines with increased

(a) Bus dataset (b) Bus dataset (c) Bus dataset (d) Soccer dataset (e) Soccer dataset

(f) Stock dataset (g) Stock dataset (h) Stock dataset (i) Soccer dataset

Figure 6: Percentage of matches found (higher is better) under overload rate of 70%, as a function of: average window size
((a),(d),(f)), pattern length ((b),(e),(g)), and average number of partial matches per window ((c),(h),(i)).

distance from the center but does not include 𝐿𝑗 , or includes 𝐿𝑗 only
when its delay is greater than 𝑋 . These patterns monitor real-time
bus trajectories with the Dublin center as a reference point.

The results displayed are the average of multiple independent
runs. Statistical significance is shown using error bars, which rep-
resent the standard deviation. The maximum standard deviation
observed for DARLING was 6% in percentage of detected matches,
12% in latency, and 8% in peak memory consumption.

Implementation details. All algorithms were applied on a
left-deep [33] skip-till-any [56] tree evaluation mechanism [37].

Unless stated otherwise, the latency bound 𝐿𝑚𝑎𝑥 for each experi-
ment was 1.5 seconds. For all the experiments, we started dropping
events after 80% of the input event stream (𝑁𝑖𝑛) was full (𝛽 = 0.8).

A warm-up phase preceded the experiments, allowing each al-
gorithm to calculate its statistics and models. During the warm-up
phase, no events were dropped. In overload mode (Figures 6, 7, and
8), we sent 70% of the data as load using 4 peaks of 30%, 10%, 20%,
and 10%. We create the overload by increasing the predefined ar-
rival rates for these portions of the data by a factor of 1000. The
remaining 30% of the data was sent between the load peaks, at the
predefined, non-overload arrival rates. We decided to use 4 peaks
for the load after we measured the experimental metrics as a func-
tion of the number of load peaks and found it to have a limited
effect on the performance.

Experimental metrics and parameters. We tested the fol-
lowing performance metrics: (1) percentage of detected matches as
defined in Equation (4), (2) latency as defined in Equation (2), and (3)
peak memory consumption, the maximum memory required by the
system during evaluation. The experimental parameters included:
(1) pattern length, the number of event types participating in the
pattern; (2) average window size, the average number of events
from the pattern that appear in each window; (3) average number
of partial matches inside each window; and (4) overload rate. When
calculating the percentage of detected matches, we did not consider
matches whose latency exceeded 30 minutes. Consequently, the
upper limit is 1800 seconds in the latency graphs for overload.

5.2 Experimental Results
In our first experiment, we measured the percentage of matches
detected by each algorithm in an overload mode, as a function of
the experimental parameters.

For the varying window size parameters ((a), (d), (f), Figure 6),
DARLING detected a higher percentage of matches by up to a factor
of 4, 12, and 10; these were achieved for the largest window sizes
in the stock, bus, and soccer datasets, respectively. Increasing the
window size results in more PMs created inside each window and
more overlapping between windows.

For each event, eSPICE calculates a different utility value for
every window in which it appears, and hSPICE calculates a different
utility value for each relevant partial match in these windows.
Both eSPICE and hSPICE prevent processing the event within the
window or with the PM if the corresponding utility value is below
some threshold. The process of calculating utility values for each
window or PM is time-consuming and uses up valuable processing
time that could otherwise be used for the pattern detection process.
In Zhao et. al., increasing the window size leads to more PMs that
need to be classified. The exponential number of PMs creates an
excess load that should be dropped resulting in more classes of PMs
in the shedding set being dropped. Since the input-based technique
drops events that appeared in some PM in the shedding set, it
potentially drops also important events. The bigger the shedding
set, the higher the risk of dropping important input-events. The
more overlapping windows and PMs that exist, the more processing
time is used for both the pattern detection process and the load
shedding decision, resulting in the need for more shedding.

In contrast, DARLING computes a single utility value per event;
the processing time for calculating this utility value does not de-
pend on the number of PMs or the number of windows containing
the event. The combination of carrying out the load shedding deci-
sion upon the arrival of an event according to the global and local
constraints on the buffer sizes, and the lightweight calculation of a
single utility value per event that properly reflects its importance
to the system output, makes DARLING scalable and efficient.

(a) Bus dataset (b) Bus dataset (c) Bus dataset (d) Soccer dataset (e) Soccer dataset

(f) Stock dataset (g) Stock dataset (h) Stock dataset (i) Soccer dataset

Figure 7: Average detection latency (lower is better) under an overload rate of 70%, as a function of: average window size ((a),(d),(f),
logarithmic scale), pattern length ((b),(e),(g)), and average number of partial matches per window ((c),(h),(i), logarithmic scale).

We also observed that DARLING outperformed the other al-
gorithms in terms of the average number of partial matches per
window ((c),(h),(i), Figure 6) by a factor of 3 to 4 in the stock dataset,
3 to 8 in the bus dataset, and 5 to 6 in the soccer dataset. The dis-
played results are compatible with the above discussion. A large
number of PMs in the system state can considerably impair the sys-
tem performance by increasing the processing time for each event.
Therefore, for a larger amount of PMs more shedding is needed.

The pattern length also affects the rate of detected matches
((b),(e),(g), Figure 6). DARLING achieved a higher percentage of
matches by a factor of up to 10, 4836, and 18 for stock, bus, and
soccer datasets, respectively. Moreover, for patterns of length 7, it
achieved a higher percentage of matches by factor of 3, 4836, and 11
for stock, bus, and soccer datasets, respectively. For the stock and
the soccer datasets ((g),(e), Figure 6) we generated longer patterns
by adding event types with similar arrival rates to the sequence.

When the pattern gets longer, more PMs are generated hence
more shedding is needed. These extended patterns enabled us to
examine our load shedding under more rigorous conditions. In the
bus dataset ((b), Figure 6), we noticed a rise in the rate of detected
matches for pattern lengths greater than 5. This occurred because
we appended event types with lower arrival rates to the sequence
to create pattern lengths greater than 5; these events do not signifi-
cantly increase the processing time but do result in fewer matches
per window. Since DARLING considers the arrival rate of event
types when determining the local buffers constraints (Section 4.2),
it does not drop the lower-rate events entirely, and therefore re-
mains able to detect a higher percentage of matches. We further
observed that although more PMs were created in longer patterns,
DARLING was capable of increasing the percentage of matches due
to its data-aware utility calculation and the local constraints.

Figure 7 depicts the effect of the experimental parameters on the
average detection latency under overload. Recall that we defined a
latency bound of 𝐿𝑚𝑎𝑥 = 1.5 seconds, and that a match is expired
if its latency exceeds 30 minutes. While DARLING achieved the
lowest detection latency under all experimental parameters and
did not exceed 𝐿𝑚𝑎𝑥 , the other compared algorithms struggled to
maintain the given latency bound.

As the window size increased ((a),(d),(f), Figure 7), the detection
latency of state-of-the-art and the baseline algorithms increased.
Here, the latency for DARLING was up to 21, 1280, and 87 times
lower than that of the lowest-latency algorithm for the stock, bus,
and soccer datasets, respectively. Moreover, for the largest window
size the detection latency of DARLING was 4, 3, and 7 times lower
for the stock, bus and soccer datasets, respectively.

When the pattern length increased ((b),(e),(g), Figure 7), the
detection latency of the other compared algorithms increased, and
DARLING outperformed the lowest-latency algorithm by up to a
factor of 182, 1822, and 46 for the stock, bus, and soccer datasets,
respectively. As the pattern gets longer, the number of PMs and the
window size increase. Moreover, the more event types that exist
in the pattern, the more events being queued, and the higher the
detection latency, which depends on the queue size (Section 4.2.1).
Since DARLING drops events upon their arrival to the system and
performs fast load shedding decisions (Section 4.4), it manages to
maintain a fixed size for the queues and preserve the given latency
bound. In Figure 7(b) for pattern lengths 7 and 8, the detection
latency of eSPICE, hSPICE, and the baseline algorithms is 0, because
they did not manage to find any matches. This also applies to Zhao
et. al. for a pattern length of 8. Similarly, in Figure 7(g) for a pattern
length of 7, the detection latency of hSPICE drops dramatically.
This occurs because it found a very small percentage of matches at
the beginning of the experiment, when fewer events accumulated
in the queues, resulting in smaller latencies.

Under the same number of partial matches per window ((c),(h),(i),
Figure 7), the lowest average detection latency for DARLING was
2, 88, and 9 times smaller than the lowest-latency algorithm for the
stock, bus, and soccer datasets, respectively.

Figure 8 presents the peak memory consumption comparison.
The number of partial matches formed is the most dominant con-
tributor to the memory consumption and is greatly influenced by
the load shedding decisions of the algorithm. The memory con-
sumption of the auxiliary data structures in DARLING (Section 4.4)
grows linearly with the pattern length and window size, whereas
the number of partial matches grows exponentially with both these

(a) Bus dataset (b) Bus dataset (c) Bus dataset (d) Soccer dataset (e) Soccer dataset

(f) Stock dataset (g) Stock dataset (h) Stock dataset (i) Soccer dataset

Figure 8: Peak memory consumption (lower is better) under an overload rate of 70%, as a function of: average window size
((a),(d),(f)), pattern length ((b),(e),(g), logarithmic scale), and average number of PMs per window ((c),(h),(i), logarithmic scale).

parameters. Therefore, the memory overhead of these data struc-
tures was only 0.03% on average. In most of the experiments, the
peak memory usage of DARLING was lower than the peak mem-
ory used by the other algorithms. However, in the soccer dataset,
which is characterized by higher arrival rates and considerably
more partial matches ((d),(e),(i), Figure 8), the memory consump-
tion for DARLINGwas higher. This can be explained by the fact that
the other methods had significantly more shedding than DARLING
due to longer processing time, and this decreased their peak mem-
ory consumption. Because Zhao et. al. drops PMs after calculating
the shedding set (i.e., after the PMs’ creation), its peak memory
consumption is relatively high.

Figure 9 displays the system performance at a variable rate of
overload. In these experiments, the generated load was continuous.
DARLING outperformed the other algorithms with respect to the
percentage of detected matches ((a),(c),(e), Figure 9) in all datasets.
DARLING also demonstrated a detection latency of 7, 123, and
356 times lower in the highest overload rate for the stock, bus,
and soccer datasets, respectively. Moreover, DARLING preserves
a relatively small latency bound when there is an increase in the
load; the other algorithms showed increased latency.

A strong negative correlation between the percentage of found
matches to the detection latency can be observed in Figure 9. As
the overload rate grows, latencies grow and more events are being
dropped in order tomaintain the given latency bound, hence the per-
centage of matches found decreases. In addition, the close-to-zero
slope in matches found by DARLING implies that the data-aware
utility calculation does a good job of dropping the less important
events and keeping the important ones.

The last set of experiments were aimed at measuring the over-
head of the load shedding algorithm on the detection latency, when
no events are being dropped. The results depicted in Figure 10 show
that DARLING achieved the minimal detection latency, which was
lower than the latency of the other algorithms by up to 4 orders
of magnitude. This can be explained by the utility calculation in
DARLING, which does not depend on the experimental parameters.
In eSPICE and hSPICE the utility for an event is calculated per

(a) Bus dataset (b) Bus dataset

(c) Stock dataset (d) Stock dataset

(e) Soccer dataset (f) Soccer dataset

Figure 9: Percentage of detected matches ((a),(c),(e), higher
is better) and detection latency ((b),(d),(f), logarithmic scale,
lower is better), as a function of the overload rate.

window and per PM, and depends on the experimental parameters.
It therefore has a high overhead in a setting with overlapping win-
dows and multiple PMs. Moreover, for Zhao et. al., classifying PMs
and input events is also time-consuming.

(a) Bus dataset (b) Bus dataset (c) Bus dataset (d) Soccer dataset (e) Soccer dataset

(f) Stock dataset (g) Stock dataset (h) Stock dataset (i) Soccer dataset

Figure 10: Detection latency overhead (lower is better) with no dropping of events as a function of: average window size
((a),(d),(f), logarithmic scale), pattern length ((b),(e),(g)), and average number of PMs per window ((c),(h),(i), logarithmic scale).

6 RELATEDWORK
In recent years, complex event processing has become an increas-
ingly important research field [17, 18, 22]. The success of earlier data
stream management systems [5, 12, 15, 23] led to the development
of many general-purpose CEP frameworks [7, 8, 13, 16, 37, 55]. A va-
riety of CEP engines have also been developed [10, 14, 26, 29], along-
side multiple CEP libraries [4, 19, 50]. Numerous techniques for op-
timizing CEP performance have been proposed [16, 19, 20, 28, 40, 55,
56], based on efficient pattern representations [9, 32, 35, 37, 42, 46],
sub-expression sharing [9, 19, 34, 36, 43, 57], parallel evaluation
[45] and more. These works are orthogonal to DARLING and could
be activated by the system prior to load shedding.

Load shedding has gained much attention in the data stream
processing domain [30, 31, 38, 39, 41, 44, 51, 53]. Some works [31,
38, 51] use the tuple content to determine its importance. In [51],
the authors use random and semantic drops, and in [38] the authors
use content-based filters for bounded approximations in answer to
aggregate queries. In [31], they use concept-driven load shedding
and in [44] high-latency tuples are considered less important. In
[41, 53], the authors use reservoir sampling and stratified sampling.
In [30] the authors addressed the problem of fair load shedding
in federated stream processing systems by balancing the source
information content (SIC) metric of different queries. The SICmetric
quantifies the amount of source data that was used to create a given
query result tuple.

To the best of our knowledge, all methods surveyed in the previ-
ous paragraph share common limitations that make them difficult
to apply to a CEP setting. Namely, they focus either on aggrega-
tions or on two-relational equi-join queries. In aggregate queries,
load shedding decisions are made per-tuple, independently of other
tuples. However, in CEP, the load shedding decisions must capture
the correlations and dependencies created by combining multiple
data items. Existing solutions for two-relations equi-joins cannot
be trivially adapted to CEP [33], which focuses mainly on com-
plex multi-relational non-equi-joins with models of causality and
conceptual hierarchies that contain Kleene closure and negation.

DILoS/ALoMa [39] is the closest in spirit to our work. The au-
thors combined scheduler and load shedder policies to manage

stream processing queries of different priority classes. However,
while DILoS/ALoMa focuses on "when" and "how much" to shed at
the query-class level, DARLING also addresses the "what to shed"
question at the event-type level.

Load shedding was recently adapted by CEP [27, 47–49, 58]. In
[27], the authors propose integral load shedding, where events of
a certain type are either all preserved or all shed, and fractional
load shedding, where events are sampled uniformly at random.
DARLING generalizes the above approach and makes it possible to
shed events based on their importance rather than on frequency
alone. In [47], a utility value is assigned to a partial match based
on the probability of its completion and its remaining processing
time. However, finding partial matches to drop requires iterating
over an exponentially large set.

We refer to [48, 49, 58] as our baseline algorithms. eSPICE [48]
sheds events from windows, while hSPICE [49] sheds events from
PMs. Both methods assume a correlation between events of certain
types at certain positions within a window. In [58], the authors pro-
pose a hybrid solution that first applies state-based load shedding; it
calculates a "shedding set" of lowest-utility PMs to be dropped. The
utility of a PM reflects its probability of completion and estimated
processing cost. Then, they apply input-based load shedding by
dropping all events that appear in some PM in the "shedding set".

7 CONCLUSIONS
In this paper, we studied the problem of load shedding in CEP sys-
tems. We formally defined the load shedding problem in CEP and
presented DARLING, a novel and scalable load shedding mecha-
nism for CEP. Our extensive experimental evaluation demonstrated
significant improvements in performance as compared to the state-
of-the-art methods. Our future research efforts will cover the direc-
tions presented in Section 4.5.

ACKNOWLEDGMENTS
The research leading to these results was supported by the Israel
Science Foundation (grant No.191/18). This research was partially
supported by the Technion Hiroshi Fujiwara Cyber Security Re-
search Center and the Israel National Cyber Directorate.

REFERENCES
[1] [n.d.]. http://www.eoddata.com
[2] [n.d.]. https://debs.org/grand-challenges/2013/
[3] [n.d.]. https://data.smartdublin.ie/dataset/dublin-bus-gps-sample-data-from-

dublin-city-council-insight-project
[4] [n.d.]. https://www.espertech.com/
[5] Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel, Mitch

Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey, Alex Rasin,
Esther Ryvkina, et al. 2005. The design of the borealis stream processing engine..
In Cidr, Vol. 5. 277–289.

[6] Asaf Adi, David Botzer, Gil Nechushtai, and Guy Sharon. 2006. Complex event
processing for financial services. In 2006 IEEE Services Computing Workshops.
IEEE, 7–12.

[7] Asaf Adi and Opher Etzion. 2004. Amit-the situation manager. The VLDB journal
13, 2 (2004), 177–203.

[8] Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil Immerman. 2008. Ef-
ficient pattern matching over event streams. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data. 147–160.

[9] Mert Akdere, Uǧur Çetintemel, and Nesime Tatbul. 2008. Plan-based complex
event detection across distributed sources. Proceedings of the VLDB Endowment
1, 1 (2008), 66–77.

[10] Lisa Amini, Henrique Andrade, Ranjita Bhagwan, Frank Eskesen, Richard King,
Philippe Selo, Yoonho Park, and Chitra Venkatramani. 2006. SPC: A distributed,
scalable platform for data mining. In Proceedings of the 4th international workshop
on Data mining standards, services and platforms. 27–37.

[11] Leonardo Aniello, Giorgia Lodi, and Roberto Baldoni. 2011. Inter-domain stealthy
port scan detection through complex event processing. In Proceedings of the 13th
European Workshop on Dependable Computing. 67–72.

[12] Arvind Arasu, Brian Babcock, Shivnath Babu, John Cieslewicz, Mayur Datar,
Keith Ito, RajeevMotwani, Utkarsh Srivastava, and JenniferWidom. 2016. Stream:
The stanford data stream management system. In Data Stream Management.
Springer, 317–336.

[13] Roger S Barga, Jonathan Goldstein, Mohamed Ali, and Mingsheng Hong. 2006.
Consistent streaming through time: A vision for event stream processing. arXiv
preprint cs/0612115 (2006).

[14] Paul C Brown. 2013. Architecting Complex-Event Processing Solutions with TIBCO®.
Addison-Wesley.

[15] Jianjun Chen, David J DeWitt, Feng Tian, and Yuan Wang. 2000. NiagaraCQ: A
scalable continuous query system for internet databases. In Proceedings of the
2000 ACM SIGMOD international conference on Management of data. 379–390.

[16] Gianpaolo Cugola and Alessandro Margara. 2012. Complex event processing
with T-REX. Journal of Systems and Software 85, 8 (2012), 1709–1728.

[17] Gianpaolo Cugola and Alessandro Margara. 2012. Processing flows of informa-
tion: From data stream to complex event processing. ACM Computing Surveys
(CSUR) 44, 3 (2012), 1–62.

[18] Miyuru Dayarathna and Srinath Perera. 2018. Recent advancements in event
processing. ACM Computing Surveys (CSUR) 51, 2 (2018), 1–36.

[19] Alan Demers, Johannes Gehrke, Mingsheng Hong, Mirek Riedewald, and Walker
White. 2006. Towards expressive publish/subscribe systems. In International
Conference on Extending Database Technology. Springer, 627–644.

[20] Luping Ding, Songting Chen, Elke A Rundensteiner, Junichi Tatemura, Wang-Pin
Hsiung, and K Selcuk Candan. 2008. Runtime semantic query optimization for
event stream processing. In 2008 IEEE 24th International Conference on Data
Engineering. IEEE, 676–685.

[21] Opher Etzion and Peter Niblett. 2010. Event processing in action. Manning
Publications Co.

[22] Ioannis Flouris, Nikos Giatrakos, Antonios Deligiannakis, Minos Garofalakis,
Michael Kamp, and Michael Mock. 2017. Issues in complex event processing:
Status and prospects in the big data era. Journal of Systems and Software 127
(2017), 217–236.

[23] Michael Franklin. 2003. Telegraphcq: continuous dataflow processing for an
uncertain world. CIDR. Asilomar: Morgan Kauf. man Publishers (2003), 269–280.

[24] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid
Bouchachia. 2014. A survey on concept drift adaptation. ACM computing surveys
(CSUR) 46, 4 (2014), 1–37.

[25] Paulo M Gonçalves Jr, Silas GT de Carvalho Santos, Roberto SM Barros, and
Davi CL Vieira. 2014. A comparative study on concept drift detectors. Expert
Systems with Applications 41, 18 (2014), 8144–8156.

[26] Chetan Gupta, Song Wang, Ismail Ari, Ming Hao, Umeshwar Dayal, Abhay
Mehta, Manish Marwah, and Ratnesh Sharma. 2009. Chaos: A data stream
analysis architecture for enterprise applications. In 2009 IEEE conference on
commerce and enterprise computing. IEEE, 33–40.

[27] Yeye He, Siddharth Barman, and Jeffrey F Naughton. 2013. On load shedding in
complex event processing. arXiv preprint arXiv:1312.4283 (2013).

[28] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra Gedik, and Robert Grimm.
2014. A catalog of stream processing optimizations. ACM Computing Surveys
(CSUR) 46, 4 (2014), 1–34.

[29] Sachini Jayasekara, Srinath Perera, Miyuru Dayarathna, and Sriskandarajah
Suhothayan. 2015. Continuous analytics on geospatial data streams with WSO2
complex event processor. In Proceedings of the 9th ACM International Conference
on Distributed Event-Based Systems. 277–284.

[30] Evangelia Kalyvianaki, Marco Fiscato, Theodoros Salonidis, and Peter Pietzuch.
2016. Themis: Fairness in federated stream processing under overload. In Pro-
ceedings of the 2016 International Conference on Management of Data. 541–553.

[31] Nikos R Katsipoulakis, Alexandros Labrinidis, and Panos K Chrysanthis. 2018.
Concept-driven load shedding: Reducing size and error of voluminous and vari-
able data streams. In 2018 IEEE International Conference on Big Data (Big Data).
IEEE, 418–427.

[32] Ilya Kolchinsky and Assaf Schuster. 2018. Efficient Adaptive Detection of Com-
plex Event Patterns. Proceedings of the VLDB Endowment 11, 11 (2018).

[33] Ilya Kolchinsky and Assaf Schuster. 2018. Join Query Optimization Techniques
for Complex Event Processing Applications. Proceedings of the VLDB Endowment
11, 11 (2018).

[34] Ilya Kolchinsky and Assaf Schuster. 2019. Real-time multi-pattern detection over
event streams. In Proceedings of the 2019 International Conference on Management
of Data. 589–606.

[35] Ilya Kolchinsky, Izchak Sharfman, and Assaf Schuster. 2015. Lazy evaluation
methods for detecting complex events. In Proceedings of the 9th ACM International
Conference on Distributed Event-Based Systems. 34–45.

[36] Mo Liu, Elke Rundensteiner, Kara Greenfield, Chetan Gupta, Song Wang, Ismail
Ari, and Abhay Mehta. 2011. E-cube: multi-dimensional event sequence analysis
using hierarchical pattern query sharing. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of data. 889–900.

[37] Yuan Mei and Samuel Madden. 2009. Zstream: a cost-based query processor for
adaptively detecting composite events. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of data. 193–206.

[38] Chris Olston, Jing Jiang, and Jennifer Widom. 2003. Adaptive filters for con-
tinuous queries over distributed data streams. In Proceedings of the 2003 ACM
SIGMOD international conference on Management of data. 563–574.

[39] Thao N Pham, Panos K Chrysanthis, and Alexandros Labrinidis. 2016. Avoiding
class warfare: managing continuous queries with differentiated classes of service.
The VLDB Journal 25, 2 (2016), 197–221.

[40] Olga Poppe, Chuan Lei, Salah Ahmed, and Elke A Rundensteiner. 2017. Complete
event trend detection in high-rate event streams. In Proceedings of the 2017 ACM
International Conference on Management of Data. 109–124.

[41] Do Le Quoc, Ruichuan Chen, Pramod Bhatotia, Christof Fetzer, Volker Hilt,
and Thorsten Strufe. 2017. Streamapprox: Approximate computing for stream
analytics. In Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference.
185–197.

[42] Ella Rabinovich, Opher Etzion, and Avigdor Gal. 2011. Pattern rewriting frame-
work for event processing optimization. In Proceedings of the 5th ACM interna-
tional conference on Distributed event-based system. 101–112.

[43] Medhabi Ray, Chuan Lei, and Elke A Rundensteiner. 2016. Scalable pattern
sharing on event streams. In Proceedings of the 2016 international conference on
management of data. 495–510.

[44] Nicoló Rivetti, Yann Busnel, and Leonardo Querzoni. 2020. Load-aware shedding
in stream processing systems. In Transactions on Large-Scale Data-and Knowledge-
Centered Systems XLVI. Springer, 121–153.

[45] Henriette Röger and Ruben Mayer. 2019. A comprehensive survey on paralleliza-
tion and elasticity in stream processing. ACM Computing Surveys (CSUR) 52, 2
(2019), 1–37.

[46] Nicholas Poul Schultz-Møller, Matteo Migliavacca, and Peter Pietzuch. 2009.
Distributed complex event processing with query rewriting. In Proceedings of the
Third ACM International Conference on Distributed Event-Based Systems. 1–12.

[47] Ahmad Slo, Sukanya Bhowmik, Albert Flaig, and Kurt Rothermel. 2019. pSPICE:
Partial Match Shedding for Complex Event Processing. In 2019 IEEE International
Conference on Big Data (Big Data). IEEE, 372–382.

[48] Ahmad Slo, Sukanya Bhowmik, and Kurt Rothermel. 2019. espice: Probabilis-
tic load shedding from input event streams in complex event processing. In
Proceedings of the 20th International Middleware Conference. 215–227.

[49] Ahmad Slo, Sukanya Bhowmik, and Kurt Rothermel. 2020. hSPICE: state-aware
event shedding in complex event processing. In Proceedings of the 14th ACM
International Conference on Distributed and Event-based Systems. 109–120.

[50] Sriskandarajah Suhothayan, Kasun Gajasinghe, Isuru Loku Narangoda, Subash
Chaturanga, Srinath Perera, and Vishaka Nanayakkara. 2011. Siddhi: A second
look at complex event processing architectures. In Proceedings of the 2011 ACM
workshop on Gateway computing environments. 43–50.

[51] Nesime Tatbul, Uğur Çetintemel, Stan Zdonik, Mitch Cherniack, and Michael
Stonebraker. 2003. Load shedding in a data stream manager. In Proceedings 2003
vldb conference. Elsevier, 309–320.

[52] Kia Teymourian, Malte Rohde, and Adrian Paschke. 2012. Knowledge-based
processing of complex stockmarket events. In Proceedings of the 15th International
Conference on Extending Database Technology. 594–597.

[53] Wee Hyong Tok, Stéphane Bressan, and Mong-Li Lee. 2008. A stratified ap-
proach to progressive approximate joins. In Proceedings of the 11th international

http://www.eoddata.com
https://debs.org/grand-challenges/2013/
https://data.smartdublin.ie/dataset/dublin-bus-gps-sample-data-from-dublin-city-council-insight-project
https://data.smartdublin.ie/dataset/dublin-bus-gps-sample-data-from-dublin-city-council-insight-project
https://www.espertech.com/

conference on Extending database technology: Advances in database technology.
582–593.

[54] Alexander Widder, Rainer von Ammon, Gerit Hagemann, and Dirk Schönfeld.
2009. An Approach for Automatic Fraud Detection in the Insurance Domain.. In
AAAI Spring Symposium: Intelligent Event Processing. 98–100.

[55] Eugene Wu, Yanlei Diao, and Shariq Rizvi. 2006. High-performance complex
event processing over streams. In Proceedings of the 2006 ACM SIGMOD interna-
tional conference on Management of data. 407–418.

[56] Haopeng Zhang, Yanlei Diao, and Neil Immerman. 2014. On complexity and
optimization of expensive queries in complex event processing. In Proceedings of
the 2014 ACM SIGMOD international conference on Management of data. 217–228.

[57] Shuhao Zhang, Hoang Tam Vo, Daniel Dahlmeier, and Bingsheng He. 2017. Multi-
query optimization for complex event processing in SAP ESP. In 2017 IEEE 33rd
International Conference on Data Engineering (ICDE). IEEE, 1213–1224.

[58] Bo Zhao, Nguyen Quoc Viet Hung, and Matthias Weidlich. 2020. Load Shedding
for Complex Event Processing: Input-based and State-based Techniques. In 2020
IEEE 36th International Conference on Data Engineering (ICDE). IEEE, 1093–1104.

	Abstract
	1 Introduction
	2 Background and Terminology
	2.1 Complex Event Processing
	2.2 Load Shedding

	3 Problem Definition
	4 DARLING
	4.1 Load Shedding in DARLING
	4.2 Setting Global and Local Constraints
	4.3 Utility Calculation
	4.4 Auxiliary Data Structures
	4.5 Potential Extensions

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

