1212122, 9:52 AM

a9 United States

(43) Pub. Date:

DIV Contents

US 20220351079A1

a2y Patent Application Publication (o) Pub. No.: US 2022/0351079 A1l
SCHUSTER et al.

Nov. 3, 2022

(54)

(71

(72)

(73)

€25
(22)
(86)

(60)

12/2/2022 09:52:21

https://ppubs.uspto.gov/pubwebapp/

GAP-AWARE MITIGATION OF GRADIENT

STALENESS 1)
Applicant: Technion Research & Development
Foundation Limited, Haifa (IL) (52)

Inventors: Assaf SCHUSTER, Haifa (IL); Saar
BARKALI, Haifa (IL); Ido HAKIMI,
Haifa (IL) (57)

Assignee: Technion Research & Development
Foundation Limited, Haifa (IL)

Appl. No.:
PCT Filed:

PCT No.:

§ 371 (c)(1),
(2) Date:

Related U.S. Application Data
Provisional application No. 62/930,633, filed on Nov.

5, 2019.

Disclosed embodiments are a computing system and a
computer-implemented method for distributed training of a
machine learning model over a plurality of computing
nodes, in a plurality of iterations, characterized by gradient
gap based mitigation of the gradient staleness problem. The
disclosed method evaluates the staleness of the gradient
based on the difference in gradients between a central point,
for example an iteration’s common starting point, and the
points reached by the respective computing node during one
or more iterations, and aggregates the update steps from the
plurality of computing nodes, while giving more weight to
computing nodes having a lesser change in the gradient.

17/773,917
Nov. 5, 2020

PCT/IL2020/051154

May 3, 2022

Publication Classification

Int. CI.

GO6N 20/00 (2006.01)

UsS. CL

CPC o GO6N 20/00 (2019.01)
ABSTRACT

100 ﬁ()
;24
Naighhbor
] System
1 2, Processor o
N
S
o input
P « » Sensor
o interface
il
7l Network rred
133 125
interface o
N
K
< Cutput
Displa
<« Interface Py
¥ 135
- 124
Storage Medium e
116 e, L
T ighb
g4 Program Code 5 Neighbor
e Y T System
e Cache
1187

Page 1 of 15

115

12/2/22, 9:52 AM DIV Contents

Patent Application Publication Nov. 3, 2022 Sheet 1 of 6 US 2022/0351079 A1

100~

A
AN,
- ; Neighbor §
; ¢ System
1 i_y Processor 112 : g
e - e !
A N L
£
€ > input
< P «—> > Sensor
< Interface
7 Network - 122 /ﬁ
113 = 175
Interface - -
N\,
L
< > QOutput ,
P 0 » 3 Display
<> |nterface
.
N 115-'/
. 124
Storage Medium <
116 g.. MMMMM &. WWWWWW 1
T | Nei hb |
_—Twl-» Program Code | Neighbor ;
114° - i System
o H H
] “zw,»a% Cache - il :
1187 o
FiG. 1A
12/2/2022 09:52:21 Page 2 of 15

https://ppubs.uspto.gov/pubwebapp/ 2/15

12/2/22, 9:52 AM DIV Contents

Patent Application Publication Nov. 3, 2022 Sheet 2 of 6 US 2022/0351079 A1

150 "‘“‘“1}

; :
i slave |
151 - : .
N . t node |
.
master .
computing le.p
node
- slave
ey computing
” node
slave . 5
computing g3l -
node -
5 -
/ 160
155 o S;
= ;““““’“; ““““““““ g
- i slave
l -
[computing |
3
- ! node i
- e
FIG. 1B
12/2/2022 09:52:21 Page 3 of 15

https://ppubs.uspto.gov/pubwebapp/ 3/15

1212122, 9:52 AM

Patent Application Publication Nov. 3, 2022 Sheet 3 of 6 US 2022/0351079 A1

DIV Contents

e

slave computing nodes train a respective local copy of
the machine learning model, by locally computing a
raspective update step

200
R
201 ——
N
202 —y

master computer node obiaining update steps from
slave computing nodes

merging the machine Earning model with an
aggregation function comprising weights, which are a
substantially decreasing function of achange ina
cempatible gradient at @ point indicated by the
respactive ypdate step

/

203 "‘7\
P

instructing at least one of the plurality of slave
computing nodes to apply a copy of the updated
machine learning model in a following training
tteration

12/2/2022 09:52:21

https://ppubs.uspto.gov/pubwebapp/

FIG. 2

Page 4 of 15

4/15

12/2/22, 9:52 AM DIV Contents

Patent Application Publication Nov. 3, 2022 Sheet 4 of 6 US 2022/0351079 A1

300 —

e o

Data sources

Data record

320
slave

computing
node

?:\,,\

slave C/
computing |/
node

slave ()
computing (&
node

FIG. 3

12/2/2022 09:52:21 Page 5 of 15

https://ppubs.uspto.gov/pubwebapp/ 5/15

12/2/22, 9:52 AM DIV Contents

Patent Application Publication Nov. 3, 2022 Sheet S of 6 US 2022/0351079 A1

400
)\~>
A10 411 412 413
!W L L \
N “~ -
¥ v B
master slave stave slave
computing computing computing computing
node node node node

:
.

: !

: :

430 ' ;

. ; :

: ,

: ;

, .

FiG. 4

12/2/2022 09:52:21 Page 6 of 15

https://ppubs.uspto.gov/pubwebapp/ 6/15

12/2/22, 9:52 AM DIV Contents

Patent Application Publication Nov. 3, 2022 Sheet 6 of 6 US 2022/0351079 A1

500

520

FIG. 5

12/2/2022 09:52:21 Page 7 of 15

https://ppubs.uspto.gov/pubwebapp/ 7115

1212122, 9:52 AM

US 2022/0351079 A1l

GAP-AWARE MITIGATION OF GRADIENT
STALENESS

RELATED APPLICATION

[0001] This application claims the benefit of priority of
U.S. Provisional Patent Application No. 62/930,633 filed on
5 Nov. 2019, the contents of which are incorporated herein
by reference in their entirety.

BACKGROUND

[0002] Some embodiments relate to training machine
learning models and, more specifically, but not exclusively,
to distributed iterative training of machine learning models,
using gradient descent on a network of computing nodes.
[0003] Machine learning modes became ubiquitous, due to
their ability to solve a plurality of problems, which were not
effectively solved using rule based methods. Machine learn-
ing models are trained on sample data before becoming
operative, and the size, complexity and the likes of both the
machine learning models and the training dataset tend to
increase rapidly. Stochastic gradient descent (SGD) is a
method of updating parameter models iteratively according
to the gradient of a target, or loss function, based on the
desired model properties.

[0004] One way of mitigating the complexity, and increas-
ing requirements for fast access memory, processing
resources and the like is distributing the training over a
plurality of computing nodes.

[0005] When the training is distributed the need to coor-
dinate and exchange information between computing nodes
may rise. The update of the machine learning model param-
eter maintained by a node may be viewed as a movement in
a multidimensional space. Some methods aggregate these
movements after a measure of time has elapsed, a number of
iterations, or the like.

[0006] However, several problems arise when synchroniz-
ing between the different computer nodes.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

[0007] Some embodiments are herein described, by way
of example only, with reference to the accompanying draw-
ings. With specific reference now to the drawings in detail,
it is stressed that the particulars shown are by way of
example and for purposes of illustrative discussion of
embodiments. In this regard, the description taken with the
drawings makes apparent to those skilled in the art how
embodiments may be practiced.

[0008] In the drawings:

[0009] FIG. 1A is a schematic illustration of an exemplary
computing node, according to some embodiments of the
present disclosure;

[0010] FIG. 1B is a schematic illustration of an exemplary
system for distributed training of machine learning models,
according to some embodiments of the present disclosure;
[0011] FIG. 2 is a flowchart of an exemplary process for
an iteration of distributed training of machine learning
models, according to some embodiments of the present
disclosure;

[0012] FIG. 3 illustrates partition to subsets of a training
dataset, according to some embodiments of the present
disclosure;

12/2/2022 09:52:21

https://ppubs.uspto.gov/pubwebapp/

DIV Contents

Nov. 3, 2022

[0013] FIG. 4 is a sequence diagram of an exemplary
iteration of a process for distributed training of a machine
learning model, according to some embodiments of the
present disclosure; and

[0014] FIG. 5 illustrates an example of the difference
between measuring the step size, and measuring gradient
difference, according to some embodiments of the present
disclosure.

DETAILED DESCRIPTION

[0015] Unless otherwise defined, all technical and/or sci-
entific terms used herein have the same meaning as com-
monly understood by one of ordinary skill in the art to which
embodiments. Although methods and materials similar or
equivalent to those described herein can be used in the
practice or testing of embodiments, exemplary methods
and/or materials are described below. In case of conflict, the
patent specification, including definitions, will control. In
addition, the materials, methods, and examples are illustra-
tive only and are not intended to be necessarily limiting.
[0016] It is an object of the present disclosure, in some
embodiments thereof, to provide a system and a method for
efficient mitigation of the gradient staleness problem, based
on the target or goal function gap, or gradient gap between
points reached by the update steps calculated by computing
nodes to a reference point.

[0017] The foregoing and other objects are achieved by
the features of the independent claims. Further implemen-
tation forms are apparent from the dependent claims, the
description and the figures.

[0018] According to a first aspect of some embodiments of
the present invention there is provided a system for distrib-
uted training of a machine learning model over a plurality of
computing nodes, comprising:

[0019] a master computing node configured to control a
training of a machine learning model during a plurality of
training iterations, wherein the following is performed in
each of the plurality of iterations:

[0020] instructing each of a plurality of slave computing
nodes to train a respective local copy of the machine
learning model, locally stored on each respective slave
computing node, by locally computing a respective
update step on a plurality of parameters of the machine
learning models, based on at least one locally calcu-
lated gradient.

[0021] obtaining one or more respective update steps
from each of the plurality of slave computing nodes;

[0022] creating an updated machine learning model by
merging the machine learning model with an aggrega-
tion function comprising weights, which are a substan-
tially decreasing function of a change magnitude in at
least one substantially compatible gradient at a point
indicated by the respective update step; and

[0023] instructing at least one of the plurality of slave
computing nodes to apply a copy of the updated
machine learning model in a following training itera-
tion.

[0024] According to a second aspect of some embodi-
ments of the present invention there is provided a computer
implemented method for distributed training of a machine
learning model over a plurality of computing nodes, the
plurality of computer nodes comprising a master computing
node configured to control a training of a machine learning

Page 8 of 15

8/15

1212122, 9:52 AM

US 2022/0351079 A1l

model during a plurality of training iterations, wherein the
following is performed in each of the plurality of iterations:

[0025] instructing each of a plurality of slave computing
nodes to train a respective local copy of the machine
learning model, locally stored on each respective slave
computing node, by locally computing a respective
update step on a plurality of parameters of the machine
learning models, based on at least one locally calcu-
lated gradient;

[0026] obtaining one or more respective update steps
from each of the plurality of slave computing nodes;

[0027] creating an updated machine learning model by
merging the machine learning model with an aggrega-
tion function comprising weights, which are a substan-
tially decreasing function of a change magnitude in at
least one substantially compatible gradient at a point
indicated by the respective update step; and

[0028] instructing at least one of the plurality of slave
computing nodes to apply a copy of the updated
machine learning model in a following training itera-
tion.

[0029] According to a third aspect of some embodiments
of the present invention there is provided a computer pro-
gram product for distributed training of a machine learning
model over a plurality of computing nodes, the computer
program product comprising a non-transitory computer
readable storage medium having:

[0030] first program instructions for instructing each of
a plurality of slave computing nodes to train a respec-
tive local copy of the machine learning model, locally
stored on each respective slave computing node, by
locally computing a respective update step on a plu-
rality of parameters of the machine learning models,
based on at least one locally calculated gradient;

[0031] second program instructions for obtaining one or
more respective update steps from each of the plurality
of slave computing nodes;

[0032] third program instructions for creating an
updated machine learning model by merging the
machine learning model with an aggregation function
comprising weights, which are a substantially decreas-
ing function of a change magnitude in at least one
substantially compatible gradient at a point indicated
by the respective update step; and

[0033] fourth program instructions for instructing at
least one of the plurality of slave computing nodes to
apply a copy of the updated machine learning model in
a following training iteration.

[0034] Optionally, the at least one gradient computed by
each of the plurality of computers is computed by applying
a stochastic gradient descent for minimizing a loss function
for the respective local copy.

[0035] Optionally, the weighted function is averaging of
the update steps.

[0036] Optionally, at least one of the weights is a constant
divided by the difference between the gradient at a central
point and the gradient at a point based on the respective
update step.

[0037] Optionally, the change magnitude is measured
between the at least one gradient at a central point and the
at least one gradient at a point indicated by the respective
update step, the central point is determined by the weighted
function computed during the previous training iteration.

12/2/2022 09:52:21

https://ppubs.uspto.gov/pubwebapp/

DIV Contents

Nov. 3, 2022

[0038] Optionally, each of the plurality of slave computing
nodes uses a subset of a training dataset for calculating the
value of the update steps by training the respective local
copy.

[0039] Optionally, the update step is further based on
hyper-parameters comprising learning rate, and the learning
rate is adjusted according to a gradient convergence mea-
sure.

[0040] Before explaining at least one embodiment in
detail, it is to be understood that embodiments are not
necessarily limited in its application to the details of con-
struction and the arrangement of the components and/or
methods set forth in the following description and/or illus-
trated in the drawings and/or the Examples. Implementa-
tions described herein are capable of other embodiments or
of being practiced or carried out in various ways.

[0041] Embodiments may be a system, a method, and/or a
computer program product. The computer program product
may include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the embodiments.
[0042] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device. The computer readable
storage medium may be, for example, but is not limited to,
an electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, and any suitable combination of the foregoing.
A computer readable storage medium, as used herein, is not
to be construed as being transitory signals per se, such as
radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

[0043] Computer readable program instructions described
herein can be downloaded to respective computing/process-
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net-
work, for example, the Internet, a local area network, a wide
area network and/or a wireless network. The network may
comprise copper transmission cables, optical transmission
fibers, wireless transmission, routers, firewalls, switches,
gateway computers and/or edge servers. A network adapter
card or network interface in each computing/processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing/processing
device.

[0044] Computer readable program instructions for carry-
ing out operations of embodiments may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or

Page 9 of 15

9/15

1212122, 9:52 AM

US 2022/0351079 A1l

either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, scripting languages such as Python, Perl or the like,
and conventional procedural programming languages, such
as the “C” programming language or similar programming
languages. The computer readable program instructions may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection
may be made to an external computer (for example, through
the Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, in order to
perform aspects of embodiments.

[0045] Aspects of embodiments are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments. It will be understood that
each block of the flowchart illustrations and/or block dia-
grams, and combinations of blocks in the flowchart illustra-
tions and/or block diagrams, can be implemented by com-
puter readable program instructions.

[0046] These computer readable program instructions may
be provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

[0047] The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other device to produce a com-
puter implemented process, such that the instructions which
execute on the computer, other programmable apparatus, or
other device implement the functions/acts specified in the
flowchart and/or block diagram block or blocks.

[0048] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com-
puter program products according to various embodiments.
In this regard, each block in the flowchart or block diagrams
may represent a module, segment, or portion of instructions,
which comprises one or more executable instructions for

12/2/2022 09:52:21

https://ppubs.uspto.gov/pubwebapp/

DIV Contents

Nov. 3, 2022

implementing the specified logical function(s). In some
alternative implementations, the functions noted in the block
may occur out of the order noted in the figures. For example,
two blocks shown in succession may, in fact, be executed
substantially concurrently, or the blocks may sometimes be
executed in the reverse order, depending upon the function-
ality involved. It will also be noted that each block of the
block diagrams and/or flowchart illustration, and combina-
tions of blocks in the block diagrams and/or flowchart
illustration, can be implemented by special purpose hard-
ware-based systems that perform the specified functions or
acts or carry out combinations of special purpose hardware
and computer instructions.

[0049] Some embodiments relate to training machine
learning models and, more specifically, but not exclusively,
to distributed iterative training of machine learning models,
using gradient descent on a network of computing nodes.

[0050] Machine learning models, in particular, those used
for computer vision tasks such as video or image analysis,
such as detection, classification, automatic identification of
emergency occurrences, segmentation, and the like, may
require many resources, especially for training. Complex
natural language processing (NLP) tasks, voice analysis, and
the like may also be slow to train on a single machine, and
the enhancement obtainable by parallel computing may be
desirable.

[0051] Synchronous SGD (SSGD) is a method used to
distribute the learning, or the training process across mul-
tiple computing nodes. The major drawback of SSGD is that
its speed is confined to the slowest worker in every iteration,
which may be a problem when computing nodes vary in
their capabilities.

[0052] In asynchronous SGD (ASGD), each computing
node communicates independently of the others, thereby
addressing the major drawback of SSGD. ASGD enjoys
linear speedup in terms of the number of workers, even on
non-dedicated networks. This makes ASGD a potentially
better alternative to SSGD when using cloud computing.
Unfortunately, ASGD also has a significant weakness known
as gradient staleness; the gradients used to update the
parameter server’s (master) parameters are often based on
older parameters and therefore may be inaccurate, severely
hindering the convergence process and reaching reduced
final accuracy.

[0053] Reference is made to “Staleness-aware async-sgd
for distributed deep learning” by Wei Zhang, Suyog Gupta,
Xiangru Lian, and Ji Liu. CoRR, abs/1511.05950, 2015b.
This publication discloses a mothed, referred to as staleness
aware (SA) that penalizes the step size of stale gradients
linearly to their delay, and is hereby incorporated by refer-
ence. Unfortunately, this method suffers from a degradation
of'the final accuracy, especially when scaling up the number
of workers.

[0054] The disclosure comprises a method to mitigate
gradient staleness while minimizing the degradation of final
accuracy, by defining a measure of gradient staleness,
referred to as the Gap. The Gap is based on the difference
between the parameters used to calculate the gradient and
the parameters on which the gradient is applied. The dis-
closure comprises a new method, which may be referred to
as Gap-Aware (GA), which penalizes the step size of stale
gradients linearly to their Gap, while eliminating the over-
penalization or under-penalization of SA.

Page 10 of 15

10/15

1212122, 9:52 AM

US 2022/0351079 A1l

[0055] An intuitive method to measure gradient staleness
would be: V{(0k)-V1(0,_..), wherein f is the goal or cost
function, 6k is the machine learning model parameter set in
the iteration beginning and Tk is the delay. This essentially
measures the difference between the stale gradient and the
accurate gradient that is computed on the up-to-date param-
eters. Some deep learning methods apply the Lipschitzian
gradients assumption:

[0056] ||VI(x)-V{(y)|<L|x-y|| wherein x,y,L are real num-
bers
[0057] Setting x=0k; y=0,_, into this equation we get:

[VAOk) =V A8 i) I<L1IBx—Or il

[0058] This implies that ||8,—6,_ .|| denotes a valid upper
bound of the gradient staleness. The quantity ||0,-6,_../l/C+1
where C may denote a constant representing the maximal
distance the parameters can travel in a single update, pro-
vided the gradient norms meets certain conditions. Alterna-
tively various gradient norms such as full model, layer-wise
and parameter-wise may be used and bound may differ
accordingly. To mitigate the gradient staleness, while elimi-
nating the over-penalization and under-penalization, some
implementation may divide the gradients themselves by
their respective Gap. This method may be referred to as
Gap-Aware (GA).

[0059] The following table shows experiments results on
the ImageNet dataset using the ResNet-50 model, using an
exemplary implementation of the disclosure compared to
alternative methods of distributed training of machine learn-
ing models.

N ASGD NAG- SA GA DANA DANA- DANA-
32 70.53 70.64% 61.73 7027 7489 65.66% 75.06%
48 69.05 66.78% 56.22 67.75 7375 61.16% 74.23%
64 67.1% 59.81% 50.79 64.78 69.88 56.98% 74.11%
128 NaN NaN NaN NaN NaN NaN 72.18%
[0060] Every asynchronous slave computing node in this

embodiment is a machine with 8 GPUs, so the 128 workers
in our experiments simulate a total of 1024 GPUs.

[0061] Experiments showed improvement in the final test
error, train error, and convergence speed of different cluster
sizes, validating that penalizing linearly to the Gap is the
factor that leads to better performance. The gap, used in the
disclosed GA method, is an example of a gradient, or a loss
function value based measure of gradient staleness, rather
than the magnitude of the parameter change. The same
hyper-parameters across all the tested algorithms.

[0062] The table shows that the disclosed GA out-per-
forms alternative methods such as SA due to the high
number of workers, which exacerbates the over-penalizing
of SA. Therefore, the disclosure enables use of larger
networks of computing nodes, without losing performance
due to the synchronization overhead of SSGD, and effec-
tively mitigating the stale gradient problem of ASGD, on
image classification tasks. The disclosure was also tested on
a language-modeling task using the WikiText-103 corpus.
The improvement in gradient staleness measuring effective-
ness provided by the gap aware (GA) algorithm, and may
also be provided on other loss or target function values,
gradients, or other derivatives, enables better training speed
and model quality using the same computing network, and

12/2/2022 09:52:21

https://ppubs.uspto.gov/pubwebapp/

DIV Contents

Nov. 3, 2022

may be functional in cases where ordinary ASGD fails to
converge due to the gradient staleness problem.

[0063] The improvement in the capacity and speed of
distributed training of complex machine learning models,
provided by the disclosed GA method, enables more rapid
update of computer vision models, natural language pro-
cessing, voice analysis, anomaly detection models used for
example for cyber threat mitigation, and the like.

[0064] Reference is now made to FIG. 1A, which is a
schematic illustration of an exemplary computing node,
according to some embodiments of the present disclosure.
[0065] The exemplary computing node 100 may be a
master computing executing processes, such as processes
200, which is described in FIG. 2, and may be applied for
many machine learning models, training datasets, learning
policies, and the like. The exemplary computing node may
also be a slave computing node, executing training and
communicating with the master computing node.

[0066] The computing node 100 may include an input
interface 112, an output interface 115, a processor 111, and
a storage medium 116 for storing a program code 114, a
cache 118 for storing data such as corrective factors asso-
ciated with tuples of clusters, or cluster level corrective
factors, and/or additional data. The processor 111 may
execute code from the program code 114 for implementing
process 200, which is described in FIG. 2.

[0067] Additionally, the computing node 100 may be
implemented on a mobile device, a programmable cellular
phone, a tablet, and/or the likes.

[0068] Further alternatively, the computing node may
comprise dedicated hardware, ASIC, FPGA, and/or the
likes. It should be noted that application-specific hardware
may account for better speed and lower power consumption,
especially for parallel operation frequently used in machine
learning models. However, at a potential cost of additional
resources required during design and limit flexibility in
system updates.

[0069] The input interface 112 and the output interface 115
may comprise one or more wired and/or wireless network
interfaces for connecting to one or more networks, for
example, a local area network (LAN), a wide area network
(WAN), a metropolitan area network, a cellular network, the
internet and/or the like. The input interface 112 and the
output interface 115 may further include one or more wired
and/or wireless interconnection interfaces, for example, a
universal serial bus (USB) interface, a wireless local area
network (WLAN), and/or the like. Furthermore, the output
interface 115 may include one or more wireless interfaces
for loudspeakers, display, updating of external systems such
as image recognition systems, recommender systems, and/or
the like, as well as other processors executing post-process-
ing. The input interface 112 may include one or more
wireless interfaces for receiving information from one or
more devices. Additionally, the input interface 112 may
include specific means for communication with one or more
sensor devices 122 such as a camera, microphone, keyboard,
touchscreen, mouse, scanner and/or the like. The sensor
devices 122 may also be used to update configuration,
preferences, and/or the like. The input interface may be
configured to access a neighbor system 124, in order to
receive machine learning model parameters, training data,
hyper parameters, and/or the like. The neighbor system 124
may initiate queries, and serve as a master computing node
or as an additional slave computing node. The output

Page 11 of 15

11/15

1212122, 9:52 AM

US 2022/0351079 A1l

interface 115 may include specific means for communication
with one or more display devices 125 such as a loudspeaker,
screen, projector and/or the like. Furthermore, the display
device may comprise a model, device, and/or the likes,
which executes further processing on indications from the
system.

[0070] The processor 111 may be homogenous or hetero-
geneous and may include one or more processing nodes
arranged for parallel processing, as clusters and/or as one or
more multi-core processors. The storage medium 116 may
store training data, machine learning model parameters and
structure information, and the like, and include one or more
non-transitory persistent storage devices, for example, a
hard drive, a Flash array, a removable media, and/or the like.
The storage medium 116 may also include one or more
volatile devices, for example, a random access memory
(RAM) component and/or the like. The storage medium 116
may further include one or more network storage resources,
for example, a storage server, a network attached storage
(NAS), a network drive, and/or the like, accessible via one
or more networks through the input interface 112 and the
output interface 115. Both the program code 114, and cache
118 may be stored completely or partially on a processor
cache for speed, however since the storage size limits may
be tighter there, and operating systems may impose limita-
tions on processor cache allocation, the cache may be stored
in physical or virtual memory, which may comprise memory
modules, solid state drives (SSD), hard drives and/or other
computing devices. Furthermore, faster access storage hard-
ware such as dedicated registers, latches, caches, context
addressable memory, and/or the likes may be used to
enhance processing speed. Data that has to be accessed
frequently such as parameters of cluster partitions, the set
comprising geographic locations, the assignment of geo-
graphic locations to clusters, may be stored using faster
access devices, such as caches or video random memory
(VRAM), while data that is accessed rarely such as correc-
tive factors for tuples comprising sparsely populated
regions, road layouts of rural outskirts and/or the likes may
be stored using slower, yet more flexible and inexpensive
means such as a network attached storage, a cloud service,
and/or the like.

[0071] Reference is now made to FIG. 1B which is a
schematic illustration of an exemplary system for distributed
training of machine learning models, according to some
embodiments of the present disclosure.

[0072] System for 150 may be implemented on one or
more computers, compute server, and or the likes, physically
located on a site, and/or implemented, as a distributed
system, virtually on a cloud service, on machines also used
for other functions, and/or by several other options.

[0073] The system comprises at least one master comput-
ing node shown in 151 used to manage the training process
and aggregate update steps received from slave computing
nodes shown on 155. An additional plurality of slave com-
puting nodes 160 may be available throughout one or more
iterations and dynamically allocated.

[0074] Systems such as 150 may be optimized for distrib-
uted training of a machine learning models over a plurality
of computing nodes, where a node is assigned as a master
computing node, configured to control a training of a
machine learning model during a plurality of training itera-
tions.

12/2/2022 09:52:21

https://ppubs.uspto.gov/pubwebapp/

DIV Contents

Nov. 3, 2022

[0075] Reference is now made to FIG. 2, which is a
flowchart of an exemplary process for an iteration of dis-
tributed training of machine learning models, according to
some embodiments of the present disclosure. The processor
111 may execute the exemplary process 200 for training
machine learning models for a variety of purposes. Alter-
natively, the process 200 or parts thereof may be executed
using a remote system, an auxiliary system, and/or the like.
[0076] The exemplary process 200 starts, as shown in 201,
with slave computing nodes train a respective local copy of
the machine learning model, by locally computing a respec-
tive update step.

[0077] Preparations may comprise transmitting a copy of
a machine learning model, or parts thereof to the slave
computing nodes, which may store a local copy. The master
computer mode may instruct the slave computing nodes to
update parameters by transmitting new parameters, or
according to a policy.

[0078] The master computing node may instruct some, or
each of a plurality of slave computing nodes to train their
respective local copy of the machine learning model, locally
stored on each respective slave computing node, by locally
computing a respective update step on a plurality of param-
eters of the machine learning models, based on at least one
locally calculated gradient.

[0079] There is a plurality of iterative training methods.
The disclosure is best compatible with gradient based meth-
ods, therefore in some implementations the at least one
gradient computed by each of the plurality of computers is
computed by applying a stochastic gradient descent for
minimizing a loss function for the respective local copy.
Other iterative training methods such as genetic algorithms
may also be used, or combined with a gradient-based
method.

[0080] The distributed training is best achieved when each
of the plurality of slave computing nodes executes calcula-
tions comparatively independent of other computing nodes.
For example, a slave computing node may use subset of a
training dataset for calculating the value of the update steps
by training the respective local copy. Alternatively, a slave
computing node may execute or update only some parts of
the machine learning model, apply different optimization
methods, and/or the like.

[0081] The exemplary process 200 continues, as shown in
202, with Master computer node obtaining update steps
from slave computing nodes. The communication for
obtaining one or more respective update steps from each of
the plurality of slave computing nodes may be initiated
either by the master computing node, based for example on
a time limit, the slave computing nodes, for example by
completing a number of epochs, or by both the master and
the slave computing nodes.

[0082] The exemplary process 200 continues, as shown in
203, with merging the machine learning model with an
aggregation function comprising weights, which are a sub-
stantially decreasing function of a change in a compatible
gradient at a point indicated by the respective update step.
[0083] The change magnitude, may be measured between
the at least one gradient at a central point and the at least one
gradient at a point indicated by the respective update step.
The central point may determined by the weighted function
computed during the current or previous training iteration.
Alternatively, other algorithms may be used to adjust to
central point.

Page 12 of 15

12/15

1212122, 9:52 AM

US 2022/0351079 A1l

[0084] The weighted function may be averaging of the
update steps. Alternatively, the aggregation may use geo-
metric or multiplicative averaging, logarithmic scale aver-
aging, and/or combinations thereof or the like.

[0085] The weights may be a constant divided by the
difference between the gradient at a central point and the
gradient at a point based on the respective update step. The
constant may be based on hyper parameters such as the
learning rate and change between iteration, since the learn-
ing rate is adjusted according to a gradient convergence
measure.

[0086] It should be noted the term gradient should be
interpreted broadly, and may refer, in addition to the first
order gradient to second order gradients such as hessian or
Laplacian, to zeroth order gap in the target function, third, or
more order derivatives, and the like.

[0087] Followingly, the master computing node updates
machine learning model by merging the machine learning
model with an aggregation function comprising weights,
which are a substantially decreasing function of a change
magnitude in at least one substantially compatible gradient
at a point indicated by the respective update step. The
compatible gradient may be the same gradient calculated for
the step, however some implementation may use a modified
or simplified gradient size measure for this purpose. The
decreasing function may be a constant divided by the
gradient size measure, however other decreasing functions
such as negative exponent may be used.

[0088] The exemplary process 200 continues, as shown in
204, with instructing at least one of the plurality of slave
computing nodes to apply a copy of the updated machine
learning model in a following training iteration.

[0089] The master computing node may use the network
communication for instructing a slave computing nodes to
apply an updated copy of the machine learning model in one
or more following training iterations. Some implementation
may instruct all the slave computing nodes simultaneously,
other implementation may instruct only slave computing
nodes having completed the previous iteration, or apply
dynamically allocation of computer nodes.

[0090] Reference is now made to FIG. 3, which illustrates
partition to subsets of a training dataset, according to some
embodiments of the present disclosure.

[0091] A method of distributing work between slave com-
puting nodes may be allocating different parts of a dataset
shown in 310 to different slave computing nodes shown in
320, as shown in 300.

[0092] When different slave computing nodes have differ-
ent memory size or other computing capability bottlenecks,
more data may be allocated to slave computing nodes having
more memory, bandwidth, and/or the like.

[0093] Some implementations of distributed training of
machine learning models may, additionally or alternatively,
implement methods of model parallelism or functional
decomposition, for splitting the machine learning model to
smaller chunks, for example a layer or a smaller stack of
layers of a neural network. These implementation may also
implement the disclosed GA to regulate propagation of
parameter updating between different computing nodes, and
fall within the scope of the claims.

[0094] Reference is now made to FIG. 4, which is a
sequence diagram of an exemplary iteration of a process for
distributed training of a machine learning model, according
to some embodiments of the present disclosure.

12/2/2022 09:52:21

https://ppubs.uspto.gov/pubwebapp/

DIV Contents

Nov. 3, 2022

[0095] The exemplary sequence diagram 400 exemplifies
a sequence of inferences associated with a process such as
200 (shown in FIG. 2). The master computing node 410,
which may be similar to 151 shown in FIG. 1B, is connected
to three slave computing nodes 411, 412, and 413 which may
be similar to 155 shown in FIG. 1B. The timeline is depicted
for each agent such as the master computing node as a
descending line 430.

[0096] The exemplary sequence 400 begins as the master
computing node instructs the slave computing node 413 at
421 to train its respective local copy of the machine learning
model, by locally computing a respective update step on
parameters of the machine learning models, based on at least
one locally calculated gradient. The process continues as
shown at 422 as the processor similarly instructs the slave
computing node 412 and as shown in 423 as the processor
similarly instructs the slave computing node 411.

[0097] In this example, the slave computing node 411 is
the first to update the master computing node enabling the
master computing node to obtain one or more respective
update steps as shown in 431. Some implementation may
immediately create an updated machine learning model by
merging the machine learning model with the aggregation
function assigning weight by a decreasing function of a
change magnitude in at least one substantially compatible
gradient at a point indicated by the respective update step.
Alternative implementation may aggregate additional
update steps before instructing the slave computer node to
continue with an updated machine learning model.

[0098] Followingly, the slave computing node 413 is the
second to update the master computing node enabling the
master computing node to obtain one or more respective
update steps as shown in 432. Lastly, the slave computing
node 412 is the third to update the master computing node
enabling the master computing node to obtain one or more
respective update steps as shown in 433.

[0099] It should be noted that this is an exemplary flow on
an exemplary implementation, provided to illustrate an
exemplary sequence of communication transactions, and
actual flow of events and system behavior may vary.
[0100] Reference is now made to FIG. 5, which illustrates
an example of the difference between measuring the step
size, and measuring gradient difference, according to some
embodiments of the present disclosure.

[0101] The illustration 500 shows two instances of a
simplified, one dimensional function, which may correspond
to the loss function on which a machine learning is trained,
given a value of a parameter comprised by the model.
[0102] The graphs 520 and 540 may correspond to differ-
ent subsets of the training data. The points 522 and 542 may
be the starting point of iteration k, on the graphs 520 and 540
respectively and the tangent dotted lines 521 and 541 show
the derivative, as a single dimensional gradient.

[0103] The points after the update step, which may be the
starting point of iteration k+1, are shown in 532 and 552 on
the graphs 520 and 540 respectively, and the tangent dotted
lines 531 and 551 correspondingly show the derivative.
[0104] The vertical dashed lines 530 and 550 show the
function value gaps on the graphs 520 and 540 respectively.
The gap may be considered as a zeroth order gradient.
Similarly, the horizontal dashed lines 535 and 555 show the
step size.

[0105] Some implementation of SA may use a function of
the step size as shown in 535 and 555 to estimate the

Page 13 of 15

13/15

1212122, 9:52 AM

US 2022/0351079 A1l

staleness of the gradient. Some implementations of the
disclosed GA may use the function value gap, as shown in
530 and 550 to estimate the staleness of the gradient. Further
alternative implementation of the disclosure may addition-
ally or alternatively, use a measure of the gap in the gradient
to estimate the staleness of the gradient.

[0106] The descriptions of the various embodiments have
been presented for purposes of illustration, but are not
intended to be exhaustive or limited to the embodiments
disclosed. Many modifications and variations will be appar-
ent to those of ordinary skill in the art without departing
from the scope and spirit of the described embodiments. The
terminology used herein was chosen to best explain the
principles of the embodiments, the practical application or
technical improvement over technologies found in the mar-
ketplace, or to enable others of ordinary skill in the art to
understand the embodiments disclosed herein.

[0107] It is expected that during the life of a patent
maturing from this application many relevant methods for
querying and supplying geographic information, smart city
systems, and the likes will be developed and the scope of the
term GIS is intended to include all such new technologies a
priori.

[0108]
[0109] The terms “comprises”, “comprising”, “includes”,
“including”, “having” and their conjugates mean “including
but not limited to”. This term encompasses the terms “con-

sisting of” and “consisting essentially of”.
e

[0110] As used herein, the singular form “a”, “an” and
“the” include plural references unless the context clearly
dictates otherwise. For example, the term “a compound” or
“at least one compound” may include a plurality of com-
pounds, including mixtures thereof.

[0111] The word “exemplary” is used herein to mean
“serving as an example, instance or illustration”. Any
embodiment described as “exemplary” is not necessarily to
be construed as preferred or advantageous over other
embodiments and/or to exclude the incorporation of features
from other embodiments.

[0112] The word “optionally” is used herein to mean “is
provided in some embodiments and not provided in other
embodiments”. Any particular embodiment may include a
plurality of “optional” features unless such features conflict.

[0113] Throughout this application, various embodiments
may be presented in a range format. It should be understood
that the description in range format is merely for conve-
nience and brevity and should not be construed as an
inflexible limitation on the scope of embodiments. Accord-
ingly, the description of a range should be considered to
have specifically disclosed all the possible subranges as well
as individual numerical values within that range. For
example, description of a range such as from 1 to 6 should
be considered to have specifically disclosed subranges such
as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from
2 to 6, from 3 to 6 etc., as well as individual numbers within
that range, for example, 1, 2, 3, 4, 5, and 6. This applies
regardless of the breadth of the range.

[0114] Whenever a numerical range is indicated herein, it
is meant to include any cited numeral (fractional or integral)
within the indicated range. The phrases “ranging/ranges
between” a first indicate number and a second indicate
number and “ranging/ranges from” a first indicate number
“to” a second indicate number are used herein interchange-

As used herein the term ““about” refers to £10%.

12/2/2022 09:52:21

https://ppubs.uspto.gov/pubwebapp/

DIV Contents

Nov. 3, 2022

ably and are meant to include the first and second indicated
numbers and all the fractional and integral numerals ther-
ebetween.
[0115] It is appreciated that certain features of embodi-
ments, which are, for clarity, described in the context of
separate embodiments, may also be provided in combination
in a single embodiment. Conversely, various features of
embodiments, which are, for brevity, described in the con-
text of a single embodiment, may also be provided sepa-
rately or in any suitable subcombination or as suitable in any
other described embodiment. Certain features described in
the context of various embodiments are not to be considered
essential features of those embodiments, unless the embodi-
ment is inoperative without those elements.
[0116] Although embodiments have been described in
conjunction with specific embodiments thereof, it is evident
that many alternatives, modifications and variations will be
apparent to those skilled in the art. Accordingly, it is
intended to embrace all such alternatives, modifications and
variations that fall within the spirit and broad scope of the
appended claims.
[0117] It is the intent of the applicant(s) that all publica-
tions, patents and patent applications referred to in this
specification are to be incorporated in their entirety by
reference into the specification, as if each individual publi-
cation, patent or patent application was specifically and
individually noted when referenced that it is to be incorpo-
rated herein by reference. In addition, citation or identifica-
tion of any reference in this application shall not be con-
strued as an admission that such reference is available as
prior art to the present invention. To the extent that section
headings are used, they should not be construed as neces-
sarily limiting. In addition, any priority document(s) of this
application is/are hereby incorporated herein by reference in
its/their entirety.
What is claimed is:
1. A system for distributed training of a machine learning
model over a plurality of computing nodes, comprising:
a master computing node configured to control a training
of a machine learning model during a plurality of
training iterations, wherein the following is performed
in each of the plurality of iterations:
instructing each of a plurality of slave computing nodes
to train a respective local copy of the machine
learning model, locally stored on each respective
slave computing node, by locally computing a
respective update step on a plurality of parameters of
the machine learning models, based on at least one
locally calculated gradient;

obtaining one or more respective update steps from
each of the plurality of slave computing nodes;

creating an updated machine learning model by merg-
ing the machine learning model with an aggregation
function comprising weights, which are a substan-
tially decreasing function of a change magnitude in
at least one substantially compatible gradient at a
point indicated by the respective update step; and

instructing at least one of the plurality of slave com-
puting nodes to apply a copy of the updated machine
learning model in a following training iteration.

2. The system of claim 1, wherein the at least one gradient
computed by each of the plurality of computers is computed
by applying a stochastic gradient descent for minimizing a
loss function for the respective local copy.

Page 14 of 15

14/15

1212122, 9:52 AM

US 2022/0351079 A1l

3. The system of claim 1, wherein the weighted function
is averaging of the update steps.

4. The system of claim 1, wherein at least one of the
weights is a constant divided by the difference between the
gradient at a central point and the gradient at a point based
on the respective update step.

5. The system of claim 1, wherein the change magnitude
is measured between the at least one gradient at a central
point and the at least one gradient at a point indicated by the
respective update step, the central point is determined by the
weighted function computed during the previous training
iteration.

6. The system of claim 1, wherein each of the plurality of
slave computing nodes uses a subset of a training dataset for
calculating the value of the update steps by training the
respective local copy.

7. The system of claim 1, wherein the update step is
further based on hyper-parameters comprising learning rate,
and the learning rate is adjusted according to a gradient
convergence measure.

8. A computer implemented method for distributed train-
ing of a machine learning model over a plurality of com-
puting nodes, the plurality of computer nodes comprising a
master computing node configured to control a training of a
machine learning model during a plurality of training itera-
tions, wherein the following is performed in each of the
plurality of iterations:

instructing each of a plurality of slave computing nodes to

train a respective local copy of the machine learning
model, locally stored on each respective slave comput-
ing node, by locally computing a respective update step
on a plurality of parameters of the machine learning
models, based on at least one locally calculated gradi-
ent;

obtaining one or more respective update steps from each

of the plurality of slave computing nodes;

creating an updated machine learning model by merging

the machine learning model with an aggregation func-
tion comprising weights, which are a substantially
decreasing function of a change magnitude in at least
one substantially compatible gradient at a point indi-
cated by the respective update step; and

instructing at least one of the plurality of slave computing

nodes to apply a copy of the updated machine learning
model in a following training iteration.

9. The computer implemented method of claim 8, wherein
the at least one gradient computed by each of the plurality
of computers is computed by applying a stochastic gradient
descent for minimizing a loss function for the respective
local copy.

12/2/2022 09:52:21

https://ppubs.uspto.gov/pubwebapp/

DIV Contents

Nov. 3, 2022

10. The computer implemented method of claim 8,
wherein the weighted function is averaging of the update
steps.

11. The computer implemented method of claim 8,
wherein at least one of the weights is a constant divided by
the difference between the gradient at a central point and the
gradient at a point based on the respective update step.

12. The computer implemented method of claim 8,
wherein the change magnitude is measured between the at
least one gradient at a central point and the at least one
gradient at a point indicated by the respective update step,
the central point is determined by the weighted function
computed during the previous training iteration.

13. The computer implemented method of claim 8,
wherein each of the plurality of slave computing nodes uses
a subset of a training dataset for calculating the value of the
update steps by training the respective local copy.

14. The computer implemented method of claim 8,
wherein the update step is further based on hyper-parameters
comprising learning rate, and the learning rate is adjusted
downwards according to a gradient convergence measure.

15. A computer program product for distributed training
of a machine learning model over a plurality of computing
nodes, the computer program product comprising a non-
transitory computer readable storage medium having;:

first program instructions for instructing each of a plural-
ity of slave computing nodes to train a respective local
copy of the machine learning model, locally stored on
each respective slave computing node, by locally com-
puting a respective update step on a plurality of param-
eters of the machine learning models, based on at least
one locally calculated gradient;

second program instructions for obtaining one or more
respective update steps from each of the plurality of
slave computing nodes;

third program instructions for creating an updated
machine learning model by merging the machine learn-
ing model with an aggregation function comprising
weights, which are a substantially decreasing function
of a change magnitude in at least one substantially
compatible gradient at a point indicated by the respec-
tive update step; and

fourth program instructions for instructing at least one of
the plurality of slave computing nodes to apply a copy
of the updated machine learning model in a following
training iteration.

* * & & *

Page 15 of 15

15/15

