
DLACEP: A Deep-Learning Based Framework for Approximate
Complex Event Processing

Adar Amir
Technion, Israel Institute of

Technology
Haifa, Israel

adaramir@cs.technion.ac.il

Ilya Kolchinsky
Technion, Israel Institute of

Technology
Haifa, Israel

ikolchin@cs.technion.ac.il

Assaf Schuster
Technion, Israel Institute of

Technology
Haifa, Israel

assaf@cs.technion.ac.il

ABSTRACT
Complex event processing (CEP) is employed to detect user-specified
patterns of events in data streams. CEP mechanisms operate by
maintaining all sets of events that can potentially be composed
into a pattern match. This approach can be wasteful when many
of the sets do not participate in an actual match and are therefore
discarded.

We present DLACEP, a novel framework that fuses deep learn-
ing with CEP to efficiently extract complex pattern matches from
streams. To the best of our knowledge, this is the first time deep
learning is employed to detect events constituting a pattern match
in the realm of CEP. To assess our approach, we performed exten-
sive empirical testing on various scenarios with both real-world
and synthetic data. We showcase examples in which our method
achieves an increase in throughput of up to three orders of mag-
nitude compared to solely employing CEP, while only suffering a
minor loss in the number of detected matches.

CCS CONCEPTS
• Information systems→ Retrieval efficiency.

KEYWORDS
Deep learning, Neural networks, Complex event processing
ACM Reference Format:
Adar Amir, Ilya Kolchinsky, and Assaf Schuster. 2022. DLACEP: A Deep-
Learning Based Framework for Approximate Complex Event Processing.
In SIGMOD ’22, June 12–17, 2022, Philadelphia, USA. ACM, New York, NY,
USA, 16 pages. https://doi.org/XX.XX/XXX.XX

1 INTRODUCTION
Complex event processing (CEP) is employed to extract real-time
patterns from massive amounts of data in highly practical areas
such as healthcare, stock trading, and IoT analytics [9, 18, 96].

Let’s look at the following example of a pattern matching prob-
lem in the financial domain:

Example (1). A stock market application monitors stock prices
in a data stream. The application must notify the user upon each

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD ’22, June 12–17, 2022, Philadelphia, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XX.XX/XXX.XX

occurrence of the following scenario: an arrival of a stock named A,
followed by the arrival of a stock named B, followed by the arrival
of a stock named C, such that the stock price of C is higher than the
stock price of both A and B.

The stream of stock prices is processed by an evaluation engine
that outputs the pattern matches. A depiction of a general pattern
matching system is provided in Figure 1(a).

We assume that each item in the stream contains the stock
name and its current price 𝑝 . The items of similar format are pre-
partitioned and referred to as primitive events. The subsequent
matches are the subsets of different events that conform to the pat-
tern conditions. In Example(1), we are looking for arrival-ordered
subsets of size 3 that contain specific event types and conform to
certain numerical conditions.

The CEP engine evaluates each primitive event to decide whether
it can participate in a match. Since all matches are required to be
emitted, any event that is applicable to the pattern is stored for
possible later use as part of a match. The stored events are composed
together into subsets that may or may not eventually be extended
into matches. A newly arrived event is combined with all currently
stored subsets for possible extension. This method is wasteful in
terms of processing time when the data contains many subsets that
end up being discarded.

Non-deterministic finite automaton (NFA) is the most popular
CEP evaluation mechanism. [16, 18]. Each NFA state represents a
different match prefix. Each evaluated event instigates an automa-
ton transition and possible prefix storage within one of its states.
An NFA-based CEP evaluation is depicted in Figure 2, and illustrates
the problem described earlier. In this example, there is only one
match in the stream, consisting of the events 𝐴1, 𝐵1, and 𝐶1. The
majority of stored prefixes are discarded. The real-world domain of
stocks contains many more complicated pattern examples, such as
simultaneously monitoring fluctuations of dozens of stock prices.

The wasted processing time grows exponentially with the length
and the complexity of the detected pattern. This calls for a revi-
sion in strategy when attempting to extract pattern matches from
streams.

To overcome this challenge, we propose relaxing the constraint
to return all possible matches and, in return, maintain resource
efficiency throughout evaluation. This approach is known as ap-
proximate complex event processing (ACEP).

We implemented this approach in our system using deep learning
methodologies. To the best of our knowledge, this is the first time
a deep learning (DL) approach is being used in the field of CEP to
detect primitive events constituting pattern matches within streams.

1

SIGMOD ’22, June 12–17, 2022, Philadelphia, USA Amir, et al.

Our system contains the first CEP engine that integrates neural
network capabilities for complex pattern detection.

In recent years, DLmodels have demonstrated remarkable achieve-
ments in numerous fields [33, 47, 55, 57, 62]. The DL models de-
signed for pattern detection have a constant processing time when
it comes to most pattern or data properties, such as the amount of
applicable events. This paves the way for a paradigm that extracts
matches without maintaining every possible viable subset, thus
significantly alleviating computational complexity.

(a) A general pattern matching system. An evalu-
ation engine outputs pattern matches residing in
the input stream.

(b) A filtration-based ACEP system integrating a
CEP engine. In our system, ACEP filtration is per-
formed by a DL model.

Figure 1: Traditional patternmatching vs. filter-based ACEP

Figure 2: Example of CEP pattern matching. The input
stream is the same as in Figure 1(b). Each match prefix is
stored within the relevant automaton state. Orange rectan-
gles denote discarded prefixes.

However, utilizing neural networks to fully replace the CEP pro-
cess is not viable. CEP engines not only detect primitive events
relevant to the targeted pattern, but also group them into pattern
matches. Since neural networks serve as function approximators,
the latter operation of grouping the input into subsets is extremely

challenging for a neural network to learn and execute [92]. In addi-
tion, deep learning models are typically used to process unstruc-
tured data such as text or images to identify proximate temporal
or spatial features. In contrast, CEP patterns encompass arbitrarily
convoluted temporal and spatial dependencies with events having
large temporal gaps. Consequently, a trivial solution substituting a
CEP mechanism with a neural network is not sufficient and more
advanced approaches are needed.

Our proposed solution, that we call DLACEP, overcomes the
above difficulty by combining a DL model suited for complex pat-
tern detection with a traditional CEP engine, with the former in
charge of identifying the relevant primitive events and the latter re-
sponsible for grouping them into matches. The DL model is trained
on a stream labeled according to monitored patterns. Afterwards, a
new stream is evaluated by the DL model in an attempt to mark all
events that participate in matches. Thereafter, only marked events
are relayed to a CEP engine for match extraction. An illustration
of a filtration-based ACEP system is shown in Figure 1(b). This
combination can dramatically decrease processing.

The contributions of this paper can be summarized as follows:
• A formal definition and study of approximate complex event
processing (ACEP), which improves the processing perfor-
mance of current CEP systems.

• A novel filtration-based ACEP framework utilizing deep
learning to extract applicable events from the input stream
and CEP to group these events into pattern matches. To the
best of our knowledge, this is the first system of its kind.

• An LSTM [31] based implementation of our novel framework.
We adapted our DL models to overcome inherent problems
that arise when employing neural networks to perform grad-
ual stream processing.

• An extensive experimental evaluation of our method on
real-world and synthetic data, investigating the different
parameters affecting its superiority over baseline CEP. We
demonstrate considerable speed-ups in real-life use cases.

The remainder of this paper is organized as follows. Section 2
provides background on CEP and deep learning, and introduces
the notations used throughout the paper. In Section 3, we formally
define and discuss the ACEP problem. Section 4 provides a detailed
overview and specification of DLACEP. We report the results of
our experimental evaluation in Section 5 and conduct a thorough
analysis of them. Section 6 discusses related work while Section 7
concludes the paper and addresses our future work.

2 BACKGROUND AND TERMINOLOGY
2.1 Complex Event Processing
Overview. Formally, a primitive event is defined as a tuple (𝑁, 𝐹, 𝑡),
where 𝑁 is the event type, 𝐹 = {𝐹1, 𝐹2, ..., 𝐹𝑚} is an attribute set
of fixed size, and 𝑡 is a timestamp of the event occurrence. Events
arrive to a CEP system in the form of an infinite stream, possibly
from multiple sources and at different frequencies.

CEP engines match between events located within the same
context called a window. Windows are usually either count-based
or time-based. A count-based window of size𝑊 includes𝑊 subse-
quent events, while a time-based window of the same size contains
a batch of events occurring within𝑊 time units. Adjacent windows

2

DLACEP: A Deep-Learning Based Framework for Approximate Complex Event Processing SIGMOD ’22, June 12–17, 2022, Philadelphia, USA

may intersect and overlap. Figure 3 illustrates the above. We em-
phasize that the number of events in each count-based window of
size𝑊 is fixed at𝑊 . Windows based on different semantics [2, 56]
are beyond the scope of this paper and will be covered in our future
work.

Pattern conditions convey the relations between the attribute
values of different events. A common implicit condition defines an
order of event occurrence. Patterns including such an ordering are
also called sequence patterns. The patterns are usually specified by
domain experts and expressed using event specification languages.

Let us demonstrate the definition of a stock-related pattern:

SEQ (𝐺𝑂𝑂𝐺 𝑎,𝐴𝑃𝑃𝑙 𝑏,𝑀𝑆𝐹𝑇 𝑐 , 𝐼𝑁𝑇𝐶 𝑑 ,𝐴𝑀𝑍𝑁 𝑒)
WHERE (0.55 · 𝑎.𝑣𝑜𝑙 < 𝑏.𝑣𝑜𝑙 < 1.45 · 𝑐.𝑣𝑜𝑙) ∧ (3 · 𝑒.𝑣𝑜𝑙 < 𝑑.𝑣𝑜𝑙)
WITHIN 1 minute

A match satisfying this pattern consists of five specific stock up-
dates with a certain volume correlation, found within one minute
of each other. This specification illustrates the most basic elements
constituting a CEP pattern: (1) an expression describing the way in
which primitive events should be combined by CEP event opera-
tors, which in this case uses a simple sequence operator; (2) a list
of conditions under the WHERE clause; and (3) a time window size
𝑊 declaring the maximal time difference between the events in a
pattern match, noted here using the WITHIN clause.

In addition to the sequence operator [93], other widely used CEP
operators include negation (NEG), Kleene closure (KC), disjunc-
tion (DISJ), and conjunction (CONJ) [38]. Negation is unique in
the sense that it requires certain event types or conditions to not
appear in pattern matches. Overall, DLACEP supports all popular
CEP operators: SEQ, NEG, KC, DISJ, and CONJ. DLACEP currently
supports count-based window type

An additional part of the pattern definition is the selection strat-
egy, specifying how events are selected and consumed from the
input stream. In this paper, we exclusively assume the skip-till-any-
match strategy, which poses no restrictions on event inclusion in
a match. It was shown in [3] that this policy is the most challeng-
ing to support from the performance standpoint since it involves
creation of a worst-case exponential (in the number of events in a
window) number of partial matches.

The requirement to emit all stream matches imposes the exami-
nation and possible storage of every primitive event. Events deemed
applicable are iteratively assembled together, possibly resulting in
a pattern match. A set of events that meets all pattern requirements
imposed on them but lacks additional applicable events is referred
to as a partial match. In Figure 2, all denoted proper prefixes such
as 𝐴1𝐵1 are partial matches. A set of primitive events that fulfill
all pattern requirements including the required match length is
denoted as a full match.

Limitations of CEP. When events arrive at a high rate, eval-
uation time quickly becomes a performance bottleneck since the
number of partial matches is exponential to the number of events
within the time window [93]. A number of research methods have
been introduced to increase evaluation efficiency, as detailed in
Section 6.

2.2 Deep Learning
RNNs. Recurrent neural networks (RNNs) are designed to capture
temporal dependencies within sequences of data. It has been shown
that over long sequences, RNNs demonstrated biases towards more
recent inputs in the sequence, due to the vanishing and exploding
gradients problem [59, 78].

LSTMs. To combat the above issue, long short-term memory
(LSTM) network architecture was proposed [31]. Due to its ability
to model long-term dependencies, it can be employed on large
sequences such as data streams. This network accepts a vector
𝑥 = (𝑥1, 𝑥2, .., 𝑥𝑛) as an input and processes the vector from left to
right in time-steps. In each time step, a same-sized sequence denoted
as a hidden vector ℎ = (ℎ1, ℎ2, .., ℎ𝑛) is emitted. The hidden vector
encapsulates information about the sequence at each time-step.

Further improving upon the LSTM model is the BiLSTM model
[26]. A BiLSTM layer is composed of two separate LSTM layers.
An input sequence is evaluated from left to right by one layer and
from right to left by the other, relaying a forward hidden vector and
a backward hidden vector, respectively. This allows the model to
use both past and future context to perform more knowledgeable
predictions. This is especially important in the realm of CEP, where
an event is often determined to be part of a full match only after
the examination of future stream events.

CRFs. BiLSTMs are often used in combination with conditional
random fields (CRFs) [43, 79] to tackle sequence labeling prediction
problems where neighboring inputs demonstrate complex depen-
dencies. A CRF layer models a joint label distribution by capturing
dependencies across adjacent labels. BI-CRF [58] is a bi-directional
version of CRF that allows us to model more convoluted dependen-
cies.

Performance bound. A network generalization bound is typ-
ically an upper bound on the test error, based on some quantity
that can be calculated on the training set. For most networks, their
generalization bound remains largely unexplained [4]. For this
reason, we are unable to give exact performance bounds for our
networks; instead, we empirically demonstrate the effectiveness of
our solution on various cases in the experimental section. We refer
the reader to a comprehensive study of generalization bounds [35],
showcasing the effects of different network types, hyperparameters,
and datasets on generalization capacity.

3 ACEP PROBLEM FORMULATION
In this section, we formally define and analyze the approximate
CEP (ACEP) problem that will be solved in the next section.

3.1 Formal Definition
We start by defining a global set of pattern matches within a stream.

Definition (1). Let 𝑠 be a stream of primitive events e1, e2, ..., en,
and let P be a monitored set of patterns with window sizes𝑊 . We
define the union set of all window matches of patterns in P within
the stream as𝑀 (𝑠)P .

Without loss of generality, we assume |𝑠 | and therefore |𝑀 (𝑠)P |, is
finite; this can be readily extended to the infinite case. The problem
that exact CEP (ECEP) solves can be formulated as follows:

3

SIGMOD ’22, June 12–17, 2022, Philadelphia, USA Amir, et al.

(a) Count-based window evaluation.The fixed window size is 3. (b) Time-based window evaluation. The maximal timestamp difference is 15.

Figure 3: Examples of count-based and time-based CEP evaluation methods.

Definition (2). Let 𝑠 be a primitive event input stream and P a
set of monitored CEP patterns in the stream with window sizes𝑊 .
The CEP matching problem is to output the set𝑀 (𝑠)P .

This is the conventional CEP problem addressed by CEP engines
using some internal mechanism. However, this problem does not
take performance metrics, such as throughput, into consideration.
We denote𝑇 as a set of monitored parameters regarding the match-
ing process. In ACEP, we aim to minimize an objective function
𝐹𝑀 (𝑠)P ,𝑇 , which relates to both the contents of𝑀 (𝑠)P and 𝑇 .

Definition (3). Let 𝑠 be an input stream of primitive events, P
a set of monitored CEP patterns, and 𝑇 a set of monitored parame-
ters. The approximate CEP (ACEP) problem is tominimize 𝐹𝑀 (𝑠)P ,𝑇 .

An ACEP mechanism 𝑋
′
is similar to ECEP mechanisms in one

major way: it outputs a set containing subsets of primitive events.

Definition (4). Let 𝑠 be an input stream of primitive events and
𝑋

′
be an ACEP mechanism. While evaluating the stream 𝑠 , 𝑋

′
will

output a set of event subsets defined as𝑀 (𝑠)𝑋
′

P .

Unlike𝑀 (𝑠)P being output by every ECEP mechanism, each run
of an ACEP mechanism 𝑋

′
, or of different ACEP mechanisms, may

output a different set. In addition,𝑀 (𝑠)𝑋′
P may contain subsets of

primitive events that do not constitute full pattern matches and may
not contain all full pattern matches. Both 𝑀 (𝑠)𝑋

′

P and 𝑇 are used
as input to 𝐹𝑀 (𝑠)P ,𝑇 . The objective function we aim to minimize
in ACEP can vary. An example of such an objective function is a
negative weighted sum of the throughput and the emitted matches
set similarity relative to some ECEP evaluation mechanism 𝑋 :

𝐹𝑀 (𝑠)P ,𝑇 (𝑀 (𝑠)𝑋
′

P , {𝑡, 𝑡
′
}) = −𝑤1 ·

|𝑀 (𝑠)P ∩𝑀 (𝑠)𝑋
′

P |

|𝑀 (𝑠)P ∪𝑀 (𝑠)𝑋
′

P |
−𝑤2 ·

𝑡

𝑡
′ .

where 0 ≤ 𝑤1,𝑤2 ≤ 1,𝑤1 +𝑤2 = 1, and 𝑡, 𝑡
′
are the throughput

of 𝑋,𝑋
′
upon the stream 𝑠 , respectively.

This function does not have a minimum in R. In practice, the
value of 𝐹𝑀 (𝑠)P ,𝑇 is used as a score that determines the perfor-
mance of 𝑋

′
in relation to ECEP or other ACEP mechanisms. In the

case of the specific 𝐹𝑀 (𝑠)P ,𝑇 above, the performance metrics are

throughput gain and match similarity. ACEP solutions utilizing this
objective function are aimed at reducing excess processing while
remaining as accurate as possible.

There are no limitations on how an ACEP mechanism 𝑋
′
at-

tempts to achieve a minimized score. For example, it may employ
a CEP mechanism 𝑋 during its evaluation. It can also attempt to
filter out events that do not participate in matches to improve pro-
cessing performance. In our ACEP solution, we implemented a
filtration-based system that filters the input stream 𝑠 to output a
new stream 𝑠

′
, which is then conveyed to a CEP mechanism for

match extraction.

3.2 Complexity Analysis
In this subsection, we analyze the computational complexity of
ECEP and a filtration-based ACEP solution.

The heaviest computational burden imposed onCEPmechanisms
is to create and extend partial matches to more complete partial
matches or to full matches. Therefore, we calculate the computa-
tional complexity of ECEP by enumerating the number of partial
and full matches within a given window. This is based on applicable
event arrival rates and pattern predicate selectivity, as formulated
in [39].
Let 𝑃 be a monitored pattern with required event types 𝐸1, 𝐸2,
..., 𝐸𝑛 . Let 𝑠𝑒𝑙𝑖, 𝑗 be the selectivity of the predicates between 𝐸𝑖 and
𝐸 𝑗 . The selectivity 𝑠𝑒𝑙𝑖, 𝑗 shall be defined as the probability that a
partial match contains events of type 𝐸𝑖 and 𝐸 𝑗 , i.e., all pattern
conditions between the two events are upheld. Let 𝑟𝑖 be the arrival
rate of event type 𝐸𝑖 to the system. Let us denote𝑊 as the pattern
window size. We can witness that the expected number of events of
type 𝐸𝑖 within a window of size𝑊 is𝑊 ·𝑟𝑖 . Therefore, the expected
number of partial matches of all sizes (1 to 𝑛 − 1) and full matches
(size 𝑛) is:

Φ(𝑊,𝑅, 𝑆𝐸𝐿) =
𝑛∑
𝑖=1

𝑊 𝑖 ·
𝑖∏

𝑘=1
𝑟𝑖 ·

∏
1≤𝑘,𝑡 ≤𝑖;𝑘≤𝑡

𝑠𝑒𝑙𝑘,𝑡

Where 𝑅 is the vector of all arrival rates of events with types
{𝐸1, .., 𝐸𝑛}, and 𝑆𝐸𝐿 is the vector of all predicate selectivities be-
tween events with the aforementioned types.

This means that the overall computational complexity of ECEP,
which we define as the number of the partial matches of all sizes
and the full matches, is simply 𝐶𝐸𝐶𝐸𝑃 = Φ(𝑊,𝑅, 𝑆𝐸𝐿).

Now let us consider a filtration-based ACEP system that employs
match extraction on a filtered stream using CEP; ideally, the filtered

4

DLACEP: A Deep-Learning Based Framework for Approximate Complex Event Processing SIGMOD ’22, June 12–17, 2022, Philadelphia, USA

Figure 4: An overview of DLACEP. Section numbers detailing each system component are written above the relevant compo-
nent. Windows of size 2 ·𝑊 are evaluated in step sizes of𝑊 events. Two event filtering schemes are shown: individual events or
whole windows. A filtered stream is relayed to a CEP engine for match extraction. The final set of matches is the unification
of all window matches.

stream contains only events that participate in full matches. We
denote Ψ𝑖 as the expected filtering ratio of events of type 𝑖 filtered
out from the stream. We also denote 𝑅Ψ = ⟨(1 − Ψ1) ∗ 𝑟1, .., (1 −
Ψ𝑛) ∗ 𝑟𝑛⟩. The computational complexity of ACEP is therefore:

𝐶𝐴𝐶𝐸𝑃 = Φ(𝑊,𝑅Ψ, 𝑆𝐸𝐿)︸ ︷︷ ︸
𝐶 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝑐𝑒𝑝

+𝐶 𝑓 𝑖𝑙𝑡𝑒𝑟 .

where 𝐶 𝑓 𝑖𝑙𝑡𝑒𝑟 is the computational complexity of the filtration pro-
cess, and 𝐶 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝑐𝑒𝑝 is the computational complexity of a CEP
mechanism evaluating the filtered stream. We note that unlike
𝐶𝐸𝐶𝐸𝑃 , 𝐶 𝑓 𝑖𝑙𝑡𝑒𝑟 may be constant with regard to the number of par-
tial matches in the stream, allowing it to be significantly smaller
than 𝐶𝐸𝐶𝐸𝑃 . If 𝐶 𝑓 𝑖𝑙𝑡𝑒𝑟 is significantly smaller than 𝐶𝐸𝐶𝐸𝑃 , high
filtering ratios (large Ψ

′𝑠
𝑖

leading to a small 𝐶 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝑐𝑒𝑝) combined
with large amounts of partial matches (large 𝐶𝐸𝐶𝐸𝑃) will mean
considerably higher throughput for ACEP as compared to ECEP.

If the stream contains only small amounts of partial matches,
ECEP throughput may be equal to or even better than that of an
ACEP solution, due to the filtering overhead. For example, let us
assume a stream 𝑠 contains small amounts of partial matches leading
to 𝐶𝐸𝐶𝐸𝑃 << 𝐶 𝑓 𝑖𝑙𝑡𝑒𝑟 . Therefore, we can derive that 𝐶𝐸𝐶𝐸𝑃 <<

𝐶𝐴𝐶𝐸𝑃 , meaning 𝐴𝐶𝐸𝑃 will perform much worse than 𝐸𝐶𝐸𝑃 . The
lack of partial matches stems from short patterns or window sizes,
restrictive pattern conditions, or simply a shortage of applicable
events in the data. The more partial matches there are, the bigger
the potential throughput gain ACEP can achieve. However, an
abundance of partial matches does not guarantee a considerable
increase in throughput. The amount of full matches in the data
may also play a key role. Let us assume stream 𝑠 contains many
partial matches leading to 𝐶 𝑓 𝑖𝑙𝑡𝑒𝑟 << 𝐶𝐸𝐶𝐸𝑃 . However, let us also
assume that ∀𝑖,Ψ𝑖 = 0.001, indicating that the vast majority of
partial matches are completed to full matches. This implies that
𝐶 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝑐𝑒𝑝 � 𝐶𝐸𝐶𝐸𝑃 , which means that 𝐶𝐴𝐶𝐸𝑃 � 𝐶𝐸𝐶𝐸𝑃 . In this

case, the 𝐴𝐶𝐸𝑃 mechanism will have no advantage over an 𝐸𝐶𝐸𝑃

mechanism.
A large proportion of partial matches being completed to full

matches usually derives from permissive pattern conditions.

4 DLACEP
In this section we present DLACEP, our novel match extraction
system. The system implements filtration-based ACEP as described
in the previous section. This filtration process is carried out by
dedicated deep neural networks.

System settings. We assume that the data either arrives from a
single source, or is merged into one. Merging multi-source inputs
in a single in-order stream is an active area of research, and is
beyond the scope of this paper [46, 49, 77]. For clarity of presen-
tation, we also assume that the system receives a single complex
pattern for detection. In Section 4.3, we show how to extend our
solution to the multi-pattern case. Finally, we assume the pattern
window to be count-based as illustrated in Figure 3(𝑎). In many
real world domains, such as healthcare and IoT [9, 96], the sam-
pling rate is often time constant, and therefore each time based
pattern can be converted to a count based pattern. We denote the
window size of the examined pattern as𝑊 . In future work, we
aim to examine scenarios in which gaps between data events are
not time synchronous, thus employing our system on time-based
window evaluation rather than count-based. Experiments detailing
simulated time-based evaluation are described in Section 5.2.

4.1 System Overview
An overview of our DLACEP solution is illustrated in Figure 4. The
system is designed around a modular three-step solution. The first
step features an input assembler that partitions the stream into
windows of events to be processed at each evaluation step. The
second step contains a trained neural network that attempts to mark
the primitive events that participate in full matches within each

5

SIGMOD ’22, June 12–17, 2022, Philadelphia, USA Amir, et al.

input window. Events are filtered out from the stream according to
their issued markings, creating a filtered stream. Next, a CEP engine
evaluates the filtered stream to extract all matches that exist within
each filtered window. The union of all filtered window matches is
the final set of matches in the data, as determined by the system.

We chose BiLSTM [26] as the architecture for our network. Two
reasons have dictated this decision. First, BiLSTM networks have
demonstrated groundbreaking results in the field of sequence label-
ing (see Section 6), and the problem of event stream filtering can be
viewed as sequence labeling with 2 possible labels. Second, BiLSTM
was empirically shown to be superior to other approaches such as
TCN [45] and LSTM-CNN hybrid architecture in our preliminary
experiments.

In essence, our DL model evaluates a stream 𝑠 and outputs a fil-
tered event stream 𝑠

′
, which is then evaluated by a CEP mechanism

𝑋 . The stream 𝑠
′
is filtered such that 𝑠

′ ⊆ 𝑠 . Our system aims to
minimize the amount of matches lost and maximize the throughput
as compared to employing ECEP on the unfiltered stream by 𝑋 .

4.2 DNN Input Assembler

Figure 5: Example of 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒,𝑀𝑎𝑟𝑘𝑆𝑖𝑧𝑒 = 𝑊 resulting in a
missed pattern match.

When processing a newly seen stream, the trained LSTM type
model evaluates it in fixed step sizes of𝑊 1, marking windows of
2 ·𝑊 events each time. The evaluation step and the processing
size are needed since LSTM type networks operate on sequences
and not singular events. Events that are marked as participants
in a complete match in each input window retain their original
properties and inner order within the filtered stream.

A step size value of𝑊 and marking size of 2 ·𝑊 ensure that the
network can detect all matches conforming to the original pattern
window size of𝑊 . For example, let us assume the network marks
only𝑊 events at each step, while retaining step sizes of𝑊 . In this
case, events marked within the second half of an evaluation step
and the first half of the next one will not be considered within the
same context for pattern matching, even when they actually form
matches together. An illustration of this scenario is presented in
Figure 5.

The network could also mark𝑊 events at each processing step,
advancing one event after each step. This is the way an ECEP
mechanism would process the input stream. However, this marking
scheme will rarely outpace ECEP, as it leads to a substantial filtering
overhead.
1As described in Section 2, we consider fixed-sized count-based windows of𝑊 con-
secutive events.

Generally, we can choose to have the network mark𝑀𝑎𝑟𝑘𝑆𝑖𝑧𝑒

events at each processing step and evaluate the stream in step sizes
of 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒 . Given the pattern count window size is𝑊 ,𝑀𝑎𝑟𝑘𝑆𝑖𝑧𝑒

may be any positive number 𝑀𝑎𝑟𝑘𝑆𝑖𝑧𝑒 >=𝑊 , and 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒 may
be any positive number 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒 >=𝑚𝑎𝑥{1, 𝑀𝑎𝑟𝑘𝑆𝑖𝑧𝑒 −𝑊 }.

Figure 6: Example of 𝑀𝑎𝑟𝑘𝑆𝑖𝑧𝑒 > 𝑊 resulting in detecting a
pattern match participating in a count window size strictly
larger than𝑊 . This leads to excess CEP processing. The CEP
engine will process the marked events but will not output
this match, as it does not conform to the original pattern
count window size of𝑊 .

Enlarging 𝑀𝑎𝑟𝑘𝑆𝑖𝑧𝑒 means that more events participating in
matches can be found at each processing step, thereby reducing the
overall steps required. However, recall that the count window size
of the original pattern is𝑊 . If𝑀𝑎𝑟𝑘𝑆𝑖𝑧𝑒 >𝑊 , then the network is
able to detect matches contained in count-sized windows that are
bigger than𝑊 , thereby not conforming to the original pattern. This
may lead to excess processing. This scenario is depicted in Figure 6.

Increasing the 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒 exponentially decreases the processing
time since it reduces the overall amount of processed windows.
However, this comes at the potential cost of overlooking matches
if not all stream events are evaluated.

As explained in Section 5.1, the values of𝑀𝑎𝑟𝑘𝑆𝑖𝑧𝑒 = 2 ·𝑊 and
𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒 =𝑊 were chosen as they provide a good balance between
match recall and throughput gain.

𝑀𝑎𝑟𝑘𝑆𝑖𝑧𝑒 = 2 ·𝑊 and 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒 =𝑊 means that events may po-
tentially be relayed twice for CEP evaluation. However, in practice,
duplicate events are erased before being relayed.

4.3 DNN-Based Filter
The DNN-Based filter employs DL to mark events participating in a
full match within each input window, and then filters out unmarked
events.

Networks overview. We implemented two variations of a BiL-
STM based network. The first network features several stacked
BiLSTM layers and a Bi-CRF output layer (Section 2.2) that assigns
a label for each event within the input window. We refer to this
DL model as the event-network model. The second model also fea-
tures several stacked BiLSTM layers. However, it attempts to detect
whether an entire input window is applicable, producing a single
label at its linear output layer. An input window is deemed applica-
ble only if it contains at least one full pattern match. We refer to
this model as the window-network model.

A detailed architectural illustration of the event-network model
is given in Figure 7; the window-network model is similar in design,
except for the aforementioned difference in the last layer.

Embedding and sample labeling. For each examined pattern,
we use a historical data stream for network training and testing.

6

DLACEP: A Deep-Learning Based Framework for Approximate Complex Event Processing SIGMOD ’22, June 12–17, 2022, Philadelphia, USA

The stream is divided into continuous, even sized samples, each
containing 2 ·𝑊 events. Each primitive event is embedded as a
vector representation of pattern-relevant attributes. Categorical
attributes such as the event type are represented as one-hot vectors,
which can be compacted according to the pattern specifications.
For example, let us assume there are 500 different event types in
the data, but only one event type is specified in the pattern. The
one-hot encoding can be of size 2, representing 2 categories: the
applicable event type and every other type.

The training samples are binary labeled according to the exam-
ined pattern. For the event-network model, the binary labeling is
issued per event in each window sample. Any event participating
in a full match within the window sample gets the label 1, and any
other event is labeled with 0. For the window-network model, the
binary labeling is issued per window sample. Any sample that con-
tains at least one match receives the label 1, and any other samples
receive the label 0.

Since each sample size is 2 ·𝑊 , the networks are essentially
trained to detect patterns within double the window size of the
original pattern.

Figure 7: BiLSTM BI-CRF architecture for event labeling. In-
put events are vector embedded. BI-CRF outputs the most
probable labels based on modeled joint label distribution.
Additional information on BILSTM and CRF can be found
in [26, 43, 58, 79].

Training evaluation. To evaluate the performance of the DL
models during training, we calculated the F1 score on the entire
test set. This score takes into account both the recall and precision
of the DL model:

𝐹1 = 2 · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

The precision of the DL model can be interpreted as the prob-
ability that an entity marked as applicable by the model is truly
relevant (e.g., for the event-network model, the probability that an
event marked as a full match participant is indeed part of a full
match). The recall of the DL model is the probability that a relevant
entity is indeed marked as such by the model [25]. The entities are
either events in the case of the event-network model, or windows
in case of the window-network model.

Low network precision incurs an excess of events to be evaluated
by the system’s CEP mechanism; this reduces the overall through-
put without improving accuracy. Low recall implies a scarcity in
correctly marked events, reducing match accuracy.

Therefore, during training, we strive for as high an F1 score as
possible. A high score serves as an indicator that the system should
achieve high throughput and an ample amount of emitted matches
when evaluating newly seen streams.

When there is more than one monitored pattern, we can train
the network with samples labeled according to the monitoring re-
quirement, thus semantically unifying the patterns into one. For
example, given the patterns P1 and P2, let us assume we are re-
quired to monitor the matches of both patterns. Window samples
are labeled with 1 if they contain at least one full match of 𝑒𝑖𝑡ℎ𝑒𝑟
pattern. Similarly, events in each window sample are labeled with
1 if they participate in a full match of either pattern.

Filtration complexity. Recall the complexity analysis from
Section 3.2. BiLSTM processing time complexity is known to be
𝑂 (ℎ · 𝑙), where ℎ is the number of network parameters and 𝑙 is the
input sequence size [69]. Consequently, when employing BiLSTM,
the filtering overhead is 𝐶 𝑓 𝑖𝑙𝑡𝑒𝑟 = 𝑂 (ℎ · 𝑙). This number is linearly
dependent on internal parameters such as the number of network
layers and the event embedding size. Unlike the computational
complexity of ECEP, there is no dependence on the number of
partial or full matches within a given window. In addition, BiLSTM
filtering overhead is only linearly dependent on the window size𝑊 ,
whereas ECEP complexity is exponentially dependent on𝑊 . This
allows for considerable throughput gains in different scenarios. In
terms of the network’s generalization bounds, we once again refer
the reader to a comprehensive study performed in this area [35].

For each new pattern, we must retrain the model from scratch
due to different labeling distribution in the training data. Training a
network to full convergence can take a considerable amount of time,
which is problematic in practical applications where the monitored
pattern can frequently change. We worked on mitigating the re-
training effects in the experimental section. In future work, we aim
to thoroughly address scenarios in which the stream used during
the training phase no longer captures the statistical characteristics
of the most recent stream inputs, a phenomenon known as concept
drift. There are two major strategies for addressing this issue:

1) Model retraining. A straightforward way of handling con-
cept drifts is to retrain our model on a periodic basis. While reli-
ably mitigating significant concept drifts, this approach could be
highly inefficient in terms of the training time overhead. In addi-
tion, periodical model retraining requires extra memory for storing
up-to-date stream samples to be later used during the retraining
procedure. Recent work has attempted to expedite retraining of ma-
chine learning models [88]. Another possible avenue for reducing
the training overhead is to employ transfer learning methods [80]
when multiple patterns with only slight differences are detected or
the changes in the training data are minor.

2)Online learning [32] involves incremental retraining by pass-
ing data instances sequentially, making it possible for the network
to continuously adapt to the input stream. However, most of the
prominent deep learning architectures today can only learn in an
offline, batch setting, while deep online learning is considered an

7

SIGMOD ’22, June 12–17, 2022, Philadelphia, USA Amir, et al.

open challenge [68]. Specifically, our BiLSTMmodel cannot be used
out-of-the-box in an adaptive online learning setting and further
research is required [83] to support online learning in DLACEP.

4.4 CEP Extractor
Once created, the filtered stream is evaluated by a CEP engine to
extract any underlying full matches. We note that marked events
relayed for match extraction after filtration do not retain their
original adjacency relations to other events. Executing count-based
evaluation of size𝑊 on the filtered stream can therefore procure
matches that are not emitted by an ECEP mechanism evaluating
the original stream.

As a result, we formulated a method in which we attach a unique
increasing ID tag to each primitive event upon its arrival to the
system. We then configure the system’s CEP mechanism to output
only sets of matches in which the events’ ID values do not differ by
more than𝑊 − 1. This ensures that our system cannot emit false
positive matches. In other words, the set of matches𝑀 (𝑠)′P emitted
by our system is fully contained in the original set of matches
𝑀 (𝑠)P emitted by an ECEP mechanism. For example, real-time
security systems in which each positive event indicates a breach
can benefit greatly from eliminating false positives, as handling
breach alerts require the allocation of numerous resources [7].

The exception to this rule is when our system operates to extract
matches of a pattern containing a negation operator. For example,
let us examine the pattern SEQ(A,B,NEG(C),D,E). Let us assume the
DLACEP inner neural network erroneously marks specific events
of type A,B,D,E within a certain window even though they do not
participate in a full match, and does not mark any events of type
C. In this case, the DLACEP inner CEP mechanism will evaluate
these events in the filtered stream and incorrectly integrate them
to a full match, as there is no event of type C in between. When we
first examined our event-network system on negation patterns, we
witnessed a large amount of false positive matches leading to poor
results. We therefore altered our system in the case of negation
operators, such that the event-network aims to not only label events
participating in a pattern match, but also events residing under a
negation operator. This led to a dramatic decrease in false positive
matches in examined cases, as demonstrated in Section 5.2.

5 EXPERIMENTAL EVALUATION
5.1 Experimental Setup
Implementation details. We implemented the window-network
and the event-network systems described in Section 4. Unless stated
otherwise, the DL models contain 3 stacked BiLSTM layers, with
each layer having a hidden vector dimension of 75. For network
training, we used a varying training batch size and a dynamic
learning rate [67]. DLACEP, as well as the ECEP baselines, were
implemented over the OpenCEP framework [36], incorporating
state-of-the-art algorithms from [37, 40, 41]. The batch size varied
from 512 to 256, while the learning rate changed from 0.001 to
0.0001. All networks were trained until convergence, defined as the
first epoch in which the loss remained within a 0.01 threshold for
over 5 consecutive epochs The DL models were implemented in
Keras [13] and trained on a GeForce RTX 2080 Ti GPU.

The event-network is based on BiCRF [58], while the window-
network is a standard BiLSTM network with an output classifi-
cation layer. For the event-network, the employed loss function
was one that maximizes the likelihood probability sums of correct
sequences in the training set for both forward and backward CRF
layers [58]. We used standard binary cross-entropy loss for the
window-network.

We performed preliminary experiments to discover values of
𝑀𝑎𝑟𝑘𝑆𝑖𝑧𝑒 and 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒 that achieve a good balance between match
recall and throughput gain. This resulted in𝑀𝑎𝑟𝑘𝑆𝑖𝑧𝑒 = 2 ·𝑊 and
𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒 = 𝑊 , which were the values used for the rest of our
empirical study.

All experiments were run on a machine with 80 cores having
2.10 GHz CPU and 377.0 GB RAM; a single core was used for ECEP
processing and network inference. To ensure a fair comparison, all
ECEP and ACEP algorithms were executed in single-threaded mode.
The experiments took a total of over three months to complete.

Datasets. We used a real-world dataset purchased from the NAS-
DAQ stock market historical records [1]. The dataset contains a
total of 689, 459, 712 events spanning a period of 4 years and 10
months, comprising over 2500 different stock identifiers. Each event
contains a stock identifier, a timestamp, and 5 additional numerical
attribute values. To preprocess the data, we re-ordered it based
on the event’s timestamp, divided it into 2, 298, 199 chunks of 300
event-sized window samples, and removed all numerical attributes
except for the stock volume attribute. The latter was standardized
and a new ID was devised for each event in the data, as explained
in Section 4.3.

We also employed a number of synthetic datasets, where each
event contained a type and a numerical attribute. Event types were
uniformly sampled from 15 possibilities. The attribute values were
sampled from a standard normal distribution.

The window samples were divided at random into 70% for the
train set and 30% for the test set; each sample was both window-
labeled and event-labeled, as explained in Section 4.3.

Pattern queries. Tables 1 and 2 list the pattern templates used
for the real-world and synthetic datasets, respectively. From each
template, multiple patterns were instantiated by assigning values
to the template arguments. The chosen patterns cover a wide range
of values for important parameters that we describe below.

In all patterns, unless stated otherwise, the window size is𝑊 =

150. This value was chosen because it is both high enough to allow
for substantial throughput gains and low enough to maintain ex-
ceptional system recall values and sufficient amounts of window
samples. We explored the use of different values of𝑊 in a dedicated
experiment (Figure 13(a)-13(b)).

Performance metrics. To compare our system’s performance
with that of ECEP, we used a fixed amount of consecutive events
from test sets acting as the input stream. This amount varied from
20K to 40Kwindow samples. The ECEP system evaluated the stream
using a count-based evaluation of size𝑊 . Both the ECEP mecha-
nism and our DLACEP system acted to extract the same pattern
matches from the stream. To determine the merit of our system, we
then measured both the throughput gain of our system over ECEP
and the two sets of matches returned. We define throughput as the
number of events processed per second. The quality of the returned

8

DLACEP: A Deep-Learning Based Framework for Approximate Complex Event Processing SIGMOD ’22, June 12–17, 2022, Philadelphia, USA

𝑄𝐴
1 SEQ (𝑆1,𝑆2,...,𝑆 𝑗) WHERE ∀𝑡 ∈ [𝑗]: 𝑆𝑡 ∈ 𝑇𝑘 , 𝑝 ∈ 𝑃 ([𝑗 − 1]), 𝛽 > 𝛼 > 0 AND ∀𝑖 ∈ 𝑝 : 𝛼 · 𝑆𝑖 .𝑣𝑜𝑙 < 𝑆 𝑗 .𝑣𝑜𝑙 < 𝛽 · 𝑆𝑖 .𝑣𝑜𝑙

𝑄𝐴
2 SEQ (𝑆1,𝑆2,𝑆3,𝑆4,𝑆5) WHERE ∀𝑡 ∈ [5]: 𝑆𝑡 ∈ 𝑇𝑘

𝑄𝐴
3 SEQ (𝑆1,𝑆2,...,𝑆 𝑗) WHERE ∀𝑡 ∈ [𝑗]: 𝑆𝑡 ∈ 𝑇𝑘 , 𝑟 ∈ [𝑗], 𝑝 ∈ 𝑃 ([𝑟 − 1]), 𝑙,𝑚 ∈ [𝑗] 𝛽 > 𝛼 > 0, 𝛾 > 0

AND ∀𝑖 ∈ 𝑝 : 𝛼 · 𝑆𝑖 .𝑣𝑜𝑙 < 𝑆𝑟 .𝑣𝑜𝑙 < 𝛽 · 𝑆𝑖 .𝑣𝑜𝑙, 𝛾 · 𝑆𝑙 .𝑣𝑜𝑙 < 𝑆𝑚 .𝑣𝑜𝑙

𝑄𝐴
4 SEQ (𝑆1,𝑆2,...,𝑆 𝑗) WHERE ∀𝑡 ∈ [𝑗]: 𝑆𝑡 ∈ 𝑇𝑘 , 𝑝 ∈ 𝑃 ([𝑗 − 1]), 𝑙,𝑚 ∈ [𝑗] 𝛽 > 𝛼 > 0, 𝛿 > 𝛾 > 0

AND ∀𝑖 ∈ 𝑝 : 𝛼 · 𝑆𝑖 .𝑣𝑜𝑙 < 𝑆 𝑗 .𝑣𝑜𝑙 < 𝛽 · 𝑆𝑖 .𝑣𝑜𝑙, 𝛾 · 𝑆𝑙 .𝑣𝑜𝑙 < 𝑆𝑚 .𝑣𝑜𝑙 < 𝛿 · 𝑆𝑙 .𝑣𝑜𝑙
𝑄𝐴
5 SEQ (𝑆1,...,𝑆5,KC(𝑆

′
1),...,KC(𝑆

′
𝑗
)) WHERE ∀𝑡 ∈ [5]: 𝑆𝑡 ∈ 𝑇100,∀𝑙 ∈ [𝑗]: 𝑆 ′

𝑙
∈ 𝑇100+𝑙 ·10/𝑇100+(𝑙−1) ·10, 𝛽 > 𝛼 > 0

AND ∀𝑖 ∈ [5] : 𝛼 · 𝑆𝑖 .𝑣𝑜𝑙 < 𝑆5 .𝑣𝑜𝑙 < 𝛽 · 𝑆𝑖 .𝑣𝑜𝑙
𝑄𝐴
6 KC(SEQ (𝑆1,𝑆2,...,𝑆 𝑗)) WHERE ∀𝑡 ∈ [𝑗]: 𝑆𝑡 ∈ 𝑇100, 𝛽 > 𝛼 > 0 AND ∀𝑖 ∈ [𝑗 − 1] : 𝛼 · 𝑆𝑖 .𝑣𝑜𝑙 < 𝑆 𝑗 .𝑣𝑜𝑙 < 𝛽 · 𝑆𝑖 .𝑣𝑜𝑙

𝑄𝐴
7 SEQ (𝑆1,...,NEG(𝑆

′
1),...,NEG(𝑆

′
𝑗
),𝑆5) WHERE ∀𝑡 ∈ [5]: 𝑆𝑡 ∈ 𝑇100, ∀𝑙 ∈ [𝑗]: 𝑆 ′

𝑙
∈ 𝑇100+𝑙 ·10/𝑇100+(𝑙−1) ·10, 𝛽 > 𝛼 > 0

AND ∀𝑖 ∈ [5] : 𝛼 · 𝑆𝑖 .𝑣𝑜𝑙 < 𝑆5 .𝑣𝑜𝑙 < 𝛽 · 𝑆𝑖 .𝑣𝑜𝑙
𝑄𝐴
8 SEQ (𝑆1,...,NEG(SEQ(𝑆

′
1,...,𝑆

′
𝑗
)),𝑆5) WHERE ∀𝑡 ∈ [5]: 𝑆𝑡 ∈ 𝑇100, ∀𝑙 ∈ [𝑗]: 𝑆 ′

𝑙
∈ 𝑇100+𝑙 ·10/𝑇100+(𝑙−1) ·10, 𝛽 > 𝛼 > 0

AND ∀𝑖 ∈ [5] : 𝛼 · 𝑆𝑖 .𝑣𝑜𝑙 < 𝑆5 .𝑣𝑜𝑙 < 𝛽 · 𝑆𝑖 .𝑣𝑜𝑙
𝑄𝐴
9 DISJ(𝑺𝑬𝑸1(𝑆1,𝑆2,...,𝑆 𝑗),𝑺𝑬𝑸2(𝑆

′
1,𝑆

′
2,...,𝑆

′
𝑗
)) WHERE ∀𝑡 ∈ [𝑗]: 𝑆𝑡 ∈ 𝑇100,∀𝑙 ∈ [𝑗]: 𝑆 ′

𝑙
∈ 𝑇200/𝑇100, 𝛽 > 𝛼 > 0, 𝛿 > 𝛾 > 0

AND ∀𝑖 ∈ [𝑗 − 1] : 𝛼 · 𝑆𝑖 .𝑣𝑜𝑙 < 𝑆 𝑗 .𝑣𝑜𝑙 < 𝛽 · 𝑆𝑖 .𝑣𝑜𝑙 , 𝛾 · 𝑆 ′
𝑖
.𝑣𝑜𝑙 < 𝑆

′
𝑗
.𝑣𝑜𝑙 < 𝛿 · 𝑆 ′

𝑖
.𝑣𝑜𝑙

𝑄𝐴
10 DISJ(𝑺𝑬𝑸1(𝑆11 ,𝑆

1
2 ,𝑆

1
3 ,𝑆

1
4),...,𝑺𝑬𝑸𝒋 (𝑆

𝑗

1 ,𝑆
𝑗

2 ,𝑆
𝑗

3 ,𝑆
𝑗

4)) WHERE ∀𝑙 ∈ [𝑗],∀𝑚 ∈ [4]: 𝑆𝑙𝑚 ∈ 𝑇100+(𝑙−1) ·100/𝑇100+(𝑙−2) ·100, ∀𝑟 ∈ [𝑗], 𝛼𝑟2 > 𝛼𝑟1 > 0
AND ∀𝑖 ∈ [𝑗],∀𝑝 ∈ [3] : 𝛼𝑖1 · 𝑆

𝑖
𝑝 .𝑣𝑜𝑙 < 𝑆𝑖4 .𝑣𝑜𝑙 < 𝛼𝑖2 · 𝑆

𝑖
𝑝 .𝑣𝑜𝑙

𝑄𝐴
11 CONJ/SEQ (𝑆1,𝑆2,...,𝑆5)

WHERE ∀𝑡 ∈ [5]: 𝑆𝑡 ∈ 𝑇40·𝑡/𝑇40· (𝑡−1) , 𝛽 > 𝛼 > 0 AND ∀𝑖 ∈ [4] : 𝛼 · 𝑆𝑖 .𝑣𝑜𝑙 < 𝑆5 .𝑣𝑜𝑙 < 𝛽 · 𝑆𝑖 .𝑣𝑜𝑙
𝑄𝐴
12 DISJ(𝑺𝑬𝑸1(𝑆1,𝑆2,...,𝑆5),𝑺𝑬𝑸2(𝑆

′
1,𝑆

′
2,...,𝑆

′
5)) WHERE ∀𝑡 ∈ [𝑗]: 𝑆𝑡 , 𝑆

′
𝑡 ∈ 𝑇40·𝑡/𝑇40· (𝑡−1) , 𝛽 > 𝛼 > 0, 𝛿 > 𝛾 > 0

AND ∀𝑖 ∈ [𝑗 − 1] : 𝛼 · 𝑆𝑖 .𝑣𝑜𝑙 < 𝑆5 .𝑣𝑜𝑙 < 𝛽 · 𝑆𝑖 .𝑣𝑜𝑙 , 𝛾 · 𝑆 ′
𝑖
.𝑣𝑜𝑙 < 𝑆

′
5 .𝑣𝑜𝑙 < 𝛿 · 𝑆 ′

𝑖
.𝑣𝑜𝑙

Table 1: Real-world query templates used for the stock dataset experiments. 𝑇𝑘 is the set of the top 𝑘 most prevalent stock
identifiers in the dataset. 𝑃 (𝑆) is the power set of 𝑆 . KC is Kleene closure. NEG is negation. In all patterns besides 𝑄𝐴

7 larger
values of 𝑗, 𝑘,𝑚, 𝑟 dictates more partial matches. In𝑄𝐴

7 , larger values of 𝑗 dictates less full matches. In all patterns, larger values
of −|𝑝 |, 𝛽 − 𝛼,−𝛾 or 𝛿 − 𝛾, 𝛼𝑟2 − 𝛼𝑟1 dictate more full matches.

𝑄𝐵
1 SEQ (𝐴, 𝐵,𝐶, 𝐷, 𝐸, 𝐹)

WHERE ∀𝑋 ∈ {𝐶, 𝐷}: 0.85 · 𝑋 .𝑣𝑜𝑙 < 𝐹 .𝑣𝑜𝑙 < 1.15 · 𝑋 .𝑣𝑜𝑙,

∀𝑋 ∈ {𝐴, 𝐷} : 0.85 · 𝑋 .𝑣𝑜𝑙 < 𝐸.𝑣𝑜𝑙 < 1.15 · 𝑋 .𝑣𝑜𝑙 , 0.4 ·𝐶.𝑣𝑜𝑙 < 𝐹 .𝑣𝑜𝑙

Largest amount of partial matches.
Low amount of partial matches completed to full matches.

𝑄𝐵
2 SEQ (𝐴, 𝐵,𝐶, 𝐷, 𝐸)

WHERE ∀𝑋 ∈ {𝐴, 𝐵}: 0.85 · 𝑋 .𝑣𝑜𝑙 < 𝐷.𝑣𝑜𝑙 < 1.15 · 𝑋 .𝑣𝑜𝑙,

∀𝑋 ∈ {𝐵,𝐶} : 0.85 · 𝑋 .𝑣𝑜𝑙 < 𝐸.𝑣𝑜𝑙 < 1.15 · 𝑋 .𝑣𝑜𝑙

Very large amount of partial matches.
Low amount of partial matches completed to full matches.

𝑄𝐵
3 SEQ (𝐴, 𝐵,𝐶, 𝐷)

WHERE ∀𝑋 ∈ {𝐴, 𝐵,𝐶}: 0.85 · 𝑋 .𝑣𝑜𝑙 < 𝐷.𝑣𝑜𝑙 < 1.15 · 𝑋 .𝑣𝑜𝑙

Large amount of partial matches.
Low amount of partial matches completed to full matches.

Table 2: Query templates used for experiments with the synthetic datasets.

matches was evaluated using F1 (Section 4.3) for the negation pat-
terns, where false positives are possible as explained in Section 4.4,
and recall for the rest of the patterns.

5.2 Experimental Results
There are several factors that affect the performance of DLACEP.
As explained in Section 3.2, the amount of full and partial matches
has a significant impact on a filter-based ACEP solution. In addition,
the amount of training data, the amount of training epochs, and
the network architecture have a notable impact on a DL-based
ACEP solution. Pattern complexity and pattern operators can also
have an impact on the neural network’s performance and the CEP
running time. Overall, we tested 45 different pattern instantiations
demonstrating widely different performance-affecting parameters.

Our experiments exposed the pattern size and the window length
(𝑊) as the most important parameters affecting our system’s per-
formance. As explained in previous sections, the effect of these
parameters on the scalability of ECEP mechanisms is paramount,
while having a considerably lower impact on the processing time
of neural networks.

Unless stated otherwise, in all experiments, we attained very
high recall/F1 scores (0.95 and above), where the window-network
system achieved slightly better recall than the event network sys-
tem. For each experiment, the exact pattern and parameters used, as
well as the raw results (exact training times, exact matches missed,
etc.) are provided in the supplementary material.

Impact of the amount of partial matches. In this set of ex-
periments, we tested both the event-network and the window-
network system on 3 patterns, displaying different amounts of
partial matches. The results are displayed in Figure 8(𝑎). As ex-
plained in Section 3.2, the amount of partial matches can signify
the potential throughput gain of an ACEP system over ECEP. The
pattern 𝑄𝐴

1(𝑘=7,...) demonstrates a low number of partial matches
in the data. This led to a fast ECEP evaluation process, resulting
in only small gains in system throughput values. The pattern 𝑄𝐴

2
demonstrates a high number of partial matches, where almost all of
them are completed to full matches. This led to ECEP and our sys-
tem’s CEP mechanism having almost similar processing times. The
additional filtering overhead resulted in our system having worse
throughput than ECEP. The pattern 𝑄𝐴

3 displays large amounts of
partial matches within the data with only a small fraction extended

9

SIGMOD ’22, June 12–17, 2022, Philadelphia, USA Amir, et al.

(a) Different amount of partial
matches

(b) Different ratio of partial to full
matches

(c) Different amount of full matches

Figure 8: Impact of the amount of partial and full matches on the throughput gain over ECEP (higher is better), on 8 patterns
displaying varying amounts of full and partial matches. A large amount of partial matches and a low fraction of partial
matches that are extended to full matches greatly increases our system’s potential for throughput gain.

(a) KC(non-nested) (b) KC(nested) (c) NEG(non-nested) (d) NEG(nested)

(e) DISJ(2 SEQ) (f) DISJ(SEQ LEN 4) (g) Separate vs. DISJ

Figure 9: Impact of the pattern operator on the throughput gain over ECEP (higher is better), on 17 patterns displaying varying
operators, lengths, and nesting. DLACEP can efficiently handle patterns including all popular pattern operators.

to full matches. This led to both the window-network system and
the event-network system achieving significant throughput gains
over ECEP due to the large number of filtered events.

To further test the scalability of our event network system with
regard to partial matches, we generated a pattern with massive
amounts of partial matches where relatively few are completed to
full match. The pattern is 𝑄𝐴

1(𝑘=100,...) . The event-network system
achieved a throughput gain of 294. This empirically demonstrates
the exceptional benefit of employing our system in the scenario
where there are vast quantities of partial matches.

In patterns demonstrating partial match scarcity (𝑄𝐴
1(𝑘=7,..) , 𝑄

𝐴
2)

the window-network system outpaced the event-network system
due to its reduced processing times. In the case of 𝑄𝐴

1(𝑘=7,...) , the
event network reached a recall of 0.856. The reason for this is
explained in the next set of experiments.

Impact of the amount of full matches. In the next set of
experiments, we tested both the event-network system andwindow-
network system on 6 patterns displaying different amounts of full
matches. The results are shown in Figure 8(𝑏), 8(𝑐). As explained
in Section 3.2, the amount of full matches influences the filtering
ratio value and therefore impacts an ACEP solution’s throughput
gain. In addition, a low amount of full matches in the data can lead
to reduced match recall. This is because a deficiency of matches
impairs the networks ability to properly learn the pattern concept.

The latter issue is illustrated by the previously examined patterns
𝑄𝐴
1(𝑘=7,...) and𝑄

𝐴
1(𝑘=100,...) , similar in their complexity. Many more full

matches were observed for the latter pattern than for the former,
leading to a sizable recall gap of 0.143 when evaluating the former
pattern.

𝑄𝐴
3(..,𝛼=0.75,..)

, 𝑄𝐴
3(..,𝛼=0.81,..)

, and𝑄𝐴
4 demonstrated varying amounts

of full matches and partial matches in the data. Overall, 𝑄𝐴
4 dis-

played the largest event network system throughput gain because
it had the smallest fraction of partial matches completed to full
matches. This increased the filtering ratio, elevating the overall
throughput gain over ECEP. To better demonstrate the unique ef-
fect of the amount of full matches, we tested a number of different
patterns generated from the pattern 𝑄𝐴

1 . All the template varia-
tions displayed the same amount of partial matches in the data,
but a different amount of full matches. 𝑄𝐴

1(..,𝛼=0.24,..)
demonstrated

the highest amount and 𝑄𝐴
1(..,𝛼=0.76,..)

the lowest. Consequentially,

𝑄𝐴
1(..,𝛼=0.76,..)

displayed the best throughput gain by a large margin.
This is because, given a similar number of partial matches, the
filtering ratio increases as the number of full matches decreases,
alleviating the ACEP computational complexity. We note that the
event-network system outpaced the window-network system in
all the patterns examined because it filtered out considerably more
events.

10

DLACEP: A Deep-Learning Based Framework for Approximate Complex Event Processing SIGMOD ’22, June 12–17, 2022, Philadelphia, USA

Figure 10: Distribution of the volume attribute variance
value in the matches of the pattern𝑄𝐴

10(𝑗=4) detected (D) and
undetected (U) by DLACEP.

Impact of the pattern operator. We tested the event-network
system on 16 patterns containing a variety of the CEP operators
listed in Section 2.1. The results are displayed in Figure 9. For dis-
junction, we evaluated patterns with 2 sequences of varying length
(𝑄𝐴

9), and patterns with identical sequence lengths but different
numbers of sequences (𝑄𝐴

10). For Kleene closure, we evaluated pat-
terns with different amounts of KC operators (𝑄𝐴

5), and nested
sequences (𝑄𝐴

6). For negation, we evaluated patterns with different
amounts of NEG operators (𝑄𝐴

7), and nested sequences (𝑄𝐴
8). All

examined patterns displayed large amounts of partial matches in
the data, with a small fraction of them completed to full matches.
For 𝑄𝐴

6 (𝑗 = 5), the recall attained was 0.877, due to the increased
pattern complexity. Increasing the number of nested sequences un-
der disjunction or their length, and increasing the length of nested
sequences under Kleene closure, increases the throughput gain due
to the increased amount of partial matches. However, increasing
the amount of negation or KC operators and the length of nested
sequences under negation decreases the throughput gain. In both
cases, this is due to an increase in the amount of full matches, which
lead to a reduced filtering ratio. The results show that DLACEP can
effectively handle all popular pattern operators.

Separate vs combined pattern evaluation.The disjunction
(DISJ) operator allows to combinemultiple patterns into a composite
pattern returning a union of all matches. In our next experiment,
we assessed the throughput gain and recall of a disjunction of
two simple patterns,𝑄𝐴

9(𝑗=4) and𝑄
𝐴
5(𝑗=1) , as opposed to evaluating

each of them separately. To simplify result interpretation, patterns
with highly varying throughput gain by DLACEP were chosen.
DLACEP achieved a throughput gain of 108.65 on the disjunction
pattern (Figure 9(𝑔)), which is higher than the average of the results
obtained on the individual patterns. The recall for the disjunction of
the two patterns was 0.997, a result identical to the higher of the two
patterns when evaluated separately. Overall, we can conclude that
in certain cases DLACEP can achieve better results when individual
patterns are jointly defined as a disjunction. Our future research
will provide an in-depth study of this phenomenon.

Qualitative analysis of matches. CEP engines are often uti-
lized in applications that do not tolerate missing certain matches.
Therefore, it is imperative to qualitatively analyze the matches
missed by DLACEP. In a case study performed on the pattern
𝑄𝐴
10(𝑗=4) , we partitioned the detected (595397 in total) and unde-

tected (5423 in total) matches separately according to the stock
volume attribute value. This attribute was chosen due to its direct

appearance in the pattern conditions. The results are displayed in
Figure 10. It can be observed that the volume of the missed matches
exhibits significant variance as compared to the detected ones. This
matches our expectations as smoother volume transitions between
events are easier for the network to categorize correctly. We intend
to repeat this experiment on a variety of patterns and to devise
a way that enables the network to better handle high variance
matches in our future work.

Impact of the amount of training data and epochs. As stated
in Section 4.3, for each new pattern, the DLACEP neural network
needs to retrain from scratch, which may be problematic in practi-
cal applications. In addition, accumulating training data can take a
considerable amount of time. Therefore, we examined the DLACEP
performance after training its inner neural network for different
amount of epochs and using different percentages of training data.
We evaluated our event network system on the previously examined
pattern 𝑄𝐴

9(𝑗=5,..) . In these experiments, we evaluated the system’s
percentage of false negatives (FN%), which indicates the percentage
of missed matches out of the entire set of matches. The results are
displayed in Figure 11. We chose the pattern 𝑄𝐴

9(𝑗=5,..) because the
neural network required a significant amount of training epochs
(58) to reach convergence. In the data percentage experiments, the
network was trained for 30 epochs, and the data was chosen ran-
domly each time from the entire training set. For the epoch number
experiments, the entire training set was used. The results show
that DLACEP can efficiently produce accurate results with small
amounts of training epochs and data; the FN% ratio remains low and
the throughput gain remains high. The throughput gain decreases
and stabilizes with increasing amounts of data and training epochs.
This is due to class imbalance in favor of 0 labeled events in the
data, which leads to overfiltering events at low amounts of data and
epochs. The FN% stabilizes quickly, which indicates that DLACEP
can achieve results similar to those achieved at full convergence,
even after significantly reducing the amount of data and training
epochs.

Comparison to ECEP optimizations. We compared DLACEP
employing the event network to two ECEP optimization baselines
that were developed to reduce ECEP processing times: ZSTREAM[54]
and lazy evaluation [41]. These optimizations act on top of an ECEP
mechanism to improve its processing time in a wide array of cases
and have reached SOTA results. ZStream presents a dynamic pro-
gramming algorithm for tree-based plan generation, utilizing a cost
model based on CPU access. Lazy evaluation is a principle used to
process events in an order different from their arrival order, usually
by their frequency order, from highest to lowest. This often results
in having to store fewer partial matches during evaluation.

We compared DLACEP with the optimization baselines on pat-
terns containing varied pattern operators. The results are displayed
in Figure 12. DLACEP achieved recall scores of 0.94279, 0.94523 and
0.81424 on the patterns 𝑄𝐴

11(𝐶𝑂𝑁 𝐽 ,..) , 𝑄
𝐴
12, and 𝑄

𝐴
11(𝑆𝐸𝑄,..) , respec-

tively. The results show that DLACEP far outpaces SOTA ECEP
optimizations, with only a slight loss of matches. As evident in the
graphs, the optimization methods alleviate computation time and
lessen the number of partial matches, but only mildly in comparison
to DLACEP. Our system leads to far fewer partial matches during
evaluation while incurring only a small computation overhead.

11

SIGMOD ’22, June 12–17, 2022, Philadelphia, USA Amir, et al.

(a) Epochs to TP (b) Epochs to FN% (c) Data% to TP (d) Data% to FN%

Figure 11: Impact of data% and training epochs on the throughput gain over ECEP (higher is better) and FN% (lower is better),
by evaluating the pattern 𝑄𝐴

9 (𝑗=5, ..). DLACEP can efficiently handle reduced amounts of data and training epochs.

(a)𝑄𝐴
11(𝑆𝐸𝑄,..)

Sequence (b)𝑄𝐴
11(𝐶𝑂𝑁 𝐽 ,..)

Conjunction (c)𝑄𝐴
12 Disjunction

Figure 12: Comparing throughput gain over ECEP (higher is better) of ACEPwith ECEP optimization algorithms, by evaluating
3 patterns. DLACEP far outpaces ECEP optimization algorithms.

Impact of the window and pattern size. We tested the event
network system on 3 pattern templates displaying different pattern
lengths of 4, 5, 6. We tested these patterns with different values of
𝑊 , ranging from 100 to 350 in gaps of 50. The results are displayed
in Figure 13(𝑎), 13(𝑏). For each pattern length and value of𝑊 , we
generated a new synthetic dataset, where event numerical attributes
were generated from the standard normal distribution. This is to
ensure a fair comparison between each pair of (𝑊 , pattern length).
Each pattern demonstrated significant amounts of partial matches
in the data, with only a few forming full matches.

We observed considerable throughput gain for all the patterns
examined and all values of𝑊 . In the case of pattern length 6 and
window size 350, our system achieved a gain of 3 orders of magni-
tude compared to ECEP. The results showcase the vast impact of
both window size and pattern length on our system’s throughput
and clearly demonstrate CEP scalability issues and the ability of
DLACEP to cope with these. We expect our system to have an ex-
tended advantage with even bigger values of𝑊 and pattern length.
However, as expected, the increased pattern complexity leads to a
recall gap between the different patterns and values of𝑊 .

Impact of the amount of network layers. To address possible
recall deterioration when evaluating overly complex patterns, we
assessed the impact of the number of stacked BiLSTM layers in our
system’s network. We compared networks with 3, 4, and 5 layers
activated on the pattern𝑄𝐵

1 with𝑊 = 350. The results are displayed
in Figure 13(𝑐), (𝑑). The throughput gain deteriorates as the number
of layers increases due to the additional processing time imposed by
deeper DL models. However, the recall grows with the number of
layers due to higher network capacity. These experiments validate
that even when the pattern complexity increases, our network is
flexible enough to cope with them, given architecture or parameter
tuning. However, this can impact throughput gain.

Time-basedwindowevaluation. Unlike count-basedwindows,
time-based windows can contain different amounts of events. As

training an LSTM network requires sequences of fixed size, patterns
utilizing time-based windows could negatively affect the perfor-
mance of DLACEP.

To assess the extent of this issue, we simulated time-based win-
dows by partitioning the stocks dataset into windows of randomly
chosen sizes of up to 𝑀𝑊 events. During the training phase, all
windows were padded to the maximal size by adding blank events.
The pattern 𝑄5𝐴𝑗=2 was chosen for this experiment due to the high
sensitivity of Kleene closure patterns to window size fluctuations.

The results are displayed in Figure 14. For comparison, the
throughput gain achieved for the same pattern on a count-based
window of size 300 can be found in Figure 9(a). While DLACEP
throughput in the time-based scenario was about a half of the one
measued in the count-based case, it still led to an improvement by
the factor of 50. For 𝑀𝑊 values of 250 and 350 the improvement
was even greater, which could be explained either by the smaller
overhead of DLACEP due to a smaller time window (𝑀𝑊 = 250) or
by a larger number of total events as opposed to the number of rele-
vant (unfiltered) events (𝑀𝑊 = 350). The measured recall exceeded
0.95 in all tested cases. To summarize, the above results indicate
that DLACEP can provide significant performance improvements
also when applied on patterns with time-based window semantics.

Summary and conclusions. Our experiments show that DLA-
CEP provides a significant performance advantage as compared to
an ECEP solution in a variety of scenarios. Our system achieves
higher throughput gains for increasing window and pattern lengths,
exceeding those achieved by SOTA algorithms, with only a minor
loss of matches.

Event and window network comparison. In cases where
both systems were examined, the window-network demonstrated
a slightly higher quality of returned matches. However, its coarser
granularity often led to a lower filtering ratio, decreasing the overall
throughput. For patterns with few partial matches, such as in Figure
8(𝑎), the window-network system also achieved higher throughput

12

DLACEP: A Deep-Learning Based Framework for Approximate Complex Event Processing SIGMOD ’22, June 12–17, 2022, Philadelphia, USA

(a) TP to W (b) Recall to W (c) Tp gain to layers (d) Recall to layers

Figure 13: Impact of the pattern length, window size, and number of layers on the throughput gain over ECEP (higher is better)
and recall (higher is better). The DLACEP efficiency increases exponentially with pattern and window size. Recall achieved on
convoluted patterns increases with the number of network layers, at a cost of throughput deterioration.

Figure 14: Impact of the max window (MW) size on DLACEP
throughput gain over ECEP (higher is better) on the pattern
𝑄5𝐴𝑗=2 in simulated time-based window evaluation.

due to its reduced network complexity combined with a high CEP
throughput derived from partial match scarcity.

Network training. In cases where both systems were examined,
training the window-network was up to five times faster than the
event-network, due to the reduced network complexity and the
computationally simple loss function of the former. This establishes
the window-network system as more flexible and adaptable to
changing patterns, while the pretrained event-network system is
faster on newly seen data. Increased pattern complexity, number of
BiLSTM layers and the amount of training data all demand lengthier
training times when the network is trained to convergence. The
actual training times ranged from 9.5 hours to 12 days, with the
average training time being about 3 days.

6 RELATEDWORK
CEP systems and optimizations. CEP has become an increas-
ingly popular research field in recent years [15, 17, 21, 28, 81]. It orig-
inally derived from data management systems such as Stream [5].
Later, more expressive frameworks, such as CEDR [6], SASE/SASE+
[27, 87], and T-REX [16], allowed for richer pattern queries. The
most widespread CEP mechanisms are NFAs and trees [16, 18, 54].

A plethora of methods have been developed in an attempt to
optimize CEP throughput [3, 16, 19, 30, 37, 40, 41, 54, 61, 64, 87, 94].
Given a specific sequence pattern, ZStream [54] attempts to locate
an optimal tree structure for its evaluation, based on a CPU cost
model. Another proposed improvement is to evaluate primitive
events by rate of frequency instead of arrival order. This is done
by storing events in a separate buffer and evaluating less prevalent
events first [41]. These optimizations are orthogonal to our solution.
Our system can employ any CEP system, such as Flink [65].

ACEP research. Little effort has been invested thus far to re-
search approximate complex event processing (ACEP). In [48], cases
in which the complex pattern is ambiguous or the data stream
contains errors are researched, in addition to cases where partial
matches (PM) are shed to maintain moderate resource usage. In
contrast, we do not address ambiguous patterns and stream errors.
Instead, we incorporate a potentially imprecise evaluation mecha-
nism, namely a neural network, to improve the system performance.

Load shedding. Shedding either PMs or stream events is re-
ferred to as load shedding [29, 75, 76, 95]. Load shedding is intro-
duced when a CEP system needs to maintain some latency bound
under resource constraints during peak times, while minimizing
result degradation. Our system, however, is meant to be used as a
conceptual shift towards mitigating CEP scalability issues, and not
as an emergency solution used only at peak times.

Deep learning for pattern recognition. Deep learning demon-
strates remarkable results in pattern recognition tasks [23, 91].
Specifically, BILSTM-CRF is widely used for a variety of learning
tasks, such as sequence prediction, data extraction and identifica-
tion, sentence labeling, and classification, and has demonstrated
state-of-the-art results in many of these realms [10, 12, 24, 34, 44,
51, 58, 60, 66, 82]. Previous research [10, 50, 84] has shown that
stacking several BILSTM layers together to create a stacked BILSTM
improves the performance of certain classification tasks. This is
supported by various theoretical examinations demonstrating that
some mapping functions are represented more efficiently by deeper
DL models [8, 78].

Deep learning in CEP. Applying machine learning methodolo-
gies in the context of CEP is a relatively unexplored research field.
In [52, 53, 72], ML and DL techniques were employed to automate
the process of rule learning and to extract meaningful patterns from
data in an attempt to replace domain experts. In [89], a real-time
object detection DL model is used to process streams and extract
events that are combined into primitive events for further process-
ing by a CEP engine. In [14, 22, 85], predictive CEP systems are
introduced in an attempt to foresee when future complex events
transpire using ML methodologies. In contrast to all these, DLACEP
is the first to incorporate deep learning into the process of complex
pattern detection, augmenting the core part of a CEP engine.

7 CONCLUSION AND FUTUREWORK
In this paper, we discussed the problem of efficient approximate
pattern matching. A novel ACEP solution was presented in which

13

SIGMOD ’22, June 12–17, 2022, Philadelphia, USA Amir, et al.

a DL model marks relevant events in the stream and relays them
for CEP match extraction. We implemented two BILSTM-based
systems and experimentally demonstrated their effectiveness in
different scenarios. Our work signifies the first step towards inte-
grating deep learning methodologies to detect events constituting
complex pattern matches. Our future research efforts will focus on
the various directions outlined in Section 4.

ACKNOWLEDGMENTS
The research leading to these results was supported in part by the
Israel Science Foundation (grant No.191/18), by the Israel Ministry
of Science and Technology, and by the Technion Hiroshi Fujiwara
Cyber Security Research Center and the Israel National Cyber Di-
rectorate.

REFERENCES
[1] [n.d.]. http://www.eoddata.com/.
[2] 2021. Overview of the Event Processing Language (EPL). https://docs.oracle.

com/cd/E12839_01/apirefs.1111/e14304/overview.htm#EPLLR238
[3] Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil Immerman. 2008. Effi-

cient Pattern Matching over Event Streams. In Proceedings of the 2008 ACM SIG-
MOD International Conference on Management of Data (Vancouver, Canada) (SIG-
MOD ’08). Association for Computing Machinery, New York, NY, USA, 147–160.
https://doi.org/10.1145/1376616.1376634

[4] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. 2018. Learning and Gener-
alization in Overparameterized Neural Networks, Going Beyond Two Layers.
arXiv (Nov 2018). arXiv:1811.04918 https://arxiv.org/abs/1811.04918v6

[5] Arvind Arasu, Brian Babcock, Shivnath Babu, John Cieslewicz, Mayur Datar,
Keith Ito, Rajeev Motwani, Utkarsh Srivastava, and Jennifer Widom. 2016.
STREAM: The Stanford Data Stream Management System. In Data Stream
Management. Springer, Berlin, Germany, 317–336. https://doi.org/10.1007/978-
3-540-28608-0_16

[6] Roger S. Barga, Jonathan Goldstein, Mohamed Ali, and Mingsheng Hong. 2007.
Consistent Streaming Through Time: A Vision for Event Stream Processing. In
In CIDR. 363–374.

[7] Lars Baumgärtner, Christian Strack, Bastian Hoßbach, Marc Seidemann, Bernhard
Seeger, and Bernd Freisleben. 2015. Complex Event Processing for Reactive
Security Monitoring in Virtualized Computer Systems (DEBS ’15). Association
for Computing Machinery, New York, NY, USA, 22–33. https://doi.org/10.1145/
2675743.2771829

[8] Y. Bengio. 2009. Learning Deep Architectures for AI. Foundations and Trends in
Machine Learning 2, 1 (Jan 2009), 1–55. https://doi.org/10.1561/2200000006

[9] Marion Blount, Maria Ebling, J. Eklund, Andrew James, Carolyn Mcgregor,
Nathan Percival, Kathleen Smith, and Daby Sow. 2010. Real-Time Analysis
for Intensive Care: Development and Deployment of the Artemis Analytic Sys-
tem. IEEE engineering in medicine and biology magazine : the quarterly maga-
zine of the Engineering in Medicine & Biology Society 29, 2 (May 2010), 110–8.
https://doi.org/10.1109/MEMB.2010.936454

[10] Linqin Cai, Sitong Zhou, Xun Yan, and Rongdi Yuan. 2019. A Stacked BiLSTM
Neural Network Based on Coattention Mechanism for Question Answering.
Comput. Intell. Neurosci. 2019 (Aug 2019). https://doi.org/10.1155/2019/9543490

[11] Koral Chapnik, Ilya Kolchinsky, and Assaf Schuster. September 2022. DAR-
LING: Data-Aware Load Shedding in Complex Event Processing Systems. 48th
International Conference on Very Large Data Bases (PVLDB), Sydney, Australia.

[12] Tao Chen, Ruifeng Xu, Yulan He, and Xuan Wang. 2017. Improving Sentiment
Analysis via Sentence Type Classification Using BiLSTM-CRF and CNN. Expert
Syst. Appl. 72, C (April 2017), 221–230. https://doi.org/10.1016/j.eswa.2016.10.065

[13] François Chollet. 2015. keras. https://github.com/fchollet/keras.
[14] M. Christ, J. Krumeich, and A. W. Kempa-Liehr. 2016. Integrating Predictive Ana-

lytics into Complex Event Processing by Using Conditional Density Estimations.
In 2016 IEEE 20th International Enterprise Distributed Object Computing Workshop
(EDOCW). 1–8. https://doi.org/10.1109/EDOCW.2016.7584363

[15] Gianpaolo Cugola andAlessandroMargara. 2011. Processing flows of information:
from data stream to complex event processing. ACM COMPUTING SURVEYS
(2011).

[16] Gianpaolo Cugola and Alessandro Margara. 2012. Complex Event Processing
with T-REX. J. Syst. Softw. 85, 8 (Aug. 2012), 1709–1728. https://doi.org/10.1016/
j.jss.2012.03.056

[17] Miyuru Dayarathna and Srinath Perera. 2018. Recent Advancements in Event
Processing. ACM Comput. Surv. 51, 2, Article 33 (Feb. 2018), 36 pages. https:
//doi.org/10.1145/3170432

[18] Alan Demers, Johannes Gehrke, Mingsheng Hong, Mirek Riedewald, and Walker
White. 2006. Towards Expressive Publish/Subscribe Systems. In Advances in
Database Technology - EDBT 2006. Springer, Berlin, Germany, 627–644. https:
//doi.org/10.1007/11687238_38

[19] L. Ding, S. Chen, E. A. Rundensteiner, J. Tatemura, W. Hsiung, and K. S. Candan.
2008. Runtime Semantic Query Optimization for Event Stream Processing. In
2008 IEEE 24th International Conference on Data Engineering. 676–685. https:
//doi.org/10.1109/ICDE.2008.4497476

[20] Opher Etzion and Peter Niblett. 2010. Event Processing in Action (1st ed.). Manning
Publications Co., USA.

[21] Ioannis Flouris, Nikos Giatrakos, Antonios Deligiannakis, Minos Garofalakis,
Michael Kamp, and Michael Mock. 2017. Issues in complex event processing:
status and prospects in the Big Data era. Journal of Systems and Software 127
(May 2017), 217–236. https://doi.org/10.1016/j.jss.2016.06.011

[22] Lajos Jenő Fülöp, Árpád Beszédes, Gabriella Tóth, Hunor Demeter, László Vidács,
and Lóránt Farkas. 2012. Predictive Complex Event Processing: A Conceptual
Framework for Combining Complex Event Processing and Predictive Analytics.
In Proceedings of the Fifth Balkan Conference in Informatics (Novi Sad, Serbia)
(BCI ’12). Association for Computing Machinery, New York, NY, USA, 26–31.
https://doi.org/10.1145/2371316.2371323

[23] X. Gao, J. Zhang, and Z.Wei. 2018. Deep learning for sequence pattern recognition.
In 2018 IEEE 15th International Conference on Networking, Sensing and Control
(ICNSC). 1–6. https://doi.org/10.1109/ICNSC.2018.8361281

[24] Lejun Gong, Xingxing Zhang, Tianyin Chen, and Li Zhang. 2021. Recognition
of Disease Genetic Information from Unstructured Text Data Based on BiLSTM-
CRF for Molecular Mechanisms. Secur. Commun. Netw. 2021 (Feb 2021). https:
//doi.org/10.1155/2021/6635027

[25] Cyril Goutte and Eric Gaussier. 2005. A Probabilistic Interpretation of Precision,
Recall and F-Score, with Implication for Evaluation. In Advances in Information
Retrieval. Springer, Berlin, Germany, 345–359. https://doi.org/10.1007/978-3-
540-31865-1_25

[26] A. Graves, A. Mohamed, and G. Hinton. 2013. Speech recognition with deep
recurrent neural networks. In 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing. 6645–6649. https://doi.org/10.1109/ICASSP.2013.
6638947

[27] Daniel Gyllstrom, Eugene Wu, Hee-Jin Chae, Y. Diao, Patrick Stahlberg, and
Gordon Anderson. 2006. SASE: Complex Event Processing over Streams. ArXiv
abs/cs/0612128 (2006).

[28] S. Hallé and S. Varvaressos. 2014. A Formalization of Complex Event Stream
Processing. In 2014 IEEE 18th International Enterprise Distributed Object Computing
Conference. 2–11. https://doi.org/10.1109/EDOC.2014.12

[29] Yeye He, Siddharth Barman, and Jeffrey F. Naughton. 2013. On Load Shedding in
Complex Event Processing. arXiv:1312.4283 [cs.DB]

[30] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra Gedik, and Robert Grimm.
2014. A Catalog of Stream Processing Optimizations. ACM Comput. Surv. 46, 4,
Article 46 (March 2014), 34 pages. https://doi.org/10.1145/2528412

[31] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory. 9, 8
(Nov. 1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

[32] Steven C. H. Hoi, Doyen Sahoo, Jing Lu, and Peilin Zhao. 2021. Online Learning:
A Comprehensive Survey. Neurocomputing 459 (2021), 249–289.

[33] MD. Zakir Hossain, Ferdous Sohel, Mohd Fairuz Shiratuddin, and Hamid Laga.
2019. A Comprehensive Survey of Deep Learning for Image Captioning. ACM
Comput. Surv. 51, 6, Article 118 (Feb. 2019), 36 pages. https://doi.org/10.1145/
3295748

[34] Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirectional LSTM-CRF Models for
Sequence Tagging. arXiv:1508.01991 [cs.CL]

[35] Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy
Bengio. 2020. Fantastic Generalization Measures and Where to Find Them. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net. https://openreview.net/forum?id=
SJgIPJBFvH

[36] Ilya Kolchinsky. 2020. OpenCEP. https://github.com/ilya-kolchinsky/OpenCEP.
[37] Ilya Kolchinsky andAssaf Schuster. 2018. Efficient Adaptive Detection of Complex

Event Patterns. Proc. VLDB Endow. 11, 11 (July 2018), 1346–1359. https://doi.
org/10.14778/3236187.3236190

[38] I. Kolchinsky and A. Schuster. 2018. Join Query Optimization Techniques for
Complex Event Processing Applications. Proc. VLDB Endow. 11 (2018), 1332–1345.

[39] Ilya Kolchinsky and Assaf Schuster. 2018. Join Query Optimization Techniques
for Complex Event Processing Applications. 11, 11 (2018). https://doi.org/10.
14778/3236187.3236189

[40] Ilya Kolchinsky and Assaf Schuster. 2019. Real-TimeMulti-Pattern Detection over
Event Streams. In Proceedings of the 2019 International Conference on Management
of Data (Amsterdam, Netherlands) (SIGMOD ’19). Association for Computing Ma-
chinery, New York, NY, USA, 589–606. https://doi.org/10.1145/3299869.3319869

[41] Ilya Kolchinsky, Izchak Sharfman, and Assaf Schuster. 2015. Lazy Evalua-
tion Methods for Detecting Complex Events. In Proceedings of the 9th ACM
International Conference on Distributed Event-Based Systems (Oslo, Norway)

14

DLACEP: A Deep-Learning Based Framework for Approximate Complex Event Processing SIGMOD ’22, June 12–17, 2022, Philadelphia, USA

(DEBS ’15). Association for Computing Machinery, New York, NY, USA, 34–45.
https://doi.org/10.1145/2675743.2771832

[42] Eitan Kosman, Ilya Kolchinsky, and Assaf Schuster. April 2022. Mining Logi-
cal Arithmetic Expressions From Proper Representations. SIAM International
Conference on Data Mining (SDM), Alexandria, Virginia, USA.

[43] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. 2001. Con-
ditional Random Fields: Probabilistic Models for Segmenting and Labeling Se-
quence Data. In Proceedings of the Eighteenth International Conference on Machine
Learning (ICML ’01). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
282–289.

[44] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami,
and Chris Dyer. 2016. Neural Architectures for Named Entity Recognition. In
Proceedings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. Association for
Computational Linguistics, San Diego, California, 260–270. https://doi.org/10.
18653/v1/N16-1030

[45] Colin Lea, Rene Vidal, Austin Reiter, and Gregory D. Hager. 2016. Temporal
Convolutional Networks: A Unified Approach to Action Segmentation. arXiv
(Aug 2016). arXiv:1608.08242 https://arxiv.org/abs/1608.08242v1

[46] Jin Li, Kristin Tufte, Vladislav Shkapenyuk, Vassilis Papadimos, Theodore John-
son, and David Maier. 2008. Out-of-Order Processing: A New Architecture for
High-Performance Stream Systems. Proc. VLDB Endow. 1, 1 (Aug. 2008), 274–288.
https://doi.org/10.14778/1453856.1453890

[47] Qian Li, Hao Peng, Jianxin Li, Congying Xia, Renyu Yang, Lichao Sun, Philip
Yu, and Lifang He. 2020. A Text Classification Survey: From Shallow to Deep
Learning. ResearchGate (Aug 2020). https://www.researchgate.net/publication/
343414448_A_Text_Classification_Survey_From_Shallow_to_Deep_Learning

[48] Zheng Li and Tingjian Ge. 2016. History is a Mirror to the Future: Best-Effort
Approximate Complex Event Matching with Insufficient Resources. Proc. VLDB
Endow. 10, 4 (Nov. 2016), 397–408. https://doi.org/10.14778/3025111.3025121

[49] Mo Liu, Ming Li, Denis Golovnya, Elke A. Rundensteiner, and Kajal Claypool.
2009. Sequence Pattern Query Processing over Out-of-Order Event Streams. In
2009 IEEE 25th International Conference on Data Engineering. 784–795. https:
//doi.org/10.1109/ICDE.2009.95

[50] Zengjian Liu, Ming Yang, Xiaolong Wang, Qingcai Chen, Buzhou Tang, Zhe
Wang, and Hua Xu. 2017. Entity recognition from clinical texts via recurrent
neural network. BMC Med. Inf. Decis. Making 17, S2 (Jul 2017). https://doi.org/
10.1186/s12911-017-0468-7

[51] Xuezhe Ma and Eduard Hovy. 2016. End-to-end Sequence Labeling via Bi-
directional LSTM-CNNs-CRF. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers). Asso-
ciation for Computational Linguistics, Berlin, Germany, 1064–1074. https:
//doi.org/10.18653/v1/P16-1101

[52] AlessandroMargara, Gianpaolo Cugola, and Giordano Tamburrelli. 2013. Towards
automated rule learning for complex event processing. Technical Report.

[53] Nijat Mehdiyev, Julian Krumeich, David Enke, Dirk Werth, and Peter Loos. 2015.
Determination of Rule Patterns in Complex Event Processing Using Machine
Learning Techniques. Procedia Comput. Sci. 61 (Jan 2015), 395–401. https:
//doi.org/10.1016/j.procs.2015.09.168

[54] Yuan Mei and Samuel Madden. 2009. ZStream: A Cost-Based Query Processor
for Adaptively Detecting Composite Events. In Proceedings of the 2009 ACM
SIGMOD International Conference on Management of Data (Providence, Rhode
Island, USA) (SIGMOD ’09). Association for Computing Machinery, New York,
NY, USA, 193–206. https://doi.org/10.1145/1559845.1559867

[55] Shervin Minaee, Nal Kalchbrenner, Erik Cambria, Narjes Nikzad, Meysam
Chenaghlu, and Jianfeng Gao. 2021. Deep Learning Based Text Classification: A
Comprehensive Review. arXiv:2004.03705 [cs.CL]

[56] openspecs sql. 2020. [MS-CEPM]: Glossary. https://docs.microsoft.com/en-
us/openspecs/sql_server_protocols/ms-cepm/9b21b33f-af9f-41bb-9bf6-
2b29e4579edc

[57] A. Ozbayoglu, M. U. Gudelek, and Omer Berat Sezer. 2020. Deep Learning for
Financial Applications : A Survey. Appl. Soft Comput. 93 (2020), 106384.

[58] Rrubaa Panchendrarajan and Aravindh Amaresan. 2019. Bidirectional
LSTM-CRF for Named Entity Recognition. ResearchGate (May 2019).
https://www.researchgate.net/publication/333384813_Bidirectional_LSTM-
CRF_for_Named_Entity_Recognition

[59] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the Difficulty
of Training Recurrent Neural Networks. In Proceedings of the 30th International
Conference on International Conference on Machine Learning - Volume 28 (Atlanta,
GA, USA) (ICML’13). JMLR.org, III–1310–III–1318.

[60] Antreas Pogiatzis and Georgios Samakovitis. 2020. Using BiLSTM Networks for
Context-Aware Deep Sensitivity Labelling on Conversational Data. Appl. Sci. 10,
24 (Dec 2020), 8924. https://doi.org/10.3390/app10248924

[61] Olga Poppe, Chuan Lei, Salah Ahmed, and Elke A. Rundensteiner. 2017. Com-
plete Event Trend Detection in High-Rate Event Streams. In Proceedings of the
2017 ACM International Conference on Management of Data (Chicago, Illinois,
USA) (SIGMOD ’17). Association for Computing Machinery, New York, NY, USA,
109–124. https://doi.org/10.1145/3035918.3035947

[62] A. Qayyum, J. Qadir, M. Bilal, and A. Al-Fuqaha. 2021. Secure and Robust Machine
Learning for Healthcare: A Survey. IEEE Reviews in Biomedical Engineering 14
(2021), 156–180. https://doi.org/10.1109/RBME.2020.3013489

[63] Yanmin Qian, Tian Tan, and Dong Yu. 2016. Neural Network Based Multi-Factor
Aware Joint Training for Robust Speech Recognition. IEEE/ACM Transactions
on Audio, Speech, and Language Processing 24, 12 (2016), 2231–2240. https:
//doi.org/10.1109/TASLP.2016.2598308

[64] Ella Rabinovich, Opher Etzion, and Avigdor Gal. 2011. Pattern Rewriting Frame-
work for Event Processing Optimization. In Proceedings of the 5th ACM Interna-
tional Conference on Distributed Event-Based System (New York, New York, USA)
(DEBS ’11). Association for Computing Machinery, New York, NY, USA, 101–112.
https://doi.org/10.1145/2002259.2002277

[65] Tilmann Rabl, Jonas Traub, Asterios Katsifodimos, and Volker Markl. 2016.
Apache Flink in current research. it - Information Technology 58 (01 2016).
https://doi.org/10.1515/itit-2016-0005

[66] G. Ramena, D. Nagaraju, S. Moharana, D. Prasanna Mohanty, and N. Purre. 2020.
An Efficient Architecture for Predicting the Case of Characters using Sequence
Models. In 2020 IEEE 14th International Conference on Semantic Computing (ICSC).
174–177. https://doi.org/10.1109/ICSC.2020.00035

[67] Nils Reimers and Iryna Gurevych. 2017. Optimal Hyperparameters for Deep
LSTM-Networks for Sequence Labeling Tasks. ArXiv abs/1707.06799 (2017).

[68] Doyen Sahoo, Quang Pham, Jing Lu, and Steven C. H. Hoi. 2018. Online Deep
Learning: Learning Deep Neural Networks on the Fly. In IJCAI.

[69] Hasim Sak, Andrew W. Senior, and Françoise Beaufays. 2014. Long Short-Term
Memory Based Recurrent Neural Network Architectures for Large Vocabulary
Speech Recognition. CoRR abs/1402.1128 (2014). http://arxiv.org/abs/1402.1128

[70] Guy Shapira, Ilya Kolchinsky, and Assaf Schuster. 2022. Semi-supervised Frequent
Pattern Mining for CEP. (2022). Manuscript paper.

[71] Gal Sidi, Ilya Kolchinsky, and Assaf Schuster. 2022. DELETE: Using deep learning
to minimize latency in CEP systems. (2022). Manuscript paper.

[72] Mehmet Ulvi Simsek, Feyza Yildirim Okay, and Suat Ozdemir. 2021. A deep
learning-based CEP rule extraction framework for IoT data. J. Supercomput. (Jan
2021), 1–30. https://doi.org/10.1007/s11227-020-03603-5

[73] Hadar Sivan, Mickey(Moshe) Gabel, and Assaf Schuster. 2020. Incremental
Sensitivity Analysis for Kernelized Models. ECML-PKDD.

[74] Hadar Sivan, Mickey(Moshe) Gabel, and Assaf Schuster. 2022. AutoMon: Auto-
matic Distributed Monitoring for Arbitrary Multivariate Functions. SIGMOD,
Philadelphia, PA, USA.

[75] Ahmad Slo, Sukanya Bhowmik, Albert Flaig, and K. Rothermel. 2019. pSPICE:
Partial Match Shedding for Complex Event Processing. 2019 IEEE International
Conference on Big Data (Big Data) (2019), 372–382.

[76] A. Slo, S. Bhowmik, and K. Rothermel. 2020. State-Aware Load Shedding from
Input Event Streams in Complex Event Processing. IEEE Transactions on Big Data
(2020), 1–1. https://doi.org/10.1109/TBDATA.2020.3047438

[77] Utkarsh Srivastava and Jennifer Widom. 2004. Flexible Time Management in
Data Stream Systems. In Proceedings of the Twenty-Third ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems (Paris, France) (PODS ’04).
Association for Computing Machinery, New York, NY, USA, 263–274. https:
//doi.org/10.1145/1055558.1055596

[78] Ruoyu Sun. 2019. Optimization for deep learning: theory and algorithms. ArXiv
abs/1912.08957 (2019).

[79] Charles Sutton and Andrew McCallum. 2012. An Introduction to Conditional
Random Fields. Found. Trends Mach. Learn. 4, 4 (April 2012), 267–373. https:
//doi.org/10.1561/2200000013

[80] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chun-
fang Liu. 2018. A Survey on Deep Transfer Learning. ArXiv abs/1808.01974
(2018).

[81] K. Tawsif, J. Hossen, J. E. Raja, M. Z. H. Jesmeen, and E. M. H. Arif. 2018. A Review
on Complex Event Processing Systems for Big Data. In 2018 Fourth International
Conference on Information Retrieval and Knowledge Management (CAMP). 1–6.
https://doi.org/10.1109/INFRKM.2018.8464787

[82] Elena Tutubalina and Sergey Nikolenko. 2017. Combination of Deep Recurrent
Neural Networks and Conditional Random Fields for Extracting Adverse Drug
Reactions from User Reviews. J. Healthcare Eng. 2017 (Sep 2017). https://doi.
org/10.1155/2017/9451342

[83] Guy Uziel. 2019. Deep Online Learning with Stochastic Constraints. CoRR
abs/1905.10817 (2019). arXiv:1905.10817 http://arxiv.org/abs/1905.10817

[84] Cheng Wang, Haojin Yang, and Christoph Meinel. 2018. Image Captioning with
Deep Bidirectional LSTMs and Multi-Task Learning. ACM Trans. Multimedia
Comput. Commun. Appl. 14, 2s, Article 40 (April 2018), 20 pages. https://doi.org/
10.1145/3115432

[85] Yongheng Wang, Hui Gao, and Guidan Chen. 2018. Predictive complex event
processing based on evolving Bayesian networks. Pattern Recognit. Lett. 105 (Apr
2018), 207–216. https://doi.org/10.1016/j.patrec.2017.05.008

[86] K. R. Weiss, T. Khoshgoftaar, and Dingding Wang. 2016. A survey of transfer
learning. Journal of Big Data 3 (2016), 1–40.

15

SIGMOD ’22, June 12–17, 2022, Philadelphia, USA Amir, et al.

[87] Eugene Wu, Yanlei Diao, and Shariq Rizvi. 2006. High-Performance Complex
Event Processing over Streams. In Proceedings of the 2006 ACM SIGMOD In-
ternational Conference on Management of Data (Chicago, IL, USA) (SIGMOD
’06). Association for Computing Machinery, New York, NY, USA, 407–418.
https://doi.org/10.1145/1142473.1142520

[88] Yinjun Wu, E. Dobriban, and Susan B. Davidson. 2020. DeltaGrad: Rapid retrain-
ing of machine learning models. In ICML.

[89] T. Xing, M. Roig Vilamala, L. Garcia, F. Cerutti, L. Kaplan, A. Preece, and M.
Srivastava. 2019. DeepCEP: Deep Complex Event Processing Using Distributed
Multimodal Information. In 2019 IEEE International Conference on Smart Comput-
ing (SMARTCOMP). 87–92. https://doi.org/10.1109/SMARTCOMP.2019.00034

[90] Maor Yankovitch, Ilya Kolchinsky, and Assaf Schuster. 2022. HYPERSONIC: A Hy-
brid Parallelization Approach for Scalable Complex Event Processing. SIGMOD
2022, Philadelphia, PA, USA.

[91] Kyongsik Yun, Alexander Huyen, and Thomas Lu. 2018. Deep Neural Networks
for Pattern Recognition. arXiv:1809.09645 [cs.CV]

[92] Zarita Zainuddin and Ong. 2008. Function approximation using ar-
tificial neural networks. WSEAS Transactions on Mathematics 7, 6
(Jun 2008). https://www.researchgate.net/publication/228840414_Function_
approximation_using_artificial_neural_networks

[93] Haopeng Zhang, Yanlei Diao, and Neil Immerman. 2014. On Complexity and
Optimization of Expensive Queries in Complex Event Processing. In Proceed-
ings of the 2014 ACM SIGMOD International Conference on Management of Data
(Snowbird, Utah, USA) (SIGMOD ’14). Association for Computing Machinery,
New York, NY, USA, 217–228. https://doi.org/10.1145/2588555.2593671

[94] Haopeng Zhang, Yanlei Diao, and Neil Immerman. 2014. On Complexity and
Optimization of Expensive Queries in Complex Event Processing. In Proceed-
ings of the 2014 ACM SIGMOD International Conference on Management of Data
(Snowbird, Utah, USA) (SIGMOD ’14). Association for Computing Machinery,
New York, NY, USA, 217–228. https://doi.org/10.1145/2588555.2593671

[95] B. Zhao. 2018. Complex Event Processing under Constrained Resources by State-
Based Load Shedding. 2018 IEEE 34th International Conference on Data Engineering
(ICDE) (2018), 1699–1703.

[96] Qunzhi Zhou, Yogesh Simmhan, and Viktor Prasanna. 2012. Incorporating Se-
mantic Knowledge into Dynamic Data Processing for Smart Power Grids. In
Proceedings of the 11th International Conference on The Semantic Web - Volume
Part II (Boston, MA) (ISWC’12). Springer-Verlag, Berlin, Heidelberg, 257–273.
https://doi.org/10.1007/978-3-642-35173-0_17

16

