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Abstract

Logical-arithmetic expressions are convenient for de-
scribing phenomena due to their expressiveness and
comprehensibility. Therefore, we propose to target min-
ing logical arithmetic expressions through a novel task
called Logical-arithmetic expression mining (LAEM).
Its goal is to discover expressive logical expressions that
are representative for a database. It accepts a complex
database as input and returns a set of representative ex-
pressions for the database. Driven by the success of ma-
chine learning models to recognize complex patterns, we
argue that a thorough modeling of the learned represen-
tations could be exploited for generating interesting and
representative mathematical expressions. To address
this, in this paper we propose Soft dEcision Tree for
logical arithmetic Expressions miNing (SEEN), an al-
gorithm based on representation learning for generating
logical expressions. Our mining mechanism partitions
the learned representation space and assigns self-labels.
Then, we use the self-labels to train a multivariate soft
decision tree from which we generate logical arithmetic
expressions. A comprehensive experimental study on
2 diverse real-world datasets shows that the proposed
method is able to generate interesting expressions. The
implementation is publicly available1.

1 Introduction

The recent explosion in data volume has triggered rapid
development of new data mining methods. Generally,
we aim to discover knowledge hidden in a large database
about an interesting feature or a complex combination
of elements. In many cases, using logical expressions
to describe the results, namely patterns, is convenient
because of their interpretive abilities.

The pursuit of pattern mining algorithms is not
new. As time progresses, more algorithms are proposed
for mining patterns of different objectives, such as
frequency [1] and high-utility [2], as well as multiple-
truths with multiple objectives and constraints [3].
Meanwhile, the choice of objective remains an active
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research field. Indeed, sometimes we barely know
how to define the objective, but we still need a set
of representative patterns. Using common objectives
such as frequency or correlation yields many redundant
patterns which are not representative. Therefore, an
alternative definition of objective is much needed.

The success of recent data-driven models in pat-
tern recognition implies that such models hide useful
data representations [4] that can be exploited for pat-
tern mining and provide an alternative objective. A
representation learned during solving a task could re-
veal patterns that are neither frequent nor correlated.
Additionally, data representations can be learned with-
out annotated data in a self-supervised or unsupervised
manner. This opens the door to new possibilities of de-
signing pattern mining algorithms whose objectives are
very expressive, attained by targeting a learned prior
rather than the raw data.

To date, pattern mining algorithms deal with di-
verse data types such as itemset mining [5] and sequen-
tial patterns [6]. However, they are restricted to dis-
crete transactional databases, whereas continuous data
becomes more common, sensor networks for instance.
Besides, there is a growing interest in methods for rep-
resentation learning of data [4]. However, they do not
provide comprehensible patterns and the learned repre-
sentations remain obscure. As we show in this paper,
using logical expressions with arithmetic operators for
describing complex relations reflected in the learned rep-
resentation is highly promising for this purpose.

The motivation for mining logical arithmetic ex-
pressions from learned representations has more nat-
ural origins. First, interestingness of patterns is sub-
jective. The ability to learn a task-specific representa-
tion makes representation learning a highly promising
avenue for pattern mining. Second, many existing al-
gorithms suffer from the pattern explosion problem in
which an enormous amount of redundant and meaning-
less pattern candidates are generated. We identify the
potential of mitigating it by training deep neural net-
works which are also researched in depth for scalability.
Third, in recent years, a number of technologies have
emerged for detecting a priori given expressions of the
sort discussed above in real time, such as complex event
processing (CEP) [7–12]. However, little work has been

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

https://github.com/ekosman/SEEN


done to develop methods for mining these expressions
from data. Mining complex expressions in the form of
logical expressions could close this gap and exploit the
benefit of this system by feeding it with the mined ex-
pressions for detection and perform proactive actions.

To summarize, the task we tackle is mining logi-
cal arithmetic expressions from learned representations.
Although much research has been done on represen-
tation learning, our goal is different because we fur-
ther focus on transforming it into logical expressions.
Our algorithm, Soft dEcision Tree for logical arith-
metic Expressions miNing (SEEN), is based on entan-
gled learning of data representation along with discov-
ering comprehensible descriptions. SEEN is composed
of 2 core components: 1. a black-box model for learning
a representation of the data, and 2. a surrogate model
for mining patterns from the obtained representation.
Contributions The main contributions of this paper
are summarized as follows:

1. We formulate the problem of logical arithmetic
expressions mining and propose SEEN, an algo-
rithm for mining logical arithmetic expressions
from learned representations.

2. We extend the expressiveness of patterns generated
via traditional pattern mining methodologies. This
introduces a new research opportunity for the de-
velopment of pattern mining mechanisms through
definitions of task-oriented objectives.

3. The method is validated through a series of exten-
sive experiments on real-world datasets. We show
that patterns generated by SEEN are qualitatively
and quantitatively meaningful. We analyze the im-
pact of hyper-parameters on the performance and
the quality of the generated patterns.

2 Preliminaries and Related Works

Representation Learning [4] facilitates the identifi-
cation of patterns through high-level abstraction. Three
main approaches exist: unsupervised, self-supervised,
and supervised learning. Classic unsupervised ap-
proaches include clustering algorithms such as K-means
and Gaussian Mixture Model. In deep-learning, autoen-
coders compactly encode data while preserving signifi-
cant features for reconstruction. Recently, there is an
interest in self-supervised learning [13] that relies on
natural properties of the data for labeling. For example,
the embeddings learned through predicting image rota-
tions [14] were found useful for classification from lim-
ited amount of labeled data, Contrastive predictive cod-
ing [15] learns to encode time series by forecasting and
DeepWalk [16] learns vertex representations through lo-

cal information from random walks. Lastly, supervised
learning makes use of representation learning in transfer
learning [17] by taking advantage of the learned repre-
sentation for adapting to new tasks through fine-tuning.
Soft Decision Trees (SDTs) [18] extend Decision
Trees [19] by allowing data points to have static con-
tinuous membership distribution on all decision paths.
Irsoy et al . [20] introduced dynamic distribution on the
decision paths by conditioning soft decisions on the in-
put. This brings the power of conditioning each decision
on a multivariate function, increasing the expressiveness
by allowing axis-unaligned decisions. As the decision
functions are not conceptually restricted, others [21] use
complex functions, e.g . neural networks. Adaptive neu-
ral trees [22] introduce transformation functions in the
tree nodes that increase the expressiveness of the model.
These transformations transform the input to a new
domain, serving as input to the decision function and
passed to the descendants for further computation.
Pattern Mining is a broad term encompassing tech-
niques for extraction of knowledge from large databases,
such as sequential pattern mining [6] and itemset min-
ing [5]. Early algorithms include the Apriori algorithm
for frequent association rules mining [23], as well as FP-
growth [24], which is an efficient alternative. Over the
years, many extensions supporting items with multiple
attributes have been proposed [25] as well as algorithms
supporting multi-item connections within a sliding win-
dow [26]. Representative pattern mining refers to gen-
erating patterns that are significant, such as patterns
that have the greatest discriminative power [27]. Ex-
plainable clustering, a topic related to us due to the
similarity of clusters and patterns, focuses on revealing
clusters with statistically significant features that char-
acterise the clusters. However, works on this topic [28]
are restricted to uni-variate expressions due to their us-
age of uni-variate decision trees.

3 Problem Definition

In this section, we describe the problem considered
in LAEM. We begin with a formal definition and
then motivate it with an example. For the purpose
of organization of the paper, we list the necessary
notations in table 1.

3.1 Problem Statement Let T be a task (e.g .
classification, reconstruction, or forecasting), and let D
be a database containing training examples. We aim to
generate patterns from the data representation learned
during solving T . For the purpose of this paper, we
define a pattern as follows:

Definition 1. (Pattern) Let S ⊆ R
d be a set of
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Table 1: Symbols and Notations.

Symbol Definition

F A feature extractor

G Task solver on top of F

Im(F ) The image space of the function F

D Database of m data samples for training

γ A reparameterization function for xi
T A task which the model H aims to solve

P A pattern / mathematical expression

P A space partition

k Number of nearest neighbors

h Height of a decision tree

points and let X ⊂ S be a proper subset of S.
A pattern P is characterized by a phrase ϕX :
R

d → {True, False} that satisfies

ϕX(x) =


True, x ∈ X

False, x ∈ S \X
Undefined, otherwise

.

Usually, the phrase ϕX is a conjunction of conditions,
as we exemplify in the following.

3.2 Example Scenario This example is shown in
Figure 1. Consider a car company that strives to learn
driving patterns of drivers who use its vehicles. It
defines a task T for predicting whether a driver is going
to be involved in a car accident given the readings from
the sensors of the car. The company uses the LAEM
mechanism and obtains the following patterns:

1. Sudden braking: acceleration < −15 [ km
sec·hour ];

2. Turning left in tight corners:

steer > 130 [deg] ∧ speed < 15 [ km
hour ];

3. Dangerous maneuver:

|steer| > 130 [deg] ∧ |acceleration| > 25 [ km
sec·hour ];

Notice that nothing but the definition of the task was re-
quired for the algorithm in order to find those patterns.
This knowledge enables the design of safety equipment
and alert systems by later using these expressions for
detecting a driver at risk.

4 SEEN - Overview

In this section we present SEEN. As depicted in Figure
2, it separates the mining process into two core phases.
The first phase intends to learn a good representation of
the data with the guidance of learning to solve a task T .
Specifically, a good representation is: 1) Informative
- useful for solving T (T is easily solvable on top of

Figure 1: Discovering patterns from car sensors data.
The obtained patterns abrupt braking and dangerous
maneuver are followed by an event that defines the
patterns. Notice that the terms abrupt braking and
dangerous maneuver are not a result of the algorithm.
However, it is meaningful to use those names for the
conditions defined over the attributes of the patterns.

it), and 2) Simple - easily partitionable (identifying
distinct patterns is easy).

Equipped with a good representation, we move to
the second phase to generate logical arithmetic expres-
sions on top of it. The informativity property encour-
ages the generated expressions to be significant for T .
The simplicity property will be used for partitioning the
representation space. Each partition will be associated
with a self-label. The self-labels will be used for train-
ing a soft decision tree (SDT), from which we generate
expressions through extraction of its decision rules.

4.1 Representation Learning Phase

4.1.1 Informativity Motivated Training Sup-
pose we are given a dataset D and a task T . We train
H = G ◦ F , implemented as a composition of two deep
neural networks to solve T . We follow the standard
setting of learning the parameters of H by the empiri-
cal risk minimization approach and minimize some pre-
defined loss function, LT , associated with T .

4.1.2 Simplicity Motivated Training We mini-
mize a distance-based contrastive loss component as
follows. Given a batch of data points B ⊆ D, let
BF = {F (x)|x ∈ B}. For each r ∈ BF we defineNk(r)
as the neighborhood of r which consists of its k nearest
neighbors with respect to their euclidean distance from
r. In turn, we aim to encourage F to create unscattered
neighborhoods, which are expressed by clusters that are
compact and well separated. We do so by conditioning
the neighbors on their proximity to r:

(4.1) Lsimplicity =
∑
r∈BF

 ∑
r(1)∈Nk(r)

− logP (r(1)|r)

 ,

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited



Figure 2: Flow overview of SEEN. (a) We train H = G ◦ F to solve T , encouraging unscattered representation via
minimizing both Lsimplicity and LT . (b) Partitioning Im(F ) and using the obtained partition for self-labeling.
Then, use the self-labels for training a soft decision tree. The sibling leaves that point to the same cluster are
pruned. Finally, mathematical expressions are extracted from the tree as conjunctions of the decision functions.

where P (r(1)|r) is parameterized by softmax with neg-
ative samples from BF :

(4.2) P (r(1)|r) =
e−|r−r

(1)|22∑
r(2)∈BF \{r} e

−|r−r(2)|22
.

By minimizing Equation 4.1, we specifically encour-
age maximizing the expression in Equation 4.2 which
in turn minimizes distances between neighbors in the
nominator, and pushes apart non-neighbors in the de-
nominator. Extensions of this objective function arise
by adding more constraints. For instance, in classifica-
tion problems we can constrain neighborhoods by forc-
ing homogeneity with respect to the target label, i.e.
∀r′ ∈ Nk(r) : yr = yr′ , where yr, yr′ are the target la-
bels associated with r, r′ respectively.

4.1.3 Summing Up the Representation Learn-
ing Stage We obtain the parameters of H, ΘH ,
through training batch-wise to minimize LT and
Lsimplicity via the following objective:

(4.3) Θ̂H = argmin
ΘH

LT + α · Lsimplicity.

4.2 Expressions Generation Phase

4.2.1 Partitioning The learned representation
DF = {F (x)|x ∈ D} is used for creating a finite parti-
tion P of Im(F ). We use this partition for self-labeling
of the data points. Formally, let P = {X1, ..., Xl} be
a partition of Im(F ) into l sub-spaces. Given a repa-
rameterization function γ, we define the self-labelled
dataset Dsl = {(γ(x), y)|x ∈ D ∧ F (x) ∈ Xy} with
reparameterized points originating from D and labels
representing the membership to one of the l partitions.
The choice of γ is up to the user and can also be left

as the identity function. In our experiments, we use
various clustering algorithms for partitioning, including
Gaussian Mixture Model with selection of optimal num-
ber of clusters by computing the Davies-Bouldin-Index
and DBSCAN.

4.2.2 Training a surrogate SDT We use the self-
labeled dataset Dsl for training a SDT to predict the
membership of a data point to a sub-space. The SDT is
initialized as a full binary tree of height h. Each internal
node b is associated with a routing function fb(x) =
σ(wT

b x + tb) (not necessarily restricted to this choice),
which takes a data point x as input and outputs the
probability of routing it to one of its descendants. Here,
wb, tb are the parameters of the decision function of an
internal node and σ(x) = 1

1+e−x is the sigmoid function.
In addition, the decision function in a leaf predicts the
label of x. We parameterize the decision function of a
leaf node b as Db = wb, where wb ∈ Rl. Moreover, the
decision of an internal node is computed as a convex
combination of the decisions of its descendants:

(4.4) Db(x) = fb(x) ·Dbleft
(x)+(1−fb(x)) ·Dbright

(x).

Here, bleft and bright denote the left and right descen-
dants of b. Figure 3 illustrates the prediction process.

We follow the SDT training procedure described
in [21]. For a leaf node b, let pb = {r, ..., b} denote the
path from the root r to b, and let P (pb|x) be the path
probability calculated as a product of the soft decision
functions through pb. Assuming the target label of x is
y, the expected error of predicting the true label is

(4.5) Ltree =
∑

b∈Leaves

P (pb|x) · CE(fb(x), y),

where CE(·, ·) is the cross-entropy between the distribu-
tion predicted by the leaf node and the one-hot encoded
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Figure 3: An example of an SDT. The decision function
in each leaf is given by a fixed vector of label probabil-
ities. Edges represent cumulative decision weights for
the node descendants. The final decision is a weighted
average of the label probabilities of the leaf nodes.

vector representing the true distribution of the target la-
bel y. In addition, in order to encourage simple routing
functions, we consider sparse solutions using the prun-
ing method proposed in [29]. In short, it prunes the
weights with small absolute magnitude after each train-
ing episode. Finally, the objective is to find the set of
parameters representing all the decision functions in the
tree so that Θ̂tree = argminΘtree

Ltree.
Here, Θtree denotes the union of the parameters of the
whole tree including the parameters of the leaves.

4.2.3 SDT Pruning Two leaves that descend from
the same node and represent the same label can be
pruned without changing the prediction of the tree. We
perform a post-order traversal on the tree and prune
leaves of the same label. This results in shallower trees
that are simpler in terms of path lengths and number of
parameters, which in turn enhances the comprehensibil-
ity of the generated expressions. We provide a pseudo-
code of this procedure in the supplementary materials.

4.2.4 Tight Expressions Extraction The SDT
allows us to generate expressions that describe its
decision paths. That said, we use maximum
likelihood estimation for assessing the membership
of a data point to a leaf, formally defined as
Xb = {x ∈ D| argmaxb′∈ Leaves P (pb′ |x) = b}. Then,
we convert the soft decision at each internal node to
hard decision using:

(4.6) Db(x) =

{
Dbleft

(x), fb(x) ≥ 0.5

Dbright
(x), otherwise

Next, for each path pb so that b ∈ Leaves, we
extract the set of decision functions incorporated into
the path nodes. Since the decision boundaries are
shared across various paths, the conditions extracted
using this methodology are not tight, as shown in the
example depicted in Figure 4. We address this by

(a) SDT with untightened decision functions

(b) Untightened (c) Tightened

Figure 4: Visualization of the tree’s decision functions
(4a). The decision boundaries partition the space into
subspaces containing regions that do not represent pat-
terns (4b). Figure 4c shows the tightened boundaries.

tuning the decision thresholds of each decision function
with respect to the data points Xb associated with each
leaf. For example, in Figure 4 we tighten the decision
boundaries using data points associated with pattern
2. The decision boundary f2(x) < 0.5 is converted
to f2(x) ∈ [0.4, 0.45]. This is done by iterating over
Xb for each decision function and finding the minimum
and maximum thresholds of the underlying data. The
thresholds tuning algorithm is detailed in procedure
tuneDecisions in the supplementary materials.

4.2.5 Summing Up the Expressions Generation
Stage The pattern generation stage is summarized in
Algorithm 1. A discussion on the hyper-parameters is
provided in the supplementary materials.

Algorithm 1 Expressions Generation

Input: D, F , γ, h
Output: A set of expressions

DF ← {F (x)|x ∈ D}
P ← partition(DF )
Dsl ← {(γ(x), y)|x ∈ D ∧ x ∈ Xy ∈ P}
tree← trainSDT (h,Dsl)

tree← decisionWisePruning(tree)

assignToLeaves(D, tree)
Exps← ∅
for b ∈ Leaves do

funcs← {v.function|v ∈ p}
funcs← tuneDecisions(funcs, b.X)
Exps← Exps ∪ {funcs}

return Exps

Sec. 4.2.1

Sec. 4.2.2

Sec. 4.2.3

Sec. 4.2.4
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Figure 5: Left: Number of generated patterns under varied number of neighbors (k) and tree heights (h). Typically,
the number of patterns decays as the number of neighbors grows due to the larger neighborhoods, which reduce the
number of self-labels. Additionally, a shallower tree initialization results with fewer patterns due to the reduction
in the number of leaves. Right: Average comprehensibility (AC). The AC has a very moderate downward trend
as the number of neighbors grows. Apparently, it grows linearly as the SDT gets deeper. Its standard deviation
gets bigger as h grows (represented as the filled area), suggesting that deeper trees are pruned more aggressively.

5 Experimental Evaluation

In this section, we evaluate SEEN in several experi-
ments. Specifically, our goals are the following:

• Qualitatively examine the generated patterns. We
present case studies with interesting insights.

• Analyze the impact of the various parameters on
the quality of the generated patterns.

Additional implementation details are provided in
the supplementary materials.

5.1 Evaluation Metrics Traditional pattern mining
algorithms [5,6] are evaluated in terms of their objective.
However, such metrics are not applicable for us because
the generated patterns are not intended to be frequent
nor correlated. Instead, we strive to achieve other
qualifications. As Occam’s razor encourages simple
explanations, we evaluate the Comprehensibility [30].

Definition 2. (Comprehensibility) The compre-
hensibility of a pattern P is the number of elements P
is composed of. For example, the comprehensibility of
the pattern [[X + Y +W > 3] AND [Z +W < 2]] is 5.

We also consider counting the number of generated
patterns because too many results makes it difficult to
examine the generated patterns. Typically, a simple
model that generates a reasonable amount of patterns
would be considered to be better than a model that
generates too many (redundant) patterns.

5.2 Case Study: Driving Patterns (Self-
Supervised) Dataset: Comma.ai [31] captures over
33 hours of driving data. It is segmented into 2019
1-minute-long segments of highway driving containing
GPS, thermometers, 9-axis IMU and CAN-bus data. In
total, the dataset contains readings from 18 sensors.

Preprocessing: All the signals are interpolated and
then resampled at 200 [HZ]. Additionally, all the sig-
nals are normalized by dividing them by the maximum
absolute value of the corresponding signal. Then, a
sliding window of length 2000, which represents a time
frame of 2000

200 = 10 [seconds] is used in order to segment
the samples. This results in 101465 samples in total. We
further split the dataset by randomly selecting 25% of
the samples for the pattern generation stage.
Representation Learning Methodology: We em-

ploy Contrastive Predictive Coding [15] for representa-
tion learning of the sensors data. Our model is based
on the architecture described in [15], consisting of a 4
layer 1D convolutional stack with fixed kernel sizes of 5,
stride of 2 and an increasing order of output channels:
18→ 32→ 64→ 128→ 256. Consequently, every ele-
ment of the convolutional stack output has a receptive
field of 24 = 16 time units, i.e. 80 [ms]. Then follows a
GRU layer [32] with a hidden state of size 256 whose last
output is used for multi-horizon forecasting of the next
30 timesteps. For the rest of this section, we use the last
element of the series predicted by the GRU layer as the
learned representation. In all experiments in this case,
the amount of samples in every batch remains fixed at
512, while varying k, the size of the neighborhood.
Partitioning: A Gaussian Mixture Model (GMM)

with various number of clusters is trained for clustering
the obtained embeddings and the number of clusters
is determined by selecting the model corresponding to
the lowest Davies-Bouldin-Index. The obtained GMM is
used for re-labeling the data by assigning cluster indices.
Reparameterization (γ): In order to simplify the

generated patterns, each window is resampled at 1 [HZ]
while maintaining a context length of 10 seconds, that
is, each sample results in a series of 10 equally-spaced
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0.48 ≤ 6.49 · T0.steering angle+ 5.89 · T2.steering angle+ 6.6 · T4.steering angle ≤ 0.69 AND
2.02 ≤ 1 · T0.accelerometerdown + 1 · T7.accelerometerdown ≤ 2.31

2.605 ≤ −T9.wheel speedfront left + 1.15 · T5.accelerometerdown ≤ 2.63 AND

0.847 ≤ −1 · T8.gyroforward − 0.797 · T9.gyroforward + 7.1 · T3.gyroforward ≤ 5.23

0.848 ≤ 1 · T2.gyro down ≤ 0.91 AND 36.72 ≤ 1 · T1.gyro right ≤ 36.75 AND

0.19 ≤ 1 · T5.accelerometerforward + 8.72 · T2.gyroforward ≤ 0.98

0.55 ≤ 1 · T5.gyroforward + 1 · T9.gyroforward ≤ 0.63 AND 0.023 ≤ 1 · T1.gyrodown + 1 · T9.gyrodown ≤ 0.049 AND

2.45 ≤ 1 · T5.accelerometerforward + 8.69 · T2.gyroforward ≤ 2.46

Table 2: Example patterns for the comma.ai dataset. Units are: gyro[ radsec ], accelerometer[meter
sec2 ], speed[meter

sec ],
steering[deg]. Ti represents a collection of attributes containing sensors readings. Specifically, we use 10-seconds
time windows sampled at 1[HZ], thus Ti contains the sensors readings at the ith second from the window beginning.

timestamps {T0, ..., T9}.
SDT Pruning: We prune the parameters of the tree

after every single episode so that each decision function
retains at most 5 non-zero weights.
Results: We begin with a qualitative examination of

patterns generated by SEEN. The patterns are shown
in Table 2. The first row contains an expression that fo-
cuses on the accelerometer and steering angle informa-
tion from various time stamps. Its first condition relates
to the steering angle in the beginning of the sequence
(T0), after 2 seconds (T2) and after 4 seconds (T4). The
contrast of their coefficients combined with the limited
values range of the expression and the short time frame
implies that the driver steers the wheel sharply. More-
over, the second condition of the first expression focuses
on the readings of the accelerometer axis pointing down.
This is interesting because acceleration change in this
direction is often a result of a change in the down force
of the car. This settles with the first condition because
the down force varies sharply during rapid maneuvers.
The second row contains an expression that focuses on
wheel speed, accelerometer and gyro. Notice that only
the front-left wheel sensor participate in this expression.
This is because we used weights pruning [29] that has
found the other wheel sensors to be redundant. The
gyro facing forward in the second condition indicate the
slope of the road. Specifically, the inversion of the sign
of the coefficients between T3 and the later timestamps
T8, T9 imply that the driver encounters a sloppy road.

We continue the study by examining the impact of
the parameters on the results. Figure 5a shows the num-
ber of resulting patterns for various number of neighbors
k and SDT height initializations h. Unsurprisingly, the
number of patterns decays for a shallower initialization
since a shallower tree results in less leaves. However,
although the number of patterns is expected to increase
exponentially as h grows, it seems that the pruning
methodology discussed in Section 4.2.3 softens it. An-
other unsurprising phenomenon is that the number of
patterns decays as k grows. This is attributed to the
bigger neighborhoods resulting in fewer self-labels be-

ing created in Section 4.2.1.
The last series of experiments examines how the

comprehensibility (Definition 2) is affected under var-
ied parameters, shown if Figure 5c. Again, we unsur-
prisingly observe that higher tree initializations lead to
higher comprehensibility. This is attributed to the num-
ber of decision rules that grow linearly with respect to
the height of the tree. As for the impact of the neigh-
borhood size (k) on the comprehensibility, we observe
no significant effect.

5.3 Case Study: Market Basket Analysis (Un-
supervised) Dataset: Groceries [33] contains pur-
chase orders from the grocery stores. The total number
of grocery types is 167 and there are 38765 records. We
group orders by the buyer ID and date, resulting with
14963 baskets, each of which contains multiple groceries.
Preprocessing: Each record is encoded as a binary

vector {0, 1}167. 1 indicates the presence of an item in
the transaction. We do not split this dataset in order
to maintain the distribution consistent during both
representation learning and pattern generation phases.
Representation Learning Methodology: We train

an autoencoder for reconstruction while randomly omit-
ting items with the probability of 0.5. Our model is
composed of an autoencoder with the following hidden
layer sizes: 167→ 128→ 89→ 50→ 89→ 128→ 167.
Learning is done via minimizing the binary cross en-
tropy between the autoencoder output and the original
binary representation vector of the unomitted record.
For the rest of this section, we use the intermediate em-
bedding of size 50 as the learned representation. In all
experiments in this case, the amount of samples in every
batch remains fixed at 512.
Partitioning: We partition the learned representation
space via DBSCAN.
Reparameterization (γ): We do not reparameterize

this dataset (γ can be referred as the identity).
SDT Pruning: We prune the parameters of the tree

after every single episode so that each decision function
retains at most 4 non-zero weights.
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meat > 0.5 AND hamburger meat > 0.5 AND rolls/buns > 0.5 AND cream cheese ≤ 0.5 AND curd ≤ 0.5 AND coffee ≤ 0.5

frozen vegetables > 0.5 AND semi− finished bread > 0.5 AND fruit/vegetable juice > 0.5 AND rolls/buns > 0.5 AND
bottled beer > 0.5 AND citrus fruit > 0.5 AND soda > 0.5 AND hamburger meat ≤ 0.5 AND butter ≤ 0.5 AND

meat spreads ≤ 0.5 AND frankfurter ≤ 0.5 AND specialty cheese ≤ 0.5 AND butter milk ≤ 0.5 AND berries ≤ 0.5

sausage > 0.5 AND other vegetables > 0.5 AND zwieback > 0.5 AND soda > 0.5 AND domestic eggs ≤ 0.5 AND

hygienearticles ≤ 0.5 AND spices ≤ 0.5 AND canned fruit ≤ 0.5 AND root vegetables ≤ 0.5 AND shopping bags ≤ 0.5 AND
yogurt ≤ 0.5 AND pastry ≤ 0.5

0.003 ≤ 0.22 · whole−milk + 0.16 · yogurt ≤ 0.382 AND 0.014 ≤ 0.22 · whole−milk + 0.43 · rolls/buns ≤ 0.65 AND
0.693 ≤ 2.76 · whole−milk + 2.43 · yogurt+ 1.92 · brown− bread ≤ 7.12 AND 0.031 ≤ 1.65 · rolls/buns+ 1.73 · soda ≤ 3.38

Table 3: Example patterns for the Groceries dataset. Since every item is a binary variable indicating whether it
is included in a transaction or not, the patterns can be represented as a logical clause. Green conditions describe
inclusion of an item while red conditions describe exclusion of an item. Notice that multivariate conditions can
be converted to OR statements, highlighted in brown. Note that for uni-variate conditions, we only include one
side of the inequalities as the other side is meaningless in this context due to the binary form of the variables.

Results: Table 3 includes example patterns. This case
exemplifies the usage of SEEN for generating logical
clauses since every binary variable is an indicator for
the inclusion or exclusion of an item in a transaction.
We distinguish between 2 types of conditions and exem-
plify a method to convert them into logical conditions.
An unary condition is converted directly to inclusion
or exclusion of an item. For example, the condition
meat > 0.5 implies that meat is included in the pat-
tern. Similarly, the condition cream cheese ≤ 0.5 im-
plies that cream cheese is excluded. The multivariate
conditions represent the OR operator, since at least one
item must be included in order to satisfy the condition.
We further present the conversion of 2 chosen patterns
from Table 3 into clauses. The first row of the table is
converted to the following clause:

meat ∧ ¬cream cheese ∧ ¬curd ∧ ¬coffee
∧ hamburger meat ∧ rolls/buns

Interestingly, it can be inferred as a combination of
ingredients that make up a hamburger meal, which
might describe consumption habits of certain people.
An important question that rises is - could traditional
itemset mining algorithms [5] find such a pattern? In
order to answer this question, we’ve counted the number
of transactions satisfying this clause. Amongst all 14963
transactions in the groceries dataset, there is only 1
such transaction, which means that traditional frequent
itemset mining [5] would not find it, despite being
an interesting itemset. Indeed, we’ve observed similar
behavior for the other patterns in Table 3.

We continue with the analysis of the pattern in the
fourth row of Table 3, converted to the following clause:

(whole milk ∨ yogurt) ∧ (whole milk ∨ rolls/buns) ∧
(whole milk ∨ yogurt ∨ brown bread) ∧ (rolls/buns ∨ soda)

This example introduces a new variety of itemset
mining. While traditional approaches do not support

OR conditions between items, we were able to generate
such itemsets because we use multivariate functions.
Hence, it is very expressive and new powerful insights
could be obtained from these results. Moving to the
analysis of the impact of the tree height and number
of neighbors, a similar behavior as in the driving case
study is observed in Figures 5b and 5d.

6 Conclusions

In this paper, we presented SEEN a novel method for
mining mathematical expressions from learned represen-
tations. Using a soft decision tree, it effectively gen-
erates expressive and representative mathematical ex-
pressions from the knowledge obtained in the represen-
tation learning phase. The experiments conducted on
multiple datasets show that SEEN has great expressive
power and comprehensibility at the same time. For fu-
ture work, we consider two possible directions: replacing
the soft decision tree with different surrogate models for
pattern generation, and discovering new representation
learning methodologies from which we can generate rep-
resentative and interesting patterns.
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