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The developed method extracts bathymetry distributions from satellite images, processing one, two or
three of the common RGB bands. The remote sensing is sparsely coded and combines spiking neural net
anomaly filtration, spline and multiband fitting. Survey data were used to identify an activation threshold,
decay rate, spline fittings and multi band weighing factors. Errors were computed for remotely sensing
Landsat satellite images. Multiband fittings achieved an average error of 26 cm. This proved sufficiently
accurate to also automatically extract shorelines to eliminate land areas in bathymetry mapping. © 2022
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1. INTRODUCTION

Bathymetry, that is underwater topography, exhibits a depth
dependent correlation with pixel shadings in satellite imagery.
Remote estimations of water depths have been particularly suc-
cessful for shallow waters with detectable reflections from the
seafloor. Absent atmospheric correction, machine learning has
been found to be superior over fittings to rigorous optical models
[1]. Neural nets have been extensively used for remote sensing,
including convolutional neural nets, NN-physics hybrid meth-
ods [2], and to utilize multiple bands or spectra [3].
The remote sensing has to account for uneven numbers of mea-
surements per pixel, shared pixel shadings for a measured
depth, different measured depths for the same shading, dif-
ferent fittings for different bands, and simply anomalies on: 1)
the seafloor due to vegetation, varying geology or anthropogenic
effects such as pollution and 2) instances of cloud cover besides
gradual atmospheric interference. The uncertainty in littoral
waters has been estimated at 0.39 m [4] which is in this work
contrasted with an average of 0.21 m.
Spiking neural nets have found application in anomaly detection
for time series [5] and image processing [6]. In this work spiking
neural nets are used to detect anomalies in bathymetric data.
The developed solution comprises a spline fitting, spiking neu-
ron (SN) anomaly detection, and multi-band fitting. Whereas
neural nets are stationary, spiking neurons introduce a differen-
tial regime with activation functions that exhibit decays between
successive stimuli. The decay occurs usually along time but can
also occur along a spatial dimension.
The latter has been utilized here, harnessing the SNN to filter

outliers. That is, the differential between a local depth value and
proximate values, weighted by its reciprocal distance, is used
to stimulate activation. Each stimuli is followed by exponen-
tial decay. Dynamic SNN permit to integrate a growing set of
data into a binary decision of in- or excluding data. This is an
important feature to permit the onward development of remote
sensing based on multi-temporal satellite images [7, 8]. The SNN
is sandwiched between a pre- and post-processing that can be
formulated in either fashion: the pre-processing can be denoted
as a spline fit followed by the computation of the SN-input or as
a classical sparse neural net. Likewise, the post-processing can
be denoted as a weighted linear fitting or as a classical neural
net.
For bathymetry estimations the use of three RGB bands was
found to return more robust results than using one or two bands
alone [1]. More robust means here that whereas monochrome
sensing failed for some pixels (Figure 3), multi-band sensing re-
turned estimates for all pixels. An open source Landsat 8 image
from the USGS Earth Explorer [9], has been used. Band values
that turn out unsampled in the survey or share the same depth
received an interpolated allocation. Anomalies were mitigated
with the spiking neuron layer. Stationary data were made com-
patible with the transient functioning of SNN by substituting
time with the radius around a pixel that is being processed. The
threshold for the spiking neurons has been identified iteratively
until either the sensing error was minimized or features, such
as shores and highways, were extracted best — depending on
the task. Figure 3 shows the extracted bathymetry surrounding
south Bahrain and the artificial islands at the island’s eastern
coast.
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2. METHOD

Outlying pixels are filtered with spiking neurons by converting
the neuron’s transient dependency to a spatial one. A spiking
neural net (SNN) mirrors natural neural nets by obeying expo-
nential decay of stimuli. Spiking neurons are reset once accumu-
lating stimuli pass the neurons’ thresholds. Outlying soundings
or depths can be filtered versus the sorted measurement series
or the seafloor background. In this paper the filtration occurs vs.
the seafloor background which will allow usage also for noise fil-
tration in other image types. That is, if a depth magnitude is not
re-stimulated with increasing distance r and reciprocal weight,
then it falls below the threshold with the activation function f .

f (r+j ) = f (r−j ) + ∑
∀d∗(rj)

∣∣∣d∗i − d∗(rj)
∣∣∣

rj d∗i
(1)

f (rj + δrj) = e−δrj f (rj) (2)

where the input is the cumulative discrepancy between the input
depth d∗ at a particular location i and the depths at a neighbor
location rj until the cutoff radius rcuto f f . The distance of locally
proximate centroids, rj, is obtained in sorted order with rj =√

a2
j + b2

j with a0 = 0,

aj = aj−1 + 0bj (3)

where aj and bj are the radius’ vertical and horizontal com-
ponent respectively.

bj = (4)((
aj−1 + 1

)(
1−

aj−1 mod 2
2

)
+ n

)
mod

(
aj−1 + 1

)
Eq. 3 was obtained by observing that aj increments whenever bj
resets to zero. aj equals the growth period of bj and the growth
height bj. Hence, bj can be constructed out of a mutual reference
of the two quantities and the index j: When bj vanishes, then the
recursive sequence shown in Eq. 3 exhibits a leap of one unit
length. When bj returns any other natural number, then series
Equation 3 remains constant. Hence, using the recursive series
bj in the exponent of 0, permits to obtain the recursive series
aj. I.e., as bj is alternating between a natural number and 0, aj
alternates between growth and stagnation.

The code for Eq. 2 and 3 are provided with the code for the
neural net as link in the appendix. Alternatively, aj can also be
obtained by incrementally summing the elements of the lower
triangle matrix of the identity matrix with ascending indices.

a1+p(p+1)/2+q =
j

∑
p=0

p

∑
q=0

Ipq (5)

Matrix storage can be omitted by denoting the identity matrix
implicitly as exponent of 0 to the power of the difference of its
indices:

a1+p/2(p+1)+q =
j

∑
p=0

p

∑
q=0

0p−q (6)

The code for Eq. 6 is provided in the Appendix such that aj is
obtained readily sorted. As a third alternative, the same series
has been recovered with an analysis based on Theorem ?? and 6
in the appendix.
If the entire processing is supposed to be integrated into one

neural net, then the computation of the input for the spiking
neurons can be formulated as arithmetic neurons [10] which are
fed by neurons which conduct a spline fit. Prior to the spline
fit routine, survey data are curated by removing all soundings
above the water surface. The pre-processing prior to identifying
the neuron properties is conducted, hence, by eliminating all dry
measurements m.

m = m∗(∀m∗ > 0) (7)

An input quantity is differentiated from an output quantity by
indication of a superscript asterisk. Measurements m, i.e. echo
soundings, are then correlated with satellite image values v
according to

∑
∀dim

∣∣xm
dim − xv

dim
∣∣∣∣∣∣∣

min

(8)

for the distance x. Given the satellite image resolution of 30 m,
measurements that share a pixel are averaged. Measurements
that share the same pixel shade are averaged too. Associated
measurements and pixel shades are bookkept by referencing
for a particular post-processing measurement the found post-
processing pixel shading in the second layer. This is conducted
for each color or band. The third layer, the arithmetic neurons
compute the input term in equation 1. The SNN layer then
processes the output depths further as per equations 1, 2, and

d = d∗(∀ f < fth) (9)

with the threshold fth. Pixels where the successive weighted de-
viations pass the threshold are deemed outlying and eliminated.
The multiband fitting then utilizes some unused echo measure-
ment values to compute the best band weighting factor wic ∈ wi
for a particular color c and pixel shading. The nonzero values
for a particular vector wi of weighing factors are, hence, given
with

w ( d∗c |min) = 1, for dm < d∗c |min

w ( d∗c |max) = 1, for dm > d∗c |max

wa = dm−db
da−db

∧wb = dm−da
db−da

∧

a

b

 = c(/∈ dc|max), for c(dm>d∗c )
c(dm>d∗c )

= 2

wa = dm−db
da−db

∧wb = dm−da
db−da

∧

a

b

 = c(/∈ dc|min), for c(dm<d∗c )
c(dm<d∗c )

= 2

(10)
for a particular pixel i and colors [a b c]. Equations 10 merely

describe the different cases of weighting two adjacent depths out
of three band estimates to return the measured depth. If the mea-
sured depth is above or below the highest and deepest estimate
respectively, then only one band is used. If the measured depth
lays between the first two or the last two of the three bands, then
the former or the latter are picked to contribute to the weighting.
Hence, equations 10 contain four cases.
Hence, assuming that all processing is to be cast into one neural
net: whereas the synapses between the first and second layer
conduct merely a spline fit, the multi-band fitting post SN works
like a bona fide neural layer where several inputs vote with
individual weighting factors.
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The intersected SN layer permits to exclude locally volatile
pixel values which entail a high probable error. The functioning
of a spiking neuron and particularly the circle-shaped arithmetic
stimuli input is illustrated in Figure 1 below.

Fig. 1. With discrete circle slices incrementally more remote
neighbors are compared to any examined centroid pixel, pre-
cluding anomalies.

The quantities that determine the size of the neural layers are
listed in Table 1 below.

Table 1. Size quantities

Quantity Pixel Property Case

p 2bit depth 216

r depthmax × resolution/[m] 16.5× 102

e horizontal number 7, 631

v vertical number 7, 781

l locally proximate: 1 + 3× 22 + 23 + ... here:21

Increasing spatial distance corresponds in this artificial SNN
to increasingly delayed time of stimulation. The refinement
of this conversion might warrant to examine the conversion
of still perception fields to transience in biological SNN and if
this exploits the difference in transmission times of chemical vs.
electrical synapses. Based on parameter estimation iterations,
the threshold of the neurons is set to 6 for error filtration. The
error is computed based on a comparison between the sensed
prediction and one third of the soundings that are retained to
quantify the method’s accuracy. That is, the first third is used
to conduct the spline fitting for all bands, the second third is
used to assess the spline fittings’ errors before and after spiking
neuron filtration and to conduct the weighting of bands, the
remaining third is used to estimate the error of the composite
fitting before and after spiking neuron filtration. The function

of the normal, arithmetic and spiking layers are illustrated in
Figure 2 below.

Fig. 2. Layers with conventional computational neurons, arith-
metic and spiking neurons. Neuron numbers are indicated for
the application case demonstrated in the subsequent section.

It occurred that if the arithmetic and SN layer are moved
to the end of the stack, then features such as shorelines and
highways are extracted. The output for this layer configuration
is shown in Figure 6. The architecture and types of neuron layers
utilized are listed in Table 2 below.

Table 2. Layer sizes

Layer Task Neurons Appl. no.

1, input spline input nI = 3 e v p 11× 1012

2, normal band fittings nBF = 3 e v r 3× 1011

3, arithmetic SN input nAN = 3 l e v r 6.2× 1012

4, spiking extract error/feature nBN = 3 e v r 3× 1011

5, normal multiband fitting nMBF = l e v r 1011

3. APPLICATION

The bathymetry distributions obtained from satellite bands B2
to B4 and the final triband bathymetry distribution are shown
in Figure 3 below. The triband bathymetry in the lower right
corner exhibits a low error of 7.9% and high robustness as all
pixels are successfully converted into bathymetric estimates.
The method has been tested by applying it to recreational and
residential artificial islands at the coast of Bahrain. The settled
silt is visible on the uniformly dredged floor of the artificial
island development. Depths at less than 2 m are additionally
error-prone due to tidal and wave dynamics. As the water
column’s relative transience is significant, the local reflectively
is increasingly ill-posed for extremely shallow sections. For
example, in intertidal wet-dry zones and at centimeter scales the
local relative error inherently spans the entire watercolumn.
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Fig. 3. Bathymetry sensing for band 2 (upper left), band 3 (upper right), band 4 (lower left), and a triband combination (lower right).
The triband combination, shown in the lower right corner, is more robust and free of unrecognized swathes.
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The accuracy has been assessed based on the average of all
percent errors relative to soundings retained for error computa-
tion:

error =

∣∣dm − dTB
∣∣

dm 100 (11)

One third of the entire survey have been utilized for the error
estimation. Each error is the normalized difference between the
triband sensed depth dTB and measurements dm. The percent
average errors are listed in Table 3 below.

Table 3. Percent average errors

Band 2 Band 3 Band 4 Composite

Unfiltered 19.719 7.283 14.920 7.932

Filtered 19.608 7.081 14.696 7.917

The average error 7.9% for the filtered composite fitting trans-
lates to 0.21 m. Whereas the limited resolution of the Landsat
satellite, that is, 30 x 30 m, provides an inherent smoothing,
high resolution commercial satellite images might benefit more
from the SNN anomaly detection. The accuracy of the com-
posite fitting is high enough to conduct a reliable automatic
shoreline recognition with a sweeping algorithm. That is, the
algorithm propagates from the deepest smoothed average and
halts at pixels that are shallower than a cutoff depth. The dense
infrastructure in artificial islands and streets in proximity to the
shore required a deeper cutoff than natural shores. The filtered
composite fitting with automatically excised land is depicted in
Fig. 4.

filteredvector-eps-converted-to.pdf

Fig. 4. SNN filtered bathymetry with automatically excised
shoreline, exhibiting a common smooth area at the left and
uneven areas in-front of the artificial islands.

An error distribution has been estimated by mapping the
errors for certain depths to the best matching depths in Fig. 5.

Fig. 5. Estimated error distribution.

4. CONCLUSION

The tri-band fitting, in conjunction with spiking neurons, permit-
ted to sense bathymetry with an average percent error of 7.9 % or
21 cm. Stationary inputs can be processed by substituting time
with spatial coordinates. The anomaly detection also underlined
shorelines and roads, that is, object boundaries, as these are
anomalies in terms of shading as shown in the appendix with
Fig. 6. The remote sensing was accurate enough to automatically
excise land from sea. That is, shoreline recognition is possible
via both, vertical resolution or anomaly detection. Despite the
low 30 m resolution of the Landsat image, improvements due to
the anomaly detection were consistently found for all indvidual
bands and the composite fitting. Gains are expected to increase
for high resolution commercial satellite images and absent the
inherent averaging of limited resolution.
Further investigations may include to detect anomalies in the
sorted measurement series instead of vs. the seafloor and to
smooth the weighting distribution beyond the current local
weighting for each vertical increment.

Disclosures. The authors declare no conflicts of interest.
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5. APPENDIX A

The anomaly detection correlates well with features such as
shoreline and highways in Fig. 6 which constitute anomalies
in shading. That is, constituting an SNN delineation of object
boundaries. However, to aid road recognition, commercial satel-
lite images with higher resolution than the Landsat images of
30 m would be required.

Fig. 6. Feature extraction despite limited 30 m resolution.

6. APPENDIX B

The code for the SNN is provided for at
www.environment.report/code291121. This section pro-
vides a rigorous derivation of rj with rj =

√
a2

j + b2
j . A pixel

in R2 is a box B defined by a1, b1, a2, b2 ∈ N with the grid’s
centroids in intersection with the circle, yielding a sequence
ri, i ∈N such that C( 0︷ ︸︸ ︷

center

, ri):

B =

(x1, x2) :

 a1 ≤ x1 ≤ b1

a2 ≤ x2 ≤ b2




The box’s corners (a, b) in the image are vectors in the vector
space Z2 = {(a, b)|a, b ∈ Z}. Moreover, the distance from the
corner to the center of the pixel is

√
a2

j + b2
j /2.

Given the Fundamental theorem of arithmetic’s [11] a integer
n > 1 can be expressed as product of p1, ..., pn primes s.t

n = ps1
1 ps2

2 · · · p
sk
k , si ∈N

Moreover, this representation is unique.

The sum of two squares theorem [11] states that an integer
n > 1 can be written as a sum of two squares if and only if its
prime decomposition contains no term pk when p mod 4 = 3
and k is odd.

Subsequently the sequence radius ri is derived. Every
element, as per the above, given that ri forms a monotonically
increasing sequence. With each increment, the distance between
the pixel of concern and a particular neighbor increases.
Therefore,

(12)

i = p
s1
1 · p

s2
2 · · · p

sk
k when p1, ..., pk are primes

(13)

ri =
{√

i : i = ps1
1 · p

s2
2 · · · p

sk
k ,@j : pj mod 4 ∧ sj ∈ 2N + 1

}

Determining existence on a particular circle for n ∈N given
with:

(14)
On circle, φ > 0

Out circle, φ ≤ 0
,


φ = ∑

d | n

d = 1, 3 ( mod 4 )

(−1)
d−1

2




The corresponding code is provided for at
www.environment.report/code301121.

http://www.environment.report/code291121
http://www.environment.report/code301121
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