US 20220091909A1

a2y Patent Application Publication o) Pub. No.: US 2022/0091909 A1

a9y United States

KOLCHINSKY et al.

43) Pub. Date: Mar. 24, 2022

(54) REAL-TIME MULTI-PATTERN DETECTION

OVER EVENT STREAMS
(71) Applicant: TECHNION RESEARCH &
DEVELOPMENT FOUNDATION
LIMITED, Haifa (IL)
(72) Inventors: Ilya KOLCHINSKY, Ashdod (IL);
Assaf SCHUSTER, Haifa (IL)
2]

Appl. No.: 17/420,834

(22) PCT Filed: Jan. 7, 2020

PCT No.:

§ 371 (e)(D),
(2) Date:

(86) PCT/IL2020/050018

Jul. 6, 2021

Related U.S. Application Data

Provisional application No. 62/789,017, filed on Jan.
7, 2019.

(60)

Pattern

Statistics
Specifications

Publication Classification

(51) Int. CL
GOGF 9/54 (2006.01)
GOGF 9/445 (2006.01)
(52) US.CL
CPC ... GOGF 9/542 (2013.01); GOGF 9/44536
(2013.01)
(57) ABSTRACT

A system comprising: at least one hardware processor; and
a non-transitory computer-readable storage medium having
stored thereon program instructions, the program instruc-
tions executable by the at least one hardware processor to:
receive a data stream representing events; receive a plurality
of complex event patterns (CEPs) comprising (a) a set of
conditions reflecting relations among said events, and (b) a
set of attributes associated with each of said events; and
calculate an optimal multi-pattern evaluation plan corre-
sponding to said CEPs by: (i) generating an initial evaluation
plan, (ii) applying a search method to calculate modified
versions of said initial evaluation plan, (iii) assigning a score
to each of said modified versions based on a cost function,
and (iv) selecting one of said modified versions having a
highest said score as said optimal multi-pattern evaluation
plan.

Input Stream(s)

Optimizer

H

{ocal Plan Generation
Algorithm //

Employed

Cost
Function

Evaluation P!an _

~
Evaluation
Mechanism
Global echans
Evaluation
Plan
A

Detected Pattern
Matches

US 2022/0091909 A1

Mar. 24, 2022 Sheet 1 of 21

Patent Application Publication

d1l ‘DIA

P Q&Smﬁ &m& AN ALDIBIY W04 / SN PN

”w A w £hy (Nmu M,A { oy 3
m/,Mx J ¥R \ pA gove; _ J Hidaooe \ w Y,

Y m.mommm 'y aJoub 'y 240155

V1 DId

e S,

7R T L RN
m.x 4 = (&Y \@ - . b \.,V

N/ D 3deooe N\ | ,

.,.
~,)!..Z.

o

sensd
R

¢ 1danoe N v ydanoe _

™

g’y alouby g aJouby

US 2022/0091909 A1

Mar. 24, 2022 Sheet 2 of 21

Patent Application Publication

d¢ DId

US 2022/0091909 A1

Mar. 24, 2022 Sheet 3 of 21

(a0 el o je——{ »

..f/;ﬂfﬁu 4 m w/x.:i\ / U /«f{z.ﬁ\ ’

Patent Application Publication
RN
\
)
4
™,

4

rd e

e

/

3
7

.

7b

|) m w/»?i&\\m (

N T

/ \ e , ™,

{ w&z&;ﬁ?A Sy)

s

m //(/,&.{,.(.\.\, a\ q ./..f.v(.: 5.\\\\
T p T

w..«\ /f \.., /.fn

Patent Application Publication = Mar. 24, 2022 Sheet 4 of 21 US 2022/0091909 A1

ey N
=) e)
£ ,:" W ¢
0O LL. |
AT et
))f \1‘5 ")/) \S
(¢) (&)
A 5, /
\'». M/,m %, A

s
FIG. 3C
FIG. 3D

v "DIA

saymen
ulaned paiaisg

US 2022/0091909 A1

1287
= ..cmE uonenjeay
s m paAojduwiy
w, X
~ ; ueid wyiLos)y 4 H uonoung
S /| uonenjens mcozﬁmcmw uejd(eoor || 150D w
3 WISIUEYISN 129015
= uofenjeay spTIundo
=

N PN .

[48)7

suoesiypads
{s)weans nduj sonshels usened

Patent Application Publication

Patent Application Publication Mar. 24, 2022 Sheet 6 of 21

<O
& &
/O::::.:::\ e ﬁ . ﬁ
7 ey "’\xz 7 i \5’:: e \\g
b jreed] T
\-.,\\ ',(..' Y ";’ Q (\ G’ J5 i
\«‘:m;r:«’/ a5 BN A <L e
= =EAVE
-
N 0 1 AE y
7 -y - NG O
iy g F e S
N .,/) ¢ kY :‘; % /
S N
o)
4
I, e ﬁ
’;// r\:\“é £ i \E &
(& el g] &
N A=A A S
Nreverel © \ ‘ // . ‘”,M%\\
i :"{ 3 “..* nf -y
- RYAS A S -
f{/ M\‘&\\i ('// ﬂ\ig L‘}\\“ "/ m *\wi_.»//
T A -
Nt <L \-m_,,,/"f
/;41535'1:\5‘
i AN Ll
Cud & &
Nal A=Y S
= \ ,f'. *«.}‘i e *«-.\\ re e,
(& S & e g
(\ I
Ry S e 2 A SN

US 2022/0091909 A1

FI1G. 5C

FIG. 5B

FIG. 5A

Patent Application Publication = Mar. 24, 2022 Sheet 7 of 21 US 2022/0091909 A1

AR
p7a0 SN o .
{‘/,.. N < Y / (“‘\ ' / M\ \
tﬁ\ L. /}J‘ 4& FR ‘:\ bg L { - ﬁ!
'\c.:;r://y LIs oL =L \\M A '

FI1G. 6C

//,::;:::;‘ m
Nl AN~ @ << @ =
Lt \ TN / T
{0 H
Y
R ‘--'/
."'// o~ \:}': L)

D
FIG. 6A

’\J/ - ; .

} | ™4 Y ; 3

R A e U= e B
SN K o 8 T / 5§, /

:// /«fx-“{'}(\ { } e ’\‘~*’/ q . e

{ -t \i;\ -

i ;

\‘%\ ﬂ,;:‘?"/

US 2022/0091909 A1

Mar. 24, 2022 Sheet 8 of 21

Patent Application Publication

(V'a)dIS
ﬁmuwmwwwm

L 'DOld

°d

Patent Application Publication = Mar. 24, 2022 Sheet 9 of 21 US 2022/0091909 A1

/
/
N
nve &
L2 i} J® :
o / (_2
/'}\‘s P
g \\
<L
O

o
B
FIG. 8B

<
At
/
L, / <
v o
i\g\"\ § /Jf\\ N T @ @
ot N N -
(< 4
AN
Y

US 2022/0091909 A1

Mar. 24, 2022 Sheet 10 of 21

Patent Application Publication

6 DId

e Ry 7
s >
P ; / m\ ; M
Y U Jw\ \m" A Hw w 7

Patent Application Publication Mar. 24, 2022 Sheet 11 of 21 US 2022/0091909 A1

GG

4

o
Lo

£
¥

20

150
Workload Size

FIG. 10B

gty

ERTEXS
DGE-PREFIX

i~
to

- VERTEX4

ko EDGE

o e /]
%

o L el oed] L el
e feag o3 s (e o3

LORMOR siseg 48A0 wien ndyBinauyy

Y ! ' A

ooy

[t
&
%‘ﬂ
B <ﬂ
B o
[AV]
& oo
3&; .
g8 O
o poaned
.......................... ’55” LI.(
>
&
_—
mRe
o 2
axE g &
€3l i 0 =
i o>l
éi% : ‘
3 . R - 5. ” S .‘\2
) o) o3 o o o o5 o
o] P fend W <5 D28} e

LOROS ISR JBA0 WIBD ;ﬂd%ﬁnmq i

Patent Application Publication Mar. 24, 2022 Sheet 12 of 21 US 2022/0091909 A1

.
43

£

“
N

2083

Workload Size
FIG. 10D

150

s EDEEPREFIK

oo ELGE

.t

[Ty < W o 2wy S > N ;{EE‘;... & ¥
i E2 F

fxod fand Z\g ke - -

UOINOE D18Eg JOAQ) iR ndyBnoayy

4
H

,.‘
%,

o

P
o

256

204}

Workload Size

FIG. 10C

o EDGE-PREFIX

o
@ ©
o
U e)
EER I A4 pd
& ow
M2 T
¢ »; 3
Ty o o 3) 3 e) el
] e g 5%] o EAY 3 T

LORMOE ISy Jeayy e indubnoay g

Patent Application Publication

umumﬂnm—m«;{:

Y
>

-
5

3
g8
£ g
A
<
i

Q
i
Y
o
‘"‘:
&3 o
ko
&
!

g
it
iy
%
g}v
"I’
b
~

s

i i,

45

g Wy] i bl @2 2
& 2 & &~ & ~ =~

UORNOR :)gs:ég BACy e ndybnoayy

R
ey

3
e

gooo
ug&‘i&
o Q’.?
P b IE(
A
& o« i
O} b 5 fe

; H i N H

L
&

ey @ o
& o~ %

OO oseg sea0) uied mdybnoayy

£
i

P
-

b e

3,
o

©§

wx

o
i
@
i

e
&

&

o
by

i
o
o
e

4

L2
L2
R
%
&

i
Q@

ek

¥

i

Average Paliem Length

Mar. 24, 2022 Sheet 13 of 21

US 2022/0091909 A1

FIG. 11B

FIG. 11A

Patent Application Publication = Mar. 24, 2022 Sheet 14 of 21

£

W o0

e e o2 o2
g oy < o

LOINIOS QISBE JOAQ) WIBD

Al e

wdunoay

BA-STOCKS
THR-BTOCKS
=~ SA-TRAFFIC
TSIRAFFIC

¢

3 3 u e
% 0% o o

UONOS DISBE JEAD LIRS

W o

wdybnoayy

00

i3>

e (svents)

"
L

Window

Time Window {min)

US 2022/0091909 A1

FI1G. 11D

FIG. 11C

Patent Application Publication = Mar. 24, 2022 Sheet 15 of 21 US 2022/0091909 A1

&
prowey
o]
foog
&
ot
S m
L
&
; i o3
: 3% —
48 .
P
s & 9
& L
g
<,
e e e e
2% <8 ¥ o0 Tuf A
LIOINHOL D198y sagy wiesy ndybnouy s
£ 25 i
&
N
£5]
5 S
&
{3 ewel
& N
2 8
= L
o
s
Wy
s %
> {%} .
i o +

K3 $roe 3 53 =5 5

UCHIOR DISBE JBAQ Ulesy 1ndybnosy]

US 2022/0091909 A1

Mar. 24, 2022 Sheet 16 of 21

Patent Application Publication

dact DOId ¢l DIA

{(JPIDAD] BZIS MODUHAA {LHLU} AMODUIAA B
3008 533074 HOGE {051 GO0 58 Gé i i &

Qg “,;,néx;énng i

MG e
LLHAHS %P | oe
FDAZNE

uag:{agag QIBBE JBAL) UIRE zédqﬁm;q 1

| LOWHS e
| 30038

US 2022/0091909 A1

Mar. 24, 2022 Sheet 17 of 21

4¢1 DId H¢1 DId

bus wieye 4 abvisay BZIG PROPLIOAA
2 9 g ¥ 008 v o0 12) 0%

e

: s e s
mw.rvv ,iiliimzinigﬁg?wmw.‘ciz

L2
gy
an
bl

.. 0 S 7 19
IDAFVEH S o
JOHHS 3

Yt HE wofifen] | ng

LOWHE - FF
IGCIVE>

HORYOS DiIsey 3@!&(;} weey ndubnoay g
UORNIOR D188y 38&{} uieey indybnoay

Patent Application Publication

US 2022/0091909 A1

Mar. 24, 2022 Sheet 18 of 21

Patent Application Publication

H¢1 DId

{81189} 925 MOPUIAA

SU0E £058 G002

%L

DOGL

w e
ﬂwxvivroaoaea:. @

emkgveiﬁ.iat%s}vﬁ
e

y

H
¥
H
H
5

HEHS g

LLHAHE » o B ex i

FoAIVE

UORMOY 'J%seg Jafx;;} wien wnduBnosyy

1574 8

D?I DIA

{U) sMODLIAA SU

51

£

it

T
T oo

IDAFVE

LOWHS o gPes]

UONIOS siseg Jear e wdyBnosyy

Patent Application Publication Mar. 24, 2022 Sheet 19 of 21 US 2022/0091909 A1

ATIC
DYNAMICG

Input transfonmations per 1000 events

o0
o}
oy
Q
L,
fed Wi Lonc1 U”J Fonc] el fon
v g & e
UORNIoS 018RY ey wro mdubnoayy
®
o
- e
% E
E333
=
ey
Lo
{3
Gk
=
R
&
2 X
e v
o .
£ O
}3 P
= 2
fas
&8
=
o
)
3.
&
o] Fi 3 Lo Wy <E 2] \.’.}
< [o3 e pow

LORMOS DI8BG JBAG UIBE) JndyBno |

Patent Application Publication = Mar. 24, 2022 Sheet 20 of 21 US 2022/0091909 A1

<
Bd L
IR
L0
W =
& L =
i o~
“ .
$
@ 3
-
ke
& a8
L
g =
Wy yaanag
& O
?{f; preweel
2
<&
=
{'::I
%
™
P
e wy e ™ T
&3 o bt e

UORMDE I8eR RAG e Indybnoay

fulti-Pattermn Graph Density
FIG. 14A

1w
<

X
oy

el

3

P i ety i &
& &5 b

kS

LOBNIOS D1SBG 1BAD Uies JnduBnoay |

US 2022/0091909 A1

Mar. 24, 2022 Sheet 21 of 21

Patent Application Publication

BOUSIBLT 1M

b 50

g0 £4

i

davi DId

BALLY DEZIBULON [RUUDER

g4

o

G

0

LR S

IOATRL
3OUIYE

o
v

ua;grﬁ;ag HERG J8A0) uieey ndubnoay g

DT DI

SUILEHBLICT S1EY [BALNY DOFIBULON [BIEKERY

b 84 [SE £4

P10

£

R

FOUTSL e
INHAIVS

F o WO .

W

G

i

T
pats
ORISR tises Jead uwien indubnoauy

US 2022/0091909 Al

REAL-TIME MULTI-PATTERN DETECTION
OVER EVENT STREAMS

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of priority of
U.S. Provisional Patent Application No. 62/789,017, filed
Jan. 7, 2019, the contents of which are all incorporated
herein by reference in their entirety.

BACKGROUND

[0002] This invention relates to the field of computerized
complex event processing.

[0003] Rapid advances in data-driven applications over
recent years have intensified the need for efficient mecha-
nisms capable of monitoring and detecting arbitrarily com-
plex patterns in massive data streams. This task is usually
performed by complex event processing (CEP) systems.
CEP engines are required to process hundreds or even
thousands of user-defined patterns in parallel under tight
real-time constraints. To enhance the performance of this
crucial operation, multiple techniques have been developed,
utilizing well-known optimization approaches such as pat-
tern rewriting and sharing common subexpressions. How-
ever, the scalability of these methods is limited by the high
computation overhead, and the quality of the produced plans
is compromised by ignoring significant parts of the solution
space.

[0004] The foregoing examples of the related art and
limitations related therewith are intended to be illustrative
and not exclusive. Other limitations of the related art will
become apparent to those of skill in the art upon a reading
of the specification and a study of the figures.

SUMMARY

[0005] The following embodiments and aspects thereof
are described and illustrated in conjunction with systems,
tools and methods which are meant to be exemplary and
illustrative, not limiting in scope.

[0006] There is provide, in an embodiment, a system
comprising: at least one hardware processor; and a non-
transitory computer-readable storage medium having stored
thereon program instructions, the program instructions
executable by the at least one hardware processor to:
receive, as input, a data stream representing events; receive,
as input, a plurality of complex event patterns (CEPs), each
representing an occurrence of a respective CEP in said data
stream, wherein each of said CEPs comprises (a) a set of
conditions reflecting relations among said events, and (b) a
set of attributes associated with each of said events; and
calculate an optimal multi-pattern evaluation plan corre-
sponding to said plurality of CEPs, wherein said multi-
pattern evaluation plan is created by: (i) generating an initial
evaluation plan, (ii) applying a search method to calculate
modified versions of said initial evaluation plan, (iii) assign-
ing a score to each of said modified versions based on a cost
function, and (iv) selecting one of said modified versions
having a highest said score as said optimal multi-pattern
evaluation plan.

[0007] There is also provided, in an embodiment, a
method comprising: receiving, as input, a data stream rep-
resenting events; receiving, as input, a plurality of complex
event patterns (CEPs), each representing an occurrence of a

Mar. 24, 2022

respective CEP in said data stream, wherein each of said
CEPs comprises (a) a set of conditions reflecting relations
among said events, and (b) a set of attributes associated with
each of said events; and calculating an optimal multi-pattern
evaluation plan corresponding to said plurality of CEPs,
wherein said multi-pattern evaluation plan is created by: (i)
generating an initial evaluation plan, (ii) applying a search
method to calculate modified versions of said initial evalu-
ation plan, (iii) assigning a score to each of said modified
versions based on a cost function, and (iv) selecting one of
said modified versions having a highest said score as said
optimal multi-pattern evaluation plan.

[0008] There is further provided, in an embodiment, a
computer program product comprising a non-transitory
computer-readable storage medium having program instruc-
tions embodied therewith, the program instructions execut-
able by at least one hardware processor to: receive, as input,
a data stream representing events; receive, as input, a
plurality of complex event patterns (CEPs), each represent-
ing an occurrence of a respective CEP in said data stream,
wherein each of said CEPs comprises (a) a set of conditions
reflecting relations among said events, and (b) a set of
attributes associated with each of said events; and calculate
an optimal multi-pattern evaluation plan corresponding to
said plurality of CEPs, wherein said multi-pattern evaluation
plan is created by: (i) generating an initial evaluation plan,
(ii) applying a search method to calculate modified versions
of said initial evaluation plan, (iii) assigning a score to each
of said modified versions based on a cost function, and (iv)
selecting one of said modified versions having a highest said
score as said optimal multi-pattern evaluation plan.

[0009] In some embodiments, the search is based, at least
in part, on (i) reordering of said events in each of said CEPs
to maximize common sub-patterns among said CEPs; and
(ii) sharing of said common sub-patterns among all of said
CEPs.

[0010] In some embodiments, the cost function minimizes
a number of estimated intermediate results during an execu-
tion of said modified version.

[0011] In some embodiments, steps (ii) and (iii) are
repeated iteratively based on one of: a specified time limit,
and a specified number of iterations.

[0012] In some embodiments, the CEPs are based on user
definition.
[0013] Insomeembodiments, the program instructions are

further executable to execute, and the method further com-
prises executing, said multi-pattern evaluation plan on said
data stream, to generate output data.

[0014] In addition to the exemplary aspects and embodi-
ments described above, further aspects and embodiments
will become apparent by reference to the figures and by
study of the following detailed description.

BRIEF DESCRIPTION OF THE FIGURES

[0015] Exemplary embodiments are illustrated in refer-
enced figures Dimensions of components and features
shown in the figures are generally chosen for convenience
and clarity of presentation and are not necessarily shown to
scale. The figures are listed below.

[0016] FIGS. 1A-1B show evaluation mechanisms for a
sequence of events using NFA with and without reordering;
[0017] FIGS. 2A-2B show NFA sharing example for event
sequences;

US 2022/0091909 Al

[0018] FIGS. 3A-3D show NFA optimization example for
event sequences with no sharing or reordering, with reor-
dering and without sharing, and with sharing and without
reordering;

[0019] FIG. 4 is schematic structure of an exemplary
MCEP systems, in accordance with some embodiments of
the present invention;

[0020] FIGS. 5A-5C show multi-pattern trees for a work-
load consisting using different evaluation orders;

[0021] FIGS. 6A-6C show MPT modification examples
following the addition or removal of a local evaluation plan,
in accordance with some embodiments of the present inven-
tion;

[0022] FIG. 7 shows a multi-pattern graph for a workload
of 6 patterns, in accordance with some embodiments of the
present invention;

[0023] FIGS. 8A-8C show exemplary tree-based plans for
a pattern, in accordance with some embodiments of the
present invention;

[0024] FIG. 9 shows a multi-pattern multitree for a shared
workload of patterns, in accordance with some embodiments
of the present invention; and

[0025] FIGS. 10A-14D show experimental results, in
accordance with some embodiments of the present inven-
tion.

DETAILED DESCRIPTION

[0026] Disclosed herein are a system, method and com-
puter program product for real-time multi-pattern complex
event processing (Multi-pattern CEP or MCEP).

[0027] In some embodiments, the present disclosure pro-
vides for optimizing MCEP performance using a combina-
tion of sharing and pattern reordering techniques. In some
embodiments, the present disclosure presents an optimiza-
tion framework for solving this computationally hard prob-
lem under tight real-time conditions. In some embodiments,
the present disclosure demonstrated in experimental evalu-
ation a significant performance improvement as compared to
known techniques.

[0028] In some embodiments, the present disclosure is
based on formulating the MCEP task as a global optimiza-
tion problem, and applying a combination of sharing and
pattern reordering techniques to construct an optimal plan
satisfying the problem constraints.

[0029] In some embodiments, the present disclosure pro-
vides for locating a best possible evaluation plan in a
hyper-exponential solution space, using efficient local
search algorithms that utilize the unique problem structure.
[0030] Complex event processing (CEP) methods are
widely employed in applications where arbitrarily complex
combinations (patterns) of data items must be promptly and
efficiently detected in massive data streams. Examples of
such areas include financial services, electronic health
record systems, sensor networks, and Internet-of-Things
(Iot) applications.

[0031] CEP systems treat data items as events arriving
from event sources. As new events are detected, they are
combined into higher-level complex events matching the
user-specified patterns.

[0032] Modern CEP engines are typically required to
support efficient simultaneous tracking of hundreds to thou-
sands of patterns in multiple high-speed input streams of

Mar. 24, 2022

events. Systems possessing this functionality may be
referred to an as multi-pattern complex event processing
(MCEP) systems.

[0033] With reference to FIGS. 1A-1B, consider the fol-
lowing scenario: A system for managing an array of smart
security cameras A, B, C is installed in a building. All
cameras are equipped with face recognition software, and
periodical readings from each camera are sent in real time to
the main server. A detection objective is a scenario in which
an intruder accesses the restricted area via the main gate of
the building rather than from the dedicated entrance. This
pattern can be represented as a sequence of three primitive
events:

[0034] camera A (installed near the main gate) detects a
person;
[0035] later, camera B (located inside the building’s

lobby) detects the same person;
[0036] finally, camera C detects the same person in the
restricted area.

[0037] The system is concerned with detecting a scenario
in which an intruder is detected near doorway A, then
immediately passes through entrance B, and finally enters
doorway C. This pattern can be formulated as a sequence of
three events, each corresponding to getting a signal from
sensors A, B, and C. A real-life MCEP system could define
multiple ‘abnormal’ paths inside the building and specify a
dedicated pattern for each path.
[0038] Pattern matches in known CEP systems are
detected using an evaluation mechanism. One of the most
prominent evaluation mechanisms is the non-deterministic
finite automaton (NFA). FIGS. 1A-1B present an example of
an NFA for detecting the sequence A—=B—C of sensor
signals. A state is defined for each prefix of a valid match.
Every ‘accepting’ transition between states is associated
with some event type. The detection is triggered by the
arrival of a signal from sensor A. For each accepted signal,
the stream of events from sensor B is probed. If a new signal
is subsequently received from B, a corresponding event
from sensor C is then checked.
[0039] During evaluation, an NFA keeps track of partial
matches, that is, already detected subsets of a potential
pattern match. A newly arrived event is combined with all
currently stored partial matches corresponding to the state
accepting this event. For instance, an event of type C will be
matched with pairs of As and Bs. Accordingly, the known
MCEP architecture leads to the worst-case exponential (in
terms of pattern size) processing time and memory con-
sumption.
[0040] Thus, it would be advantageous to maximize pat-
tern detection performance in MCEP systems.
[0041] Attempts to make MCEP more efficient have tar-
geted various possibilities for creating efficient evaluation
mechanisms. Two of the most popular optimization strate-
gies are pattern rewriting and pattern sharing.
[0042] Pattern rewriting methods exploit the statistical
properties of the event data to replace the evaluation mecha-
nism with an equivalent yet more efficient one. Pattern
reordering is a more specific technique within this category,
focused on modifying the order in which the events are
processed. For example, if sensor C generates significantly
fewer signals than A and B do, then instead of following the
order A—B—C specified by the pattern, it would be ben-
eficial to first wait for a signal from C, then examine the
local history for previous signals received from sensors B

US 2022/0091909 Al

and A. This way, fewer partial matches would be created,
resulting in better memory utilization and faster processing
of incoming events. FIG. 1B depicts an NFA constructed
according to this improved plan.
[0043] Pattern sharing methods utilize the structural simi-
larities between different patterns to unify the processing of
common subexpressions. FIGS. 2A-2B illustrate this prin-
ciple. For presentational purposes, ‘ignore’ edges and
‘accept’ labels are omitted. The system monitors a pair of
patterns P,;: A—=B—C and P,: A—B—D. Instead of pro-
cessing these patterns independently (as in FIG. 1C), the
system can merge the first three states of the respective
NFAs to produce a joint automaton FIG. 1D). This optimi-
zation avoids duplicate instantiating and storing of partial
matches.
[0044] Pattern reordering and pattern sharing are generally
considered as orthogonal techniques and cover different
aspects of CEP performance optimization. This also implies
that each of the two methods overlooks certain opportunities
exploited by the other.
[0045] Accordingly, a fusion of both approaches could
discover evaluation plans that would not be considered
otherwise. This may be illustrated with reference to FIG.
3A-3D, illustrating the following arrangements:
[0046] FIG. 3A: NFA optimization with no sharing or
reordering;
[0047] FIG. 3B: NFA optimization with reordering and
no sharing;
[0048] FIG. 3C: NFA optimization with sharing and no
reordering; and
[0049] FIG. 3D: NFA optimization with both sharing
and reordering.
[0050] Reordering the patterns in FIG. 3A by the ascend-
ing order of event arrival rates might result in a pair of
locally optimal NFAs (FIG. 3B). Alternatively, a global
shared plan shown in FIG. 3C can be obtained by sharing the
first two states. Now consider a combined application of the
above techniques, where the NFAs are first reordered to
maximize the common prefix length, and then this newly
created sub-pattern is shared. FIG. 3D shows the resulting
plan. This plan would never be created if only one of the two
optimizations was employed, or if they were used indepen-
dently.
[0051] Accordingly, in some embodiments, the present
disclosure provides for a novel framework for large-scale
MCEP. Rather than merely maximize the sharing degree or
creating locally optimal plans, the present disclosure pro-
vides for a globally optimal plan for the given workload of
patterns, using a combination of both sharing and reorder-
ing. In some embodiments, the present disclosure provides
for an MCEP optimizer that uses sharing and reordering
techniques to generate candidate evaluation plans. This
fusion permits taking advantage of sub-expressions not
normally considered for sharing. To traverse the hyper-
exponential space of plans, the present disclosure further
incorporates a method based on the local search paradigm.
As opposed to known MCEP optimizers, the present disclo-
sure can operate under arbitrarily tight time constraints due
to the inherent balance between optimization time and
solution quality.
[0052] A potential advantage of the present disclosure is,
therefore in that it provides for a novel approach for opti-
mizing large-scale MCEP systems by combining the power
of state-of-the-art pattern sharing and reordering techniques.

Mar. 24, 2022

In some embodiments, the present disclosure also provides
for a set of algorithms for efficiently searching the solution
space. The present algorithms are highly precise and their
execution time can be arbitrarily limited. In some embodi-
ments, an MCEP engine may be then implemented utilizing
the plans created by the present optimizer for efficient
pattern detection.

Background and Terminology

[0053] Formally, an MCEP system accepts three param-
eters: an input data stream I, a pattern workload WL, and a
statistics collection Stat. The input stream [={e , e,, . . . } is
an ordered, possibly infinite temporal sequence of primitive
events, or simply events. | is defined as a “logical” input
source, possibly encapsulating multiple merged substreams.
Each event ¢, is represented by a well-defined type and a set
of attributes, including the occurrence timestamp. In the
example from FIGS. 1A-1B, the event type is specified by
the origin sensor ID, and the attribute set may include the
movement speed of an intruder or the direction of passing.
[0054] The workload WL={P,, ..., P,} contains a finite
number of patterns the system is requested to detect. Each
pattern is defined by the tuple P,=E,, S,, C,, W,), where
e~{E,, ..., E_} is the set of event types participating in
P,, S, denotes the structure of P, (which will be defined
shortly), C, is the condition set specifying the constraints on
the attribute values of the events, and W, is the time window
defined for this pattern, that is, the maximal allowed time
difference between the timestamps of a pair of events in a
match.

[0055] The structure S, specifies how the events requested
by the pattern are to be assembled to form a match. It is
defined by a combination of event types and operators. In
this disclosure, the most common operators such as AND,
SEQ, and OR will be considered. The AND operator
requires the occurrence of all events specified in the pattern.
The SEQ operator also expects the events to appear in a
predefined temporal order. The OR operator corresponds to
the appearance of any event out of those specified. Two
additional important operators are the negation (NOT),
requiring the absence of an event from some position in the
match, and the Kleene closure (KL), accepting one or more
instances of an event.

[0056] To illustrate the above, the structure of the pattern
from FIGS. 1A-1B could be summarized as SEQ(A,B,C),
with e={A, B, C}. If the order of receiving the signals was
not important, the pattern would be formulated as AND (A,
B, C). In addition, assume that a signal arriving from the
sensor D indicates the arrival of a security guard to the area,
in which case no alarm should be set. Then, the structure of
the pattern would become SEQ (AND (A, B, C), NOT(D)).
[0057] In the general case, S; is an arbitrary expression
over the above operators. Such patterns can be simplified by
the transition to DNF form. From the standpoint of an
MCEP system, every clause of the resulting DNF expression
can be considered as a separate pattern in a workload. In
addition, a clause containing multiple AND/SEQ operators
can be flattened to a simple expression featuring a single
AND or SEQ with possible NEG and KL applied on single
events. Therefore, only patterns of this simplified form will
be considered herein.

[0058] Stat is a set of statistical data properties that are
used by the MCEP engine during evaluation plan generation.
In the example above, Stat contains the arrival rates of all

US 2022/0091909 Al

event types (that is, of signals from each sensor). In addition,
the selectivities of the conditions defined by the patterns will
be considered as members in Stat. The selectivity of a
condition is defined as the probability of the input tuple to
successfully pass the condition. More formally,

Stat={ry | AP, e WL: E, € &} U

{selli,|AP; € WL: E,, E, € &},

where r, is the arrival rate of the event type E, and
sel,. JCE[O,I] is the selectivity of a mutual condition between
E, and E,, in some condition set C (where it is set sel,, yC:l
if no condition is defined between the event types). The
results can be trivially extended to additional parameters,
such as inter-event dependencies and costs of predicate
evaluation, by modifying the cost model (see below).

[0059] FIG. 4 schematically illustrates an exemplary
architecture of an MCEP system, according to an embodi-
ment. The evaluation mechanism 402 is responsible for the
actual processing of the input stream 1. An evaluation
mechanism of choice in FIGS. 1-3 is an NFA. Various works
describe different variations of NFAs. In this disclosure, the
‘lazy NEFA’ variety will be used exclusively (see, e.g., 1.
Kolchinsky, 1. Sharfman, and A. Schuster. Lazy evaluation
methods for detecting complex events. In DEBS, pages
34-45. ACM, 2015.)

[0060] A lazy NFA (FIG. 1B) can be configured to follow
any execution order regardless of the actual order requested
by the pattern. Since NFAs generally are only capable of
tracking a single pattern, an extension for multiple patterns
will be presented in below.

[0061] At runtime, the evaluation mechanism follows an
evaluation plan 404 supplied by the optimizer 406. A
distinction is drawn between local evaluation plans appli-
cable for single-pattern evaluation mechanisms only, and
global evaluation plans that consider a workload of patterns.
For example, the plans applied by the NFAs in FIGS. 1A-1B
are local evaluation plans, whereas FIGS. 2 and 3 illustrate
global evaluation plans.

[0062] Different evaluation mechanisms support different
types of evaluation plans. Creating a lazy chain-structured
NFA (FIG. 1) for a single pattern requires an order-based
local evaluation plan. For a pattern P over the event types E,,
..., E,, the order-based evaluation plan is an ordering
O=E,, ..., E,), whereq,, ..., q, is a permutation of [1,
..., m]. Any pattern using the operators defined above (with
the exception of OR) can be detected by such NFA.

[0063] The task of the optimizer 406 is to create a global
evaluation plan upon system initialization. The resulting
plan is then transferred to the evaluation mechanism 402,
which subsequently launches the detection process on a
stream 1. The optimizer 406 typically uses a predefined cost
function to measure the quality of a plan subject to the given
workload WL and the statistics collection Stat. This function

is defined as Cost: Bx W xSTAT—-R, where ¢, W,
STAT are the sets of all global evaluation plans, workloads,
and statistics collections, respectively. The cost assigned by
this function may reflect performance metrics such as
throughput, detection latency, communication cost, and
more.

Mar. 24, 2022

[0064] The present analysis below assumes the values in
Stat to be constant and known in advance. However, in
real-life scenarios this information is rarely obtained in
advance and is subject to rapid fluctuations over time. To
overcome this problem, the present disclosure employs
standard adaptivity mechanisms, continuously estimating
the up-to-date statistics and relaunching the optimizer when
a significant change is detected.

Multi-Pattern CEP with Prefix Sharing

[0065] This section presents the core principles and algo-
rithms behind the present MCEP system. For presentational
purposes, a limited version of the present method is
described, only considering prefix sharing opportunities
between patterns. This description is further extended below
to support arbitrary sub-expression sharing.

Multi-Pattern NFA Evaluation

[0066] In some embodiments, the present disclosure pro-
cesses all patterns in a workload using a single NFA, which
is denoted as the multi pattern NFA. It is organized in a
tree-like topology formed by merging the common prefixes
of the chain-structured NFAs corresponding to each pattern
in the workload. The root of the tree is shared between all
patterns and serves as the initial state of the automaton. Each
internal node can be shared between two or more patterns.
[0067] Because different patterns may have different time
windows, each state of the multi-pattern NFA is augmented
with a special time window attribute, set to the largest time
window among the patterns sharing the state. The system
uses this attribute to decide whether a partial match has
expired.

[0068] FIGS. 5A-5C depict three of the possible multi-
pattern NFAs for a workload of two patterns, P,: SEQ(A, B,
C) and P,: SEQ(A, B, D), with W,=10 and W,=20, where
FIG. 5A depicts evaluation orders A,B,C and A,B,D (maxi-
mal sharing); FIG. 5B depicts evaluation orders B,C,A and
B,A,D; and FIG. 5C depicts evaluation orders C,B,A and
A,D,B (minimal sharing). As discussed above, some NFAs
have more shared states, while others contain more states in
total but provide more efficient evaluation paths for indi-
vidual patterns.

[0069] For each pattern in a workload, a dedicated final
state is defined. When the final state corresponding to some
pattern is reached, a match is reported. Note that while final
states are typically the leaves of the tree, this is not always
the case. For example, in a workload consisting of SEQ(A,
B, C) and SEQ(A, B), the final state for SEQ(A, B) is an
internal node.

[0070] The evaluation process for multiple patterns is
similar to the one presented in (Kolchinsky [2015]) for
single-pattern detection. As a new event e of type T enters
the system, it is evaluated against existing NFA instances.
An instance is defined by a combination of a unique state
identifier and a partial match. The system starts with a single
instance associated with the initial state and an empty match.
All instances associated with states containing an outgoing
transition for T are matched with e. For every instance
satisfying the conditions between the events (including e), a
new instance is created containing the new match resulting
from e’s addition and associated with the state to which the
transition leads. When an instance corresponding to some
final state is created, its match is reported to the end users.

US 2022/0091909 Al

An instance exceeding the time window specified by its
associated state is removed from the system.

[0071] Because the number of instances in a system pro-
cessing a large workload may be huge, traversing all of them
on every event arrival is impractical. Instead, for each event
type T, a list 1, is defined to contain all states with an
outgoing transition accepting T. The size of 1, can never
exceed the number of patterns in a workload containing T in
their specification and will be substantially lower under an
efficient sharing strategy that aims to merge states that
process interleaving event types. At runtime, NFA instances
are stored in a hash table according to their associated state,
and the arrival of an event of type T only triggers the
traversal of instances associated with states in 1, For
example, the state lists of a multi-pattern NFA in FIG. 5B are

L= a5}, L~} 1e={a), 1={aa}-
Multi-Pattern Tree

[0072] Global evaluation plans utilized by multi-pattern
NFAs are similarly structured in a tree-like manner. This
plan type may be referred to as the multi pattern tree (MPT).
Given an MPT, a multi-tree NFA is constructed by simply
copying the structure of the former.

[0073] As described above, an MPT is created by the
optimizer. In some embodiments, the present disclosure
provides or an optimizer which proceeds by creating an
initial MPT and repeatedly modifying it. Hence, efficient
creation and modification operations are crucial for mini-
mizing the optimization cost. In implementing these opera-
tions, the core principle of MPT behavior is to uncondition-
ally share all shareable prefixes of the supplied local
evaluation plans (orders). To add an evaluation order O to an
existing MPT, iterations are performed over O and only
create a new node if no equivalent one exists. Two nodes are
considered equivalent if and only if they correspond to
identical sequences of event types, and if their edges specify
identical conditions. Similarly, a plan is removed by iterat-
ing over the respective order and only deleting states that are
not shared with other patterns.

[0074] FIGS. 6A-6C illustrate MPT modification
examples., e.g., addition and removal of a plan from an
MPT. The complexity of both operations is O(m), where m
is the length of the evaluation order. FIG. 6A depicts an MPT
from FIG. 5A and a local plan for a pattern SEQ(A,C,E);
FIG. 6B depicts the MPT following the addition of the new
evaluation plan (the path corresponding to the newly added
plan is highlighted); and FIG. 6C depicts the MPT after the
local evaluation plan for SEQ(A,B,C) is removed.

[0075] Creating an MPT from a set of orders {0, ..., 0,}
is implemented by iteratively adding the orders to an ini-
tially empty tree. This operation requires O(n-max(m;)) time
and space, where m, is the length of O,.

[0076] Since MPTs merge all common prefixes, an MPT
can be uniquely defined by the tuple (O, .. ., O,). Forcing
some nodes not to be shared is only possible by modifying
the individual evaluation orders. This way, careful selection
of local evaluation plans by the optimizer can achieve the
perfect balance between sharing degree and local evaluation
plan quality.

Runtime Complexity and Multi-Pattern Cost Model

[0077] This section analyzes the runtime complexity of the
MCEP evaluation process described above, and derives the
cost function definition for multi-pattern trees.

Mar. 24, 2022

[0078] The total cost associated with processing a single
event e of type T is the sum of two components: 1) the cost
of combining e with the existing partial matches and creat-
ing new instances as a result of successful matching; 2) the
cost of purging the instances created as a result of e’s arrival
upon their expiration. The former will be denoted as CP(T)
and the latter as CR(T).

[0079] Both functions depend on the expected number of
instances active at the time of an event arrival. Reducing the
number of instances (or, more generally, the size of inter-
mediate results) is a common optimization goal in multiple
fields, including database query optimization and complex
event processing. For an order-based plan O=(E,, . .., E,)
detecting a pattern P=(e, S, C, W), this cost function i1s
defined as:

Cost, (O, P, Stat) = Z‘:’:‘l Cost* (0, P, Stan),

where Cost,,/* is the cost of the k™ state in the chain-based
NFA following O, calculated as follows:

k & c
Cosit,4(0, P, Stat) = W -1_[‘_:1 g -Hijék_‘_éj selq‘_'qj,

where r,; i€[1, m] and sel, ;

[0080] Insome embodiments, the above definition may be
used to calculate the expected number of instances existing
simultaneously at any given moment during MPT-based

1,j&[1, n] are as defined above.

multi-pattern evaluation. Given a node N, let F ,, denote the
path from the root of the MPT to N (by definition of a tree,
there is always exactly one such path). For the root, there is

set P ,=@. The total number of instances is the sum of
numbers of instances associated with each NFA state (and
hence with the corresponding MPT node), calculated as
follows:

#inst(MPT, WL, Stat) = ZN oy Cost" ¥\ @y, WL, Stat).
=

[0081] Thus, to calculate the number of instances to be
traversed upon arrival of an event of type T, it is needed to
sum the instances associated with the states in 1,

ord

>
#instr(MPT, WL, Stat) = Zs) Cost N‘S)‘(PN(S), WL, Stat),
€T

where N(S) denotes a node corresponding to S in MPT.

[0082] The processing cost per event is now derived as
follows. Let C, be the cost of accessing an instance, C, the
cost of creating a new instance and inserting it into the data
structure, and C, the cost of removing an instance from the

system. In addition, let C (T, P ,) denote the cost of
verifying the conditions between a new event of type T and

the events preceding T in P ,, and let Sel (T, P) denote
the total selectivity of the above conditions. To make and C,,

US 2022/0091909 Al

and Sel, well-defined, there is set C,=Sel,=0 if T&P ,.
Then, the expected cost of processing a single event of type
T is:

1Pl
CP(T) = Zsar (Costy ' Pis), WL, Stat)-

(Ca + CUT, Pris)) + Sely(T, Prs) - Cu))-

[0083] To calculate the cost of removing the expired
instances, it is observed that the expected number of
instances created in state S after processing a new event of

type T is equal to Sel (T, P ~(sy)- Thus, the cost of eventually
removing these instances upon their expiration is:

-
CR(T) = ZSEIT Cost NS (s, WL, Stat)-Sely (T, Pycs))- G

[0084] The above analysis emphasizes two main perfor-
mance objectives of an MCEP system attempting to mini-
mize the processing cost per event. First, the sharing degree
needs to be maximized to reduce the sizes of the state lists
1;. Second, the cost of the local evaluation plans in terms of
the expected number of simultaneously existing instances
has to be as low as possible. As illustrated in FIG. 3, there
might be a conflict between these two objectives, which will
be solved by defining an optimization problem later on.

[0085] The extended formula for the expected number of
instances represents the same parameter dependencies as
does the expression CP(T)+CR(T). Hence, it will be used as
a cost function for measuring the quality of MPTs:

Cost™i (MPT, WL, Stat) = #isni(MPT, WL, Stat).

MCEP Optimization Problem

[0086] Insome embodiments, the problem to be solved by
an MCEP optimizer may be formally defined as follows:
Given an order-based plan O for a pattern P and a multi-
pattern tree MPT, OEMPT if and only if MPT contains a

path P of length 10I, starting at the root and ending at some
final state, such that the event types and the conditions

specified on the transitions in P are identical to those of a
NFA detecting P according to O. For example, an MPT in
FIG. 6B satisfies O;=(A, C, EY@&MPT. ORD, denotes the set
of all valid order-based evaluation plans for P. For a pattern
of size m, IORD l=m!

[0087] Accordingly, a tree-based MCEP optimization
problem (T-MCEP) may be defined as follows: Given a
workload WL of n patterns and a statistics collection Stat,
find a multi-pattern tree MPT minimizing the value of the
cost function Cost,,;”** (MPT, WL, Stat) subject to

VP,l<i<n:310€ORDpst. OcMPT.

Mar. 24, 2022

[0088]

ation order of a pattern is denoted as P, as P,

[0089] The complexity of T-MCEP may be described as
follows: It can be noted that for n=1, the present problem is
equivalent to the single-pattern CEP optimization problem
(SCEP), thoroughly discussed in previous work. In particu-
lar, it was shown in, e.g., I. Kolchinsky and A. Schuster,
“Join query optimization techniques for complex event
processing applications.” PVLDB, 11(11):1332-1345, 2018,
that SCEP is NP-complete by reducing it to the problem of
join evaluation order generation. The NP-completeness of
this latter problem was in turn proven through a reduction to
the maximum clique problem. The maximum clique prob-
lem is not only known to be NP-complete, but is also hard
to approximate. It was demonstrated in that, unless NP=ZPP,
no polynomial-time algorithm exists that approximates the
problem within the factor of n'~¢, where n is the size of the
graph. By correctness of the reductions, this result applies
also to the SCEP problem, and, by generalization, to
T-MCEP.

The path in the MPT corresponding to the evalu-

Optimization Framework for T-MCEP

[0090] T-MCEP is a computationally hard optimization
problem, characterized by an enormously large solution
space and multiple local minima. Therefore, advanced tech-
niques are needed in order to produce a high-quality solution
under tight restrictions common for real-time MCEP sys-
tems.

[0091] The algorithms employed by the present optimizer
to achieve this goal implement the local search paradigm.
Local search is a well-known approach for finding approxi-
mate solutions for hard optimization problems, based on
executing heuristically guided random walks in the solution
space and searching for the cheapest solution subject to a
predefined cost function. Local search methods are success-
fully applied for solving a wide range of problems, from the
classic traveling salesman problem to code design and VLSI
layout synthesis.

[0092] Local search methods present several important
benefits for real-time streaming applications, and in particu-
lar for MCEP. Most importantly, they offer a tradeoff
between the quality of the returned solution and the running
time of the search. Since the local search procedure keeps a
“current best” solution at any point of its execution, it can
always be interrupted due to expired time limit and will
return a valid solution, albeit not necessarily the cheapest.
This property makes local search methods an attractive
choice for targeting the MCEP optimization problem under
tight real-time constraints.

Multi-Pattern Graph

[0093] Let m (Y) denote a projection of an expression Y
on a set of variables y. Y can be either a pattern structure or
a condition set as defined above, for example, 75 ,,(SEQ
(A, B, C, D))=SEQ(B, D). Given a pattern P=(e, S, C, W),
another pattern P'=(¢',S',C',W'") is a subpattern of P (marked
as P'CP) if €'Ce, S'=n,(8), C'=n,(C), and W'sW.

[0094] A common subpattern P,=(¢,;, S, C,;, W,)) of two
patterns P, P, is a pattern satisfying (P,CP,)"(P,CP)), such
that W, =min(W,, W)). A maximal common subpattern of P,,
P, is a common subpattern P, such that no other common
subpattern P'; satisfies P,CP',. Thus may be denoted by

=" i

MP,; herein. In addition, the set of all subsets of MP;; is

US 2022/0091909 Al

denoted by I, that is, all common subpatterns of P, and P,.
Obviously, I', =T, for each i, j. The above definitions are
trivially extended to an arbitrary number of intersecting
patterns.

[0095] To illustrate the above notations, let P;:SEQ(A,B,
C,D) and P,:SEQ(A,E,C,D). Assume that both patterns have
no conditions and W,=10, W,=20. Then, SEQ(A, D), SEQ
(C, D), and SEQ(A, C) with W=10 are common subpatterns
of P, and P,, while SEQ(C, A) is a subpattern of neither,
since it has a conflicting structure. The maximal common
subpattern is SEQ(A, C, D).

[0096] The multi pattern graph MPG=(V, E) is a data
structure capable of efficiently collecting, maintaining, and
retrieving the information regarding the mutual subpatterns
of P, ..., P,. For each pattern P,, MPG contains a vertex
v,EV. For each pair of distinct patterns P, P, with non-empty
intersection (i.e., satisfying I';=0), an undirected edge e,=
(vi» v;, T)ER is defined.

[0097] FIG. 7 depicts an MPG for a workload of 6
patterns. For presentation clarity, edges with maximal com-
mon subpattern of size 1 are not shown. The triplet P, P,
and P, share a maximal common pattern SEQ(A, C). P; and
P, have two distinct maximal common sub-patterns. Py is
fully contained in Ps.

[0098] In the general case, an MPG is an arbitrary, not
necessarily connected graph. However, it can be noted that
any algorithm solving T-MCEP can be activated separately
on each connected component, and the results can then be
combined to produce the final plan. Not only does this
observation allow to solve the problem much more effi-
ciently in the presence of multiple components, but it also
makes it possible to limit the discussion below to connected
graphs.

[0099] To guarantee an efficient local search procedure,
the MPG has to occupy small space. Moreover, addition and
removal operations must be fast and low-cost, and likewise
for the retrieval of pattern intersection information. By
utilizing compact graph representation and advanced opti-
mizations, it is possible to guarantee near constant cost of
retrieval and worst-case linear cost of addition and deletion
with near linear space complexity.

Local Search Algorithms for T-MCEP
[0100]

where ¢ is a set of feasible problem solutions and f: p—R is
a cost function. The goal is then to find an optimal solution
s* such that f(s*)=f(s) for all s&€g. In the case of T-MCEP,
¢ consists of all possible MPTs and f=Cost,, /"

[0101] The search starts from some initial solution s,,,;,.
Local search algorithms traverse the search space by explor-
ing the neighborhood of the current solution. A domain-

A local search problem is specified by a pair (¢, 1),

specific neighborhood function NV : ¢—2% maps a solution
to a set of its neighbors, i.e., solutions that can be obtained
by performing a slight modification. The strategy for per-
forming the search is determined by the meta-heuristic in
use. A local search algorithm for a given problem can be
uniquely defined by a combination of a meta-heuristic and a
neighborhood function. When a predefined stopping crite-
rion is satisfied, the search terminates and the cheapest
observed solution is returned.

[0102] The local search algorithms employed by the pres-
ent optimizer for solving T-MCEP utilize two well-known
meta-heuristics, simulated annealing and Tabu search. It can

Mar. 24, 2022

be noted that the solution space of the present problem is
enormously large. For a workload of size n, there are
II,_,"IP,I'possible MPTs, where |P,| denotes the number of
event types in the i? pattern. Fortunately, closer analysis of
the solution space will allow to immediately discard the
overwhelming majority of the subplan combinations.
[0103] The following can be observed regarding the pos-
sible local evaluation orders for a pattern P, in the shared
workload. If no subset of P, can be shared with other
patterns, it only makes sense to select the most efficient
evaluation order. Otherwise, for every shareable sub-pattern
P'CP, it is required to consider an order that starts with the
best order O' for P', then continues with the best order for the
remainder of the pattern given O' as the prefix. Note that not
only the maximal common subpatterns but also their subsets
must be considered, including the empty subset (which is
equivalent to the case when no such P' exists).

[0104] The following theorem will formally state the
above in t:
[0105] Theorem 1: Let MPT,, be the optimal multi

pattern tree for some workload W. Then, for each path
P.in MPT,,, corresponding to the pattern P, at least
one of the following holds: (1) P, is the optimal

evaluation order for P; (2) P, can be divided into a
non-empty prefix Pre f; that is shared with at least one
additional pattern and a non-shared suffix Suf f,, and it
is the most efficient local evaluation order for P, out of
those starting with Pre f,.
[0106] The proof is straightforward by assuming that
neither (1) nor (2) hold and showing that MPT,,,, can be

improved by modifying Suf f, to make P the most efficient
order starting with Pre f,, which contradicts the optimality of
MPT,,,,. Since Suf f; is not shared by definition, improving
it necessarily leads to an improvement of MPT,,,.

[0107] Theorem 1 reduces the maximal number of poten-
tial orders for a single pattern from IPI! to X._"IT,I.
However, to apply the above strategy, an algorithm is
required to calculate local evaluation plans as described
above. The existence of a deterministic local plan generation
algorithm <A is assumed, capable of the following function-
ality:

[0108] Given a pattern P and the statistical event char-
acteristics Stat, return the cheapest local order-based
evaluation plan O subject to Cost,,,;.

[0109] Given a pattern P, its subpattern P', an evaluation
plan O' for P', and the statistics collection Stat, return
the cheapest (subject to Cost,, ;) local order-based
evaluation plan O starting with prefix O'".

[0110] Many algorithms answering the above require-
ments have been proposed. In particular, any greedy algo-
rithm or an algorithm based on dynamic programming
satisfies both conditions. While most algorithms are not
guaranteed to produce an optimal result due to the NP-
hardness of local evaluation plan generation, they provide
empirically accurate approximations.

[0111] With the above observation in mind, neighborhood
functions for T-MCEP can be defined. The first function
produces a neighboring solution by selecting a random edge
(v, v;) in the MPG and a common subpattern PEL,. P is
restricted to be different from the subpattern that is shared
between P, and P, in the current MPT (however, its subpat-
terns are allowed). A neighbor will be generated by invoking
A to create new evaluation orders O,, O, sharing a common

US 2022/0091909 Al

prefix O, and replacing P,, P, with the resulting orders.
This neighborhood will be denoted as an edge-based neigh-

borhood and the notation NV cage Will refer to it. N edge
(MPT) will denote the set of all solutions that can be
obtained by the above procedure. The size of the neighbor-
hood produced by

Neage 15 % 'le Zjil;#i I31

[0112] The main drawback of N cdge 15 that it can only
attempt pairwise sharing. In many real-life scenarios, a
single subexpression might be shared between patterns
comprising a large fraction of the workload. While sharing
such subexpression between all involved patterns may dra-
matically increase the performance, only considering two of
them may fail to produce an improvement over the plan not
sharing the expression at all. As a result, the sharing oppor-
tunity may be missed.

[0113] To overcome this limitation, a vertex-based neigh-

borhood N, .. may be defined. Let Vi:U(Vivj)EEPi]. be
called the vicinity of v,. Instead of an edge, the neighbor-
hood function will select a vertex v, and a subpattern P in the
vicinity of v,. Then, let I', denote a set of all patterns
containing P. This set can be efficiently retrieved from the
MPG as further described below. min(k, II',l) patterns are
selected, where k=2 is a predefined parameter. Then, A will
be invoked to generate new evaluation orders sharing a

verex Will be denoted
¥ Note that V'

vertex

common prefix O,,. The variation of N
using a particular value for k as N

rex” is equivalent to N wdge- L 1€ size of the neighborhood of
k

vertex

is bounded by

20 2l

The per-step complexity of the neighborhood func-

[0114]

tions NV edge a0d N FisOE,_ " m,; 0), where O isthe
complexity of <A . A step is defined as a single selection of
a neighbor and evaluating its cost.

[0115] In all algorithms, the initial state is set to the MPT

in which all patterns are evaluated according to the best

possible local evaluation orders, that is, P =<4 (P,, Stat) for
all i.

MCEP with Arbitrary Subexpression Sharing

[0116] The multi-pattern plan generation method above
only considers prefix sharing. This introduces a significant
limitation, since the optimizer is required to move common
subpatterns to the MPT root in order to share their compu-
tation. This mechanism also prevents a pattern from sharing
multiple distinct subexpressions with other patterns. As an
example, consider a workload consisting of patterns P;:
SEQ(A, B, C, D), P,: SEQ(AE,C,F), P,: SEQ(G,B,H,D). In
order to share the subpattern SEQ(A,C) with P,, the evalu-
ation order of P, must start with (A, C) or (C, A). On the
other hand, it has to start with (B, D) or with (D, B) to share

Mar. 24, 2022

the subpattern SEQ(B, D) with P;. The optimizer will have
to refrain from sharing one of the subpatterns in this case.

[0117] In some embodiments, the present optimization
framework is extended to arbitrary subexpression sharing.
To that end, the local order-based plans are replaced with
tree-based plans, shaped as binary trees. Tree-based plans
specify the structure for tree-based single-pattern evaluation
mechanisms. A leaf is defined for each event type, and the
root of the tree serves as a final state. The evaluation
proceeds from the leaves towards the root, with each internal
node responsible for a subpattern consisting of the event
types in its subtree. FIG. 8 presents three possible tree-based
plans for a pattern SEQ(A, B, C). Tree-based evaluation
mechanisms were shown by multiple studies to be more
expressive and perform better than NFAs.

[0118] The tree-based evaluation process is similar to the
one described for NFAs. As a new event arrives, an instance
is created containing this event. Every instance corresponds
to some subtree s of the tree-based plan. A new instance I is
combined with previously created “siblings”, that is,
instances associated with a node sharing the parent with the
node of I. As a result, another instance containing the unified
subtree is generated. This process continues iteratively until
the root of the tree is reached or no siblings are found.

[0119] Similarly to MPT, a multi pattern multitree (MPM)
is defined as the global plan consisting of multiple shared
tree-based plans. Each pattern in an MPM has a dedicated
root, and all leaves corresponding to the same event type are
shared regardless of the plan in use. FIG. 9 depicts a possible
MPM for a shared workload of patterns P,: SEQ(A, B, C,
D), P,: SEQ(A,E,CF), and P;: SEQ(G,B,H,D). Note that the
displayed plan successfully shares both subpatterns of P,
with P, and P, a result that could not be achieved using an
order-based approach.

[0120] The multitree-based MCEP optimization problem
(M-MCEP) will be defined similarly to T-MCEP. The formal
definitions of M-MCEP, the new cost functions Cost,,.. and
Cost,,,,”*, and the corresponding extension of Theorem 1
can be found further below.

[0121] The MPM is created and modified similarly to the
MPT. The complexity of the operations is not altered by
switching to tree-based plans, as the number of nodes in a
local tree-based plan is still linear in the number of the
participating event types. In addition, the existence of a
subtree T in an MPM can be tested in constant time (and an
additional O(X,_,"m,) space) by hashing the subtrees upon
creation. The complexity analysis of runtime evaluation
detailed above also remains unchanged for the multitree
model, with the exception of the cost function Cost,, /"
being replaced with Cost,, "

tree M

[0122] The local search process for MPMs functions as
described for MPTs above. However, now it is possible for
a pattern to share multiple disjoint subtrees. Consider a
situation where one such subpattern P, is already shared, and
the optimizer attempts to share the second subpattern P,
during the local search step. In this case, consider two
separate options: (1) the most efficient tree containing f’z
regardless of the existing sharing of P,; and (2) the most
efficient tree containing both P, and P,. This case can be
generalized to sharing q subtrees and considering the (q+1)*
one. Due to this extension, <A is required to support mul-
tiple subtrees. More formally, <A is required to be capable
of the following:

US 2022/0091909 Al

[0123] Given a pattern P and the statistical event char-
acteristics Stat, return the cheapest local tree-based
evaluation plan T subject to Cost,,,..

[0124] Given a pattern P, a set of tree-based plans y for
some subpatterns of P, and the statistics collection Stat,
return the cheapest (subject to Cost,,,,) local tree-based
evaluation plan T containing all trees in y as subtrees.

[0125] Algorithms for tree-based plan generation satisfy-
ing the above requirements are discussed in, e.g., I. Kolchin-
sky and A. Schuster. Join query optimization techniques for
complex event processing applications. PVLDB, 11(11):
1332-1345, 2018; Y. Mei and S. Madden. ZStream: a
cost-based query processor for adaptively detecting com-
posite events. In SIGMOD Conference, pages 193-206.
ACM, 2009.

[0126] When selecting the next state to be returned, the
neighborhood functions will randomly choose whether
existing shared subtrees should be preserved for the patterns

involved. For V' * this decision will be performed

independently for each of the k patterns sharing a common
subpattern. To apply this modification, sharing information
must be stored for each pattern in the MPG, which adds a
memory requirement of O(n'max,(lel)). No further changes
to the structure and the operations of the MPG are necessary
for the tree-based evaluation model.

Experimental Evaluation

[0127] The present inventors have conducted an experi-
mental evaluation to assess the overall system performance
achieved by the present approach, as compared to the
state-of-the-art methods for MCEP, and analyze the impact
of the various parameters on the quality of the generated
global plans.

6.1 Experimental Setup

[0128] Two independent datasets were used in the experi-
ments. The first was taken from the NASDAQ stock market
historical records [65]. Each data record represents a single
update to the price of a stock, spanning a 1-year period and
covering over 2100 stock identifiers with prices periodically
updated. The input stream contained 80,509,033 primitive
events, each consisting of a stock identifier, a timestamp, and
a current price. The event format was also augmented with
the precalculated difference between the current and the
previous price of each stock. Updates of each stock identifier
are considered as events belonging to a separate type.
[0129] The structure of the patterns in the workloads
generated for this dataset was motivated by the problem of
monitoring the relative changes in stock prices. Each pattern
represented either a sequence or a conjunction of a number
of event types and included a number of predicates, roughly
equal to half the pattern size, comparing the difference
attributes of two of the involved event types. In addition,
about 20% of the patterns contained either a negation or a
Kleene closure operator on some event type. As discussed
above, the aforementioned combinations of pattern opera-
tors are sufficient to cover the whole spectrum of pattern
structures. For example, a typical sequence pattern of size 3
is as follows:

Py : SEQ(MSFT, Kleene (GOOG), APPL); C; = {MSFT.diff < APPLdiff}.

Mar. 24, 2022

[0130] The second dataset contains the vehicle traffic
sensor data, provided by the city of Aarhus, Denmark [6] and
collected over a period of 4 months from 449 observation
points, with 13,577,132 primitive events overall. Each event
represents an observation of traffic at the given point. The
attributes of an event include, among others, the point ID,
the average observed speed, and the total number of
observed vehicles during the last 5 minutes. The patterns
created for this dataset followed the rules specified above
and were motivated by normal driving behavior, where the
average speed tends to decrease with the increase in the
number of vehicles on the road. The user-defined task is
detecting the violations of this model, that is, combinations
of three or more observations with either an increase or a
decline in both the number of vehicles and the average
speed.

[0131] Unless stated otherwise, all arrival rates and predi-
cate selectivities were calculated in advance during the
preprocessing stage. The measured arrival rates varied
between 2 and 47 events per second, and the selectivities
ranged from 0.003 to 0.92.

[0132] The workloads were created by grouping the pat-
terns generated as described above based on a set of param-
eters, including the number of patterns in a workload,
average pattern size (number of event types in a pattern), and
pattern time window. Unless stated otherwise, the default
values were set to 100 patterns per workload, an average
pattern size of 5 event types, and the time window of 15
minutes.

[0133] Unless stated otherwise, all experiments were con-
ducted on the full version of the present MCEP optimizer
presented above. The default local search time limit for all
algorithms was set to 180 seconds. The algorithm used as the
local plan generation algorithm <A is based on dynamic
programming described in 1. Kolchinsky et al., “Join query
optimization techniques for complex event processing appli-
cations.” PVLDB,11(11):1332-1345, 2018.

[0134] Throughput, defined as the number of events pro-
cessed per second during pattern detection, was selected as
the main performance metric. However, similar results could
be obtained for algorithms targeting any other optimization
goal, such as minimizing latency, power consumption, or
communication cost.

[0135] All experiments were repeated on 10 indepen-
dently generated workloads, and the displayed results were
averaged among all trials. All models and algorithms were
implemented in Java. The experiments were run on a
machine with 2.20 Ghz CPU and 16.0 GB RAM.

Experimental Results—Impact of Input Parameters
on System Performance

[0136] The first experiment evaluated the performance of
the local search algorithms described above, as a function of
the workload size. FIG. 10 shows throughput gain as a
function of the workload size for different combinations of
a meta-heuristic, a neighborhood function, a subexpression
sharing strategy, and a dataset: FIG. 10A depicts stocks
dataset, simulated annealing; FIG. 10B depicts stocks data-
set, Tabu search; FIG. 10C depicts traffic dataset, simulated
annealing; and FIG. 10D depicts traffic dataset, Tabu search.
[0137] Here and in all subsequent experiments, the graphs
show the relative throughput gain over the trivial global
evaluation plan, utilizing no sharing and no rewriting tech-

US 2022/0091909 Al

niques. The neighborhoods N, V' % and V' *®
were tested in conjunction with simulated annealing and

Tabu search meta-heuristics on stock (FIGS. 10A-10B) and

traffic (FIGS. 10C-10D) datasets. For NV cage alone, the
prefix-only version of the present framework was evaluated
in addition to the default arbitrary-subset version.

[0138] Overall, all combinations demonstrated more sig-
nificant throughput gains for larger workloads, ranging from

a factor of 21 to over 72. Despite being the simplest, N edge
neighborhood showed the best results, finding evaluation
plans that outperformed the trivial plan by a factor of up to
72.7 for the stock dataset and up to 50.7 for the traffic
dataset. This can be explained by the overwhelming size of

the neighbor spaces explored by N _“4and N 5
Tight time constraints prevent the system from locating the

best optimization opportunities in huge neighborhoods.
Thus, although N

moves in N, (ige» e better moves are statistically harder to
reach before the time expires. Comparable performance was
observed for both meta-heuristics, with simulated annealing
slightly outperforming Tabu search for the stock dataset and
vice versa for the traffic dataset.

[0139] The choice of a subexpression sharing strategy was
found to have a major impact on the system performance.
When the optimizer was restricted to only consider sharing
prefixes, applying the generated plans resulted in up to 5
times lower throughput (marked as ‘EDGE-PREFIX” in all
graphs) as compared to the plans produced using an identical
setup without the above limitation (marked as ‘EDGE’).
This observation fully matches prior analysis. As discussed
above, a prefix-only approach ignores a significant fraction
of the space of possible optimizations and limits a pattern to
only sharing a single subexpression by utilizing order-based
local plans as opposed to tree-based ones.

[0140] The scalability of the present optimizer was further
assessed as subject to various parameters (FIGS. 11A-114).
Simulated annealing (marked as ‘SA’ in the graph) and Tabu
search (marked as ‘TS’) were again evaluated on both
datasets in conjunction with the best-performing neighbor-

hood N cage- T1G. 11A depicts the throughput gain as a
function of the average length of a pattern in a workload.
The present approach seems to improve even more for
longer patterns, speeding up the event processing by up to
two orders of magnitude. This is not surprising, as longer
patterns introduce more optimization opportunities. It was
also observed that in most cases the simulated annealing
meta-heuristic achieved better performance than Tabu
search.

[0141] Unsurprisingly, the output plan quality also
improves with increased time limit of the local search
algorithm (FIG. 11B). Interestingly, the performance of
simulated annealing seems to converge to a constant value,
while Tabu search keeps improving for longer time limits.
This can be explained by the distinctive behavior of the
former after a large number of iterations, when the current
threshold becomes small enough for the algorithm to con-
verge to a local minimum.

[0142] The results obtained for different time window
sizes (FIG. 11C) demonstrate similar trends. Since the cost
function and the overall system throughput strictly depend

neighborhoods contain all of the

vertex

Mar. 24, 2022

on this parameter, increasing it leads to bigger differences in
plan qualities, both calculated and empirically observed.
[0143] Finally, an experiment with patterns utilizing
count-based windows was conducted. As opposed to speci-
fications based on time-based windows defined above,
count-based patterns require a match to appear within the
last W arrived events rather than within Wtime units.
[0144] FIG. 11D presents the results. For the stock dataset,
even bigger performance boost was observed for larger
windows as compared to the time-based scenario. This can
be explained by the highly fluctuating event arrival rates
exhibited by this dataset. When time-based windows are
used, the peak load is only experienced during brief ‘bursts’,
whereas large count-based windows cause the system to be
constantly overloaded. Since the performance gain achieved
by an efficient evaluation plan is proportional to the average
system load, the latter case demonstrates a more significant
increase in total throughput. In contrast, the results for the
traffic dataset were extremely similar to those obtained for
time-based windows due to much less skew in event distri-
bution over the input stream.

Experimental Results—Comparison with Known
Methods

[0145] The experiments summarized in FIGS. 10 and 11
were repeated for the basic sharing and the basic reordering
methods, as well as for other known MCEP methods.
[0146] The basic sharing method (SH) refers to the maxi-
mal subexpression sharing technique discussed above. The
basic reordering method (RE) greedily rebuilds the event
sequence by picking the event type maximizing the cost
function at each step.

[0147] The SPASS method (see M. Ray et al., “Scalable
pattern sharing on event streams”, In Proceedings of the
2016 International Conference on Management of Data,
pages 495-510, New York, N.Y., USA, 2016. ACM) selects
the sub-patterns to share according to a metric called ‘redun-
dancy ratio.” This method metric represents the potential
gain in sharing its computation. Each subexpression is
assigned a score, and the winners are chosen by approxi-
mating the well-known minimal substring cover problem.
The MOTTO method (see S. Zhang et al. “Multi-query
optimization for complex event processing in SAP ESP.”, In
33rd IEEE International Conference on Data Engineering,
ICDE 2017, San Diego, Calif., USA, Apr. 19-22, 2017,
pages 1213-1224, 2017) utilizes a combination of tech-
niques referred to as MST (merge sharing technique), DST
(decomposition sharing technique), and OTT (operator
transformation technique). The system solves the directed
Steiner minimum tree problem to select the best global plan
produced using the above techniques.

[0148] FIGS. 12A-12H present the results. The redun-
dancy ratio method and the merge-decomposition technique
are marked as SH-RR and SH-MDT respectively. While
both SH-RR and SH-MDT scale well with growing work-
load size (FIGS. 12A, 12E) and average pattern length (12B,
12F), the present optimizer achieves the best overall
speedup, in some cases up to three times better than that of
the runner-up solution.

[0149] This result follows from utilizing the reordering
opportunities, which were shown to drastically boost CEP
evaluation. On the other hand, the present approach also
attempts to exploit sharing opportunities when possible,
which allows it to outperform the pure reordering algorithm

US 2022/0091909 Al

(RE) for large pattern sizes. The gaps were closer for time
window evaluation (FIGS. 12C and 12G), with SA-EDGE
still achieving an advantage of at least 25% over the second-
best method. The results for count-based windows (FIGS.
12D and 12H) strictly follow the trends described for FIG.
11.

Experimental Results—Adaptive System Behavior

[0150] Next, the performance of the present system was
evaluated in the presence of a dynamically changing input
stream. For this experiment alone, semi-synthetic input was
used. A component was implemented that accepts a param-
eter x and randomly and independently transforms every x
incoming events before they are received by the evaluation
mechanism. A transformation is performed by randomly
picking y event types, creating their random permutation P
and then replacing the type attribute of every affected event
with the one following its value in P. This modification
allows to simulate rapid and drastic changes in the arrival
rates of all types of events.

[0151] The experiment was repeated for y=>5 and X ranging
between 10 and 1000 on the static and the dynamic version
of the present framework. In the static case, an evaluation
plan was created on startup and used exclusively regardless
of input changes. The dynamic version utilized an adaptive
approach, restarting the plan calculation process when a
drastic change in the statistics is detected. The results are
depicted in FIGS. 13A-13B. Unsurprisingly, the initially
generated plan fails to perform adequately when the input
characteristics overcome on-the-fly changes. While
extremely frequent input changes clearly reduce system
performance, the adaptive method still leads to at least 10
times higher throughput.

Additional Experiments

[0152] Further experiments were conducted to study the
influence of the workload statistical characteristics on the
performance of the present optimizer. Only the best per-
forming (according to the results presented above) combi-
nations SA-EDGE and TS-EDGE were evaluated.

[0153] The statistical characteristics of workload genera-
tion are controlled using a pair of configurable parameters,
multi pattern graph density and normalized arrival rate
difference. The multi-pattern graph density is defined as an
average relative number of neighbors of a given pattern in an
MPG. For example, in a workload of 100 patterns with MPG
density equal to 0.5, each pattern will have 50 neighbors on
average. This parameter is used to control the sharing
sensitivity of a workload.

[0154] The arrival rate difference, defined as the maximal
difference in rates of two event types within a single pattern,
allows to manipulate the reordering sensitivity of a work-
load. For example, for an unconditional conjunction of 5
event types arriving at an identical rate, each of the possible
5! evaluation orders will have the same cost. However, if one
of the types appears 100 times more frequently than the rest,
the gain obtained by postponing the costly event type to the
last state is considerably high. Patterns with varying degrees
of reordering sensitivity are produced by limiting the selec-
tion of the event types for a pattern accordingly. The values
of this parameter were normalized with respect to the
maximal observed difference of 45.

Mar. 24, 2022

[0155] FIGS. 14A-14D depict the achieved throughput
gain as a function of the sharing sensitivity (FIGS. 14A-
14B) and the reordering sensitivity (FIGS. 14C-14D) of the
workload. The plots also show the performance of the basic
reordering (RE) and the basic sharing (SH) methods dis-
cussed above.

[0156] The high gains of the local search methods do not
exhibit dominant dependencies on either of the two param-
eters. While larger graph densities and rate difference limits
introduce more sharing and reordering opportunities, they
also increase the search space size and the number of
potential local minima. Nevertheless, the present approach
consistently outperforms the better of SH and RE for every
attempted experimental configuration. At the extremes, local
search tends to resort to an almost pure sharing plan for low
arrival rate differences (since virtually no improvement can
be achieved by reordering), whereas for sparse multi-pattern
graphs the solution assigning the best local plan to all
patterns is often preferred.

[0157] The basic reordering method becomes more effi-
cient with increasing differences in arrival rate and is almost
unaffected by the changes in graph density. The performance
of the basic sharing method increases monotonically with
graph density. It also decreases with the rate difference due
to the smaller number of participating event types in more
restricted workloads. Given a pair of workloads of the same
size containing patterns of the same length, the workload
with fewer event types will have more events of the same
type on average, and is expected to offer more sharing
opportunities.

Efficient Implementation of the Multi-Pattern Graph

[0158] As presented above, the multi-pattern graph for the
workload WL={P,, . . ., P,} is defined as MPG=(V, E),
where E={e~(v,, v, I',=@} and V={v,IPEWL}.

[0159] This formulation introduces potential performance
issues. First, explicitly storing the set of common subpat-
terns I';; requires O(2%) memory, where s is the size of the
maximal common subpattern. This can be solved by only
storing the MP,; instead, as the rest of the common subpat-
terns can be inferred from it. Second, when m patterns share
the same subpattern, the MPG will contain

edges representing the same subpattern set. Consequently,
directly instantiating the MPG in memory would be
extremely inefficient.

[0160] The present disclosure addresses this shortcoming
by compact graph representation. Rather than explicitly
store the vertices and the edges, for every distinct maximal
common sub-pattern MP of some set of patterns I', I is kept
in a hash table with MP as a key. In addition, a second hash
table maps a single pattern P to a list of maximal common
subpatterns with its peers in MPG. This data structure still
contains all the necessary information, additionally provid-
ing near constant cost of retrieval and worst case linear cost
of addition and deletion of patterns. The space occupied by
both hash tables is O(n'y), where v is the total number of
distinct maximal common subpatterns in the workload.
While the value of y can reach n” in the worst case (and even

US 2022/0091909 Al

exceed it in some cases), the way in which the hash tables
are constructed makes it extremely unlikely for the space
complexity to surpass O(n).

[0161] Another potential performance bottleneck associ-
ated with the MPG is the resource-consuming operation of
calculating the maximal common subpatterns for all pairs of
patterns. Accordingly, the following simple and efficient
implementation will be utilized. Given P,=(e,, S,, C,;, W,) and
P=(e, S;, C;, W), first a simple set intersection €,; of €, and
€, is calculated. Then, the conditions in C, and C; is projected
on S,, and the resulting condition sets are compared. If the
sets are not equal, their intersection is calculated and €,
reduced accordingly. The same procedure is then performed
for S, and S, Overall, the worst-case complexity of this
operation is O(max(lg,l, le)+max(ICl, IC))).

[0162] Note that multiple maximal common subpatterns
may exist. For example, both SEQ(A,B) and SEQ (A, C) are
the maximal intersections of the sequences SEQ (A, B, C)
and SEQ(A,C,B). In this case, the MPG will store a list of
maximal common subpatterns.

[0163] The worst-case complexity of computing all maxi-
mal common subpatterns is then O(n> (s, +c,,..)), Where
S max and ¢, .. denote the maximum sizes of a pattern in terms
of events and conditions, respectively.

Local Search Meta-Heuristics

[0164] In some embodiments, local search meta-heuris-
tics, simulated annealing and Tabu search are used herein.
[0165] Simulated annealing extends the functionality of
iterative improvement by also allowing limited non-improv-
ing moves. A threshold c, is defined for each step. When a
better neighbor solution is selected, it is chosen to replace
the current solution, in a manner similar to the iterative
improvement algorithm. If the neighbor solution is more
expensive, it is accepted with probability

where Af is the difference between the costs of the old and
the new solutions. The thresholds are chosen such that
c,=a-c, ;, a<l. The algorithm starts with a sufficiently large
¢, and terminates when a predefined small value c, is
reached. Before the start of the actual search, c, is set to the
largest difference observed during evaluation of I neighbors
of's,, ;- In the experiments detailed above, =0.99 and I=10>
neighbors were used for setting the initial threshold.

[0166] Tabu search explores L random neighbors during
each step and moves to the cheapest of them. Visiting the
same state twice is prohibited. To enforce that, previously
visited solutions are stored in a dedicated tabu list. The tabu
list has a finite capacity C: when the number of stored
solutions reaches C, oldest stored solutions are removed.
The best solution s*observed during the run of the algorithm
is returned. A memory list of capacity C=10* and L=100 was
used during this experimental evaluation.

[0167] Both algorithms stop after reaching a predefined
number of steps since the last improvement to s*or when the
time expires. To study the tradeoff between evaluation time
and solution quality, only the timestamp-based stop condi-
tion was implemented.

Mar. 24, 2022

Formal Definition of M-MCEP

[0168] The cost function and the optimization problem of
multitree-based MCEP are formally define.

[0169] First, the cost function is extended. Let T, denote a
local tree-based evaluation plan for a pattern P,. Next, the
cost function definition for tree-based plans is borrowed
from (Kolchinsky [2018]). For a plan T, Cost,, . (T)
“ZvenodescnCMN), are defined where

Wi-r; N is a leaf representing E;
CN)=| C(L)-C(R)-selr, g N is an internal node with
child nodes L and R.

[0170] Here, sel, , denotes the total selectivity of all
conditions defined between the event types in L. and R.
[0171] The extension of Cost,,,, for multitrees will be
defined by counting the individual costs of all nodes in a
multitree:

Costyee! (MPM) = ZNenodex(MPM) CN).

[0172] Given a tree-based plan T and a multi-pattern
multitree MPM, it is said that TEMPM if and only if MPM
contains a subtree identical to T. A subtree of the MPM will
be denoted corresponding to a pattern p, as J;. In addition,
TREE, will denote the set of all tree-based plans of a pattern
P. The extended optimization problem will be subsequently
defined as follows:

[0173] Multitree-based multi-pattern CEP optimization
problem (M-MCEP). Given a workload WL of n pat-
terns and a statistics collection Stat, find a multi-pattern
multitree MPM minimizing the value of Cost,, "%
(MPM, WL, Stat) subject to

VP,, 1sisn: ATETREE,s.t. TEMPM.

[0174] Since T-MCEP can be viewed as a particular case
of M-MCEP (restricted to left-deep trees as local plans), the
complexity results obtained for T-MCEP hold for M-MCEP
by generalization.

[0175] To justify the use of MNeage and MNE .0, for
MPM-based solution space, an observation similar to the
one presented in Theorem 1 is utilized.
[0176] Theorem 2. Let MPM,,,, be the optimal multi
pattern multitree for some workload W. For each tree
J; in MPM,,, corresponding to the pattern P, let
S; denote the set of subtrees that are shared with other
patterns in MPM,,,,. Then, 7; is the most efficient local
tree-based plan for P, out of those containing all the
subtrees in §;.
[0177] As will be appreciated by one skilled in the art,
aspects of the present invention may be embodied as a
system, method or computer program product. Accordingly,
aspects of the present invention may take the form of an
entirely hardware embodiment, an entirely software embodi-
ment (including firmware, resident software, micro-code,
etc.) or an embodiment combining software and hardware
aspects that may all generally be referred to herein as a
“circuit,” “module” or “system.” Furthermore, aspects of the
present invention may take the form of a computer program

US 2022/0091909 Al

product embodied in one or more computer readable medi-
um(s) having computer readable program code embodied
thereon.

[0178] Any combination of one or more computer read-
able medium(s) may be utilized. The computer readable
medium may be a computer readable signal medium or a
computer readable storage medium. A computer readable
storage medium may be, for example, but not limited to, an
electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

[0179] A computer readable signal medium may include a
propagated data signal with computer readable program
code embodied therein, for example, in baseband or as part
of a carrier wave. Such a propagated signal may take any of
a variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

[0180] Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc., or any suitable combination of the foregoing.
[0181] Computer program code for carrying out opera-
tions for aspects of the present invention may be written in
any combination of one or more programming languages,
including an object-oriented programming language such as
Java, Smalltalk, C++ or the like and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. The program
code may execute entirely on the user’s computer, partly on
the user’s computer, as a stand-alone software package,
partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider).

[0182] Aspects of the present invention are described
herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems) and computer
program products according to embodiments of the inven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer program instructions.

Mar. 24, 2022

These computer program instructions may be provided to a
hardware processor of a general-purpose computer, special
purpose computer, or other programmable data processing
apparatus to produce a machine, such that the instructions,
which execute via the processor of the computer or other
programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

[0183] These computer program instructions may also be
stored in a computer readable medium that can direct a
computer, other programmable data processing apparatus, or
other devices to function in a particular manner, such that the
instructions stored in the computer readable medium pro-
duce an article of manufacture including instructions which
implement the function/act specified in the flowchart and/or
block diagram block or blocks.

[0184] The computer program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other devices to cause a series of opera-
tional steps to be performed on the computer, other pro-
grammable apparatus or other devices to produce a
computer implemented process such that the instructions
which execute on the computer or other programmable
apparatus provide processes for implementing the functions/
acts specified in the flowchart and/or block diagram block or
blocks.

[0185] The flowcharts and block diagrams in the Figs.
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods and computer
program products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out
of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration,
can be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

[0186] The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

[0187] In the description and claims of the application,
each of the words “comprise” “include” and “have”, and
forms thereof, are not necessarily limited to members in a
list with which the words may be associated. In addition,

where there are inconsistencies between this application and

US 2022/0091909 Al

any document incorporated by reference, it is hereby
intended that the present application controls.

1. A system comprising:

at least one hardware processor; and

a non-transitory computer-readable storage medium hav-

ing stored thereon program instructions, the program
instructions executable by the at least one hardware
processor to:
receive, as input, a data stream representing events;
receive, as input, a plurality of complex event patterns
(CEPs), each representing an occurrence of a respec-
tive CEP in said data stream, wherein each of said
CEPs comprises (a) a set of conditions reflecting
relations among said events, and (b) a set of attri-
butes associated with each of said events; and
calculate an optimal multi-pattern evaluation plan cor-
responding to said plurality of CEPs, wherein said
multi-pattern evaluation plan is created by:
(1) generating an initial evaluation plan,
(i) applying a search method to calculate modified
versions of said initial evaluation plan,
(ii1) assigning a score to each of said modified
versions based on a cost function, and
(iv) selecting one of said modified versions having a
highest said score as said optimal multi-pattern
evaluation plan.

2. The system of claim 1, wherein said search is based, at
least in part, on:

(1) reordering of said events in each of said CEPs to

maximize common sub-patterns among said CEPs; and

(ii) sharing of said common sub-patterns among all of said

CEPs.

3. The system of claim 1, wherein said cost function
minimizes a number of estimated intermediate results during
an execution of said modified version.

4. The system of claim 1, wherein steps (ii) and (iii) are
repeated iteratively based on one of: a specified time limit,
and a specified number of iterations.

5. The system of claim 1, wherein said CEPs are based on
user definition.

6. The system of claim 1, wherein said program instruc-
tions are further executable to execute said multi-pattern
evaluation plan on said data stream, to generate output data.

7. A method comprising:

receiving, as input, a data stream representing events;

receiving, as input, a plurality of complex event patterns

(CEPs), each representing an occurrence of a respective
CEP in said data stream, wherein each of said CEPs
comprises (a) a set of conditions reflecting relations
among said events, and (b) a set of attributes associated
with each of said events; and

calculating an optimal multi-pattern evaluation plan cor-

responding to said plurality of CEPs, wherein said

multi-pattern evaluation plan is created by:

(1) generating an initial evaluation plan,

(ii) applying a search method to calculate modified
versions of said initial evaluation plan,

(iii) assigning a score to each of said modified versions
based on a cost function, and

(iv) selecting one of said modified versions having a
highest said score as said optimal multi-pattern
evaluation plan.

Mar. 24, 2022

8. The method of claim 7, wherein said search is based, at
least in part, on:

reordering of said events in each of said CEPs to maxi-

mize common sub-patterns among said CEPs; and

(i1) sharing of said common sub-patterns among all of said

CEPs.

9. The method of claim 7, wherein said cost function
minimizes a number of estimated intermediate results during
an execution of said modified version.

10. The method of claim 7, wherein steps (ii) and (iii) are
repeated iteratively based on one of: a specified time limit,
and a specified number of iterations.

11. The method of claim 7, wherein said CEPs are based
on user definition.

12. The method of claim 7, further comprising executing
said multi-pattern evaluation plan on said data stream, to
generate output data.

13. A computer program product comprising a non-
transitory computer-readable storage medium having pro-
gram instructions embodied therewith, the program instruc-
tions executable by at least one hardware processor to:

receive, as input, a data stream representing events;

receive, as input, a plurality of complex event patterns
(CEPs), each representing an occurrence of a respective
CEP in said data stream, wherein each of said CEPs
comprises (a) a set of conditions reflecting relations
among said events, and (b) a set of attributes associated
with each of said events; and

calculate an optimal multi-pattern evaluation plan corre-

sponding to said plurality of CEPs, wherein said multi-

pattern evaluation plan is created by:

(1) generating an initial evaluation plan,

(i1) applying a search method to calculate modified
versions of said initial evaluation plan,

(iii) assigning a score to each of said modified versions
based on a cost function, and

(iv) selecting one of said modified versions having a
highest said score as said optimal multi-pattern
evaluation plan.

14. The computer program product of claim 13, wherein
said search is based, at least in part, on:

(1) reordering of said events in each of said CEPs to

maximize common sub-patterns among said CEPs; and

(i1) sharing of said common sub-patterns among all of said

CEPs.

15. The computer program product of claim 13, wherein
said cost function minimizes a number of estimated inter-
mediate results during an execution of said modified ver-
sion.

16. The computer program product of claim 13, wherein
steps (ii) and (iii) are repeated iteratively based on one of: a
specified time limit, and a specified number of iterations.

17. The computer program product of claim 13, wherein
said CEPs are based on user definition.

18. The computer program product of claim 13, wherein
said program instructions are further executable to execute
said multi-pattern evaluation plan on said data stream, to
generate output data.

