
Probabilistic Invariant Learning with
Randomized Linear Classifiers

Leonardo Cotta
Vector Institute

leonardo.cotta@vectorinstitute.ai

Gal Yehuda
Technion, Haifa, Israel

ygal@cs.technion.ac.il

Assaf Schuster
Technion, Haifa, Israel

assaf@technion.ac.il

Chris J. Maddison
University of Toronto and Vector Institute

cmaddis@cs.toronto.edu

Abstract

Designing models that are both expressive and preserve known invariances of tasks
is an increasingly hard problem. Existing solutions tradeoff invariance for compu-
tational or memory resources. In this work, we show how to leverage randomness
and design models that are both expressive and invariant but use less resources.
Inspired by randomized algorithms, our key insight is that accepting probabilis-
tic notions of universal approximation and invariance can reduce our resource
requirements. More specifically, we propose a class of binary classification models
called Randomized Linear Classifiers (RLCs). We give parameter and sample size
conditions in which RLCs can, with high probability, approximate any (smooth)
function while preserving invariance to compact group transformations. Lever-
aging this result, we design three RLCs that are provably probabilistic invariant
for classification tasks over sets, graphs, and spherical data. We show how these
models can achieve probabilistic invariance and universality using less resources
than (deterministic) neural networks and their invariant counterparts. Finally, we
empirically demonstrate the benefits of this new class of models on invariant tasks
where deterministic invariant neural networks are known to struggle.

1 Introduction

A modern challenge in machine learning is designing model classes for invariant tasks that are
both universal and resource-efficient. Consider designing an architecture for graph problems that is
invariant under graph isomorphism. Ensuring that this class is universal is at least as hard as solving
the graph isomorphism problem [5]. Similarly, permutation invariance universality comes at the cost
of memory—the number of parameters scales with the sequence size [32].

Using randomness as a computational resource for algorithms is a fundamental idea in computer
science. In their essence, randomized algorithms often provide simple solutions that use less memory
or run in less time than their deterministic counterparts [30]. Since there is no free lunch, these gains
come at the cost of accepting a probabilistic notion of correctness, i.e., while deterministic algorithms
always output correct answers, their randomized versions will be right only with high probability.
Inspired by this, the key insight in our paper is using an external source of randomness to reduce
time and space resources when learning an invariant task. To benefit from that, just as in randomized
algorithms, we also need to introduce a probabilistic notion of invariance and expressive power. By
guaranteeing invariance and universal approximation only with high probability, we show when it is
possible to avoid the invariance-resource tradeoff.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



We introduce a class of models for binary classification tasks named Randomized Linear Classifiers
(RLCs). In an RLC the external source of randomness is input to a neural network that generates a
random linear classifier —independently from the input— which is then used to make a prediction. To
guarantee correctness with high probability, we need to repeat this process for a sufficient number of
times, i.e., take multiple samples, and predict the majority of their output— this is called amplification.
The key features of RLCs are both i) randomness independent from input and ii) linear transformation
of the input. Combined, these features provide both theoretical and practical simplicity. On the
practical side, RLCs can offload computation and preserve privacy in resource-constrained devices.
We highlight the benefits of RLCs in such applications below.

a. Online computation. Suppose that our goal is to answer classification queries as quickly as
possible, or that the queries arrive in an “online” fashion. By using RLCs, we can sample several
linear classifiers “offline” (before observing new inputs), and then in the online phase simply
take the majority of a few (different) linear classifiers for each input. This way, the majority
of computations can be done offline rather than online —as usual in existing online learning
settings.

b. Private computation. Suppose that we wish to peform inference with an RLC, but we only have
a low-resource computer (e.g., a smartwatch). A practical way of doing so is to perform the
sampling on a remote server, then retrieve the answer. In our approach, the server can send
the randomness, i.e., the sampled linear classifier coefficients. There is no communication
between the client and the server at all, and the client never sends the input —retaining its
privacy. Moreover, since the client only needs to perform a few linear computations, it can be a
low-resource computer.

The theoretical advantages of RLCs’ features are explored in this work. We consider the required
resources of an RLC to be universal and invariant for a given task as the number of parameters
used by its neural network and the sufficient number of samples (amplification size). Then, we
focus on establishing upper-bounds for these resources in different scenarios. More specifically, our
contributions are three-fold:

i) We introduce the general class of Randomized Linear Classifiers (RLCs), presenting a universal
approximation theorem coupled with a resource consumption characterization (Theorem 1).
In specific, we show that any binary classification problem with a smooth boundary can be
approximated with high probability by RLCs with at most the same number of parameters as a
deterministic neural network. This is a result of general purpose and holds for any invariant or
non-invariant task.

ii) We show how the problem of designing RLCs invariant to compact group transformations can
be cast to designing invariant distributions of linear classifiers. As a result, we can leverage
representation theorems in probability theory, such as de Finetti’s [9], Aldous-Hoover ’s[1]
and Friedman’s [13] to design invariant RLCs for tasks with set and graph data. Moreover, in
Appendix B we also show a simple invariant model for spherical data using these ideas.

iii) Finally, we show both theoretically and empirically how invariant RLCs can succeed in tasks
where deterministic architectures, such as Deep Sets and GNNs, cannot efficiently approximate.
By introducing probabilistic notions of universality and invariance, our work establishes the first
alternative to avoid the invariance-resource tradeoff with theoretical guarantees and empirical
success.

1.1 Related Work

Here, we briefly review Coin-Flipping Neural Networks (CFNNs) and invariant representation
learning —two core concepts that we build upon. Finally, we explain how Bayesian neural networks
and RLCs belong to different learning paradigms.

Coin-flipping neural networks. CFNNs were presented by [27], where the authors pro-
pose several deep learning architectures using randomness as part of their inference. A few
(constructive) examples were shown in which randomness can help by reducing the number of
parameters or the depth of the network. In this paper we focus on the case of learning randomized
linear classifiers and its use in invariant learning. The invariant models were not explored in [27],

2



and to the best of our knowledge this is the first work studying randomized models for invariant
learning. One specific CFNN model proposed in [27] is the Hypernetwork CFNN. In this model, the
weights of a model are first randomly generated. Then, the computation of a deterministic neural
network using these random weights takes place. In this work, we focus on the “extreme” case of this
paradigm: we allow our model to use arbitrarily complex distributions to generate our final weights,
but we insist that the deterministic part —using such weights— would be a linear function. That is,
we push the computational complexity to the random part of the model. This gives rise to the class of
models we study: Randomized Linear Classifiers (RLCs). The work of [27] considered a first version
of RLCs, but did not provide any empirical results and their theoretical results hold only for single
dimensional input (i.e., in R). Hence, to the best of our knowledge our work also establishes the first
(general purpose) universal approximation theorem of (non-invariant) RLCs (cf. Section 2).

Invariant representation learning. Over the last years, there has been a growing interest
in designing G-invariant architectures [4, 6, 18, 35]. In summary, we can often leverage an a priori
knowledge that the function to be learned is invariant to the action of a group G by forcing our
model to also be invariant to it. That is, G-invariant architectures incorporate a known propriety
of the target. Such a reduced model space is known to both empirically and theoretically achieve
better generalization [4, 6, 11, 19]. Existing works study the G-invariant function space and how to
parameterize it with neural networks. Despite some empirical success, invariance guarantees often
come at unreasonable prices. For instance, CNNs are guaranteed to be invariant to translations only
with infinite grids (images) [19]. Regarding permutation invariance, Deep Sets is always invariant,
but to remain universal it requires a hidden layer as large as the input set [32]. Finally, GNNs,
as any other computationally efficient graph isomorphism-invariant architecture, cannot achieve
universal approximation. More specifically, achieving graph isomorphism invariance and universal
approximation is at least as hard as solving the graph isomorphism problem [5]. In contrast to these
results, our work shows that such tradeoffs are usually restricted to the design of deterministic
architectures. By accepting probabilistic notions of invariance and universality, we show that under
mild data generation conditions we can circumvent these invariance-resource tradeoffs.

Bayesian neural networks. Bayesian Neural Networks (BNNs) incorporate Bayesian in-
ference into both training and inference of neural networks. In short, BNNs explicitly assign a
prior to the parameters and perform inference with a posterior. BNNs differ from RLCs in how
randomness is used. BNNs explicitly model prior and posterior distributions over the weights. This is
usually leveraged in the context of confidence estimation. On the other hand, RLCs do not model a
prior or a posterior distribution over the parameters. Rather, RLCs take samples from a model that
uses external randomness. In their essence, BNNs and RLCs are trying to achieve different goals.
While BNNs are modeling uncertainty over decisions, RLCs are trying to output the correct target
with the highest probability they can.

2 Randomized Linear Classifiers

We start by introducing the general class of Randomized Linear Classifiers. Due to our universal
approximation result, this can be seen as the analogous of a multi-layer perceptron in the context
of randomized linear models. In the next sections we will introduce the analogous of G-invariant
models.

For notation simplicity, we denote the random variable of a value with bold letters, e.g., a random
variable x would have a realization x. We consider binary classification tasks where the input data x is
supported on X := supp(x) ⊆ Rd and labeled according to a true labeling function y : X → {−1, 1}.
Therefore, a binary classification task can be summarized by the tuple (x, y).

Given a source of randomness u supported on U := supp(u) ⊆ Rdu , and a neural network
fθ : Rdu → Rd+1 parameterized by θ ∈ Rd, an RLC predicts y(x) for x ∈ X according to

sgn(⟨aθ, x⟩ − bθ) := sgn(⟨fθ(u)1:d, x⟩ − fθ(u)d+1). (1)

From above, one can see the coefficients (aθ,bθ) of the linear classifier given by the pushforward
measure fθ#u. Finally, unless otherwise stated, we assume fθ to be a multi-layer perceptron with
ReLU activations.

3



Analogously to randomized algorithms for decision problems, we can take multiple samples using
Equation (1) and make a final prediction using their majority. To simplify notation, let us define the
function of our final prediction taking m samples as

y(m)
θ (x) := maj({sgn(⟨a(j)θ , x⟩ − b(j)

θ )}mj=1) = maj({sgn(⟨fθ(u(j))1:d, x⟩ − fθ(u(j))d+1)}mj=1),
(2)

where each u(j) ∼i.i.d P (u). Note that as we take more samples, we approach the mode of the
distribution of linear predictions for a given x. We define this value as the limiting classification of x,
which implies the existence of the limiting classifier Fθ : Rd → {−1, 1} with

Fθ(x) := lim
m→∞

maj({sgn(⟨a(j)θ , x⟩ − b(j)
θ )}mj=1) = argmax

ŷ∈{−1,1}
P (sgn(⟨aθ, x⟩ − bθ) = ŷ). (3)

At this point, it is worth noting that although the random prediction (Equation (1)) is a linear function,
its limiting classifier (Equation (3)) can induce an arbitrarily non-linear boundary. In fact, we leverage
this notion to define the probabilistic version of universality. We say that an RLC is universal in a
probabilistic sense if its limiting classifier (Equation (3)) is universal. It is easy to see that models
making deterministic predictions collapse the notions of probabilistic and exact universality. On the
other hand, for RLCs to be probabilistic universal it suffices to produce predictions that are biased
towards the desired answer on every input, i.e., P (y(m)

θ (x) = y(x)) > 0.5,∀x ∈ X .

In practice, we will make random predictions and therefore we need to capture a sufficient sample
size m such that we are close to the limiting classifier with high probability. An important measure to
understand how large m needs to be is what we call the minimum bias of the RLC. We denote it by ε
and define it as the infimum of the total variation distances between the random predictions of every
input x and a random variable r with Radamacher distribution. That is,

ε := inf{dVD(y
(m)
θ (x), r) : x ∈ X}.

Put into words, ε captures a lower-bound on how close to a random prediction the RLC can be.
And, naturally, the closer it is to a random prediction the larger m needs to be such that the majority
converges to the limiting prediction. Therefore, our universal approximation result needs to capture
how many parameters an RLC needs to converge to correct answers and how fast, i.e., with respect
to m, it does. Before we proceed with our results on m, p and the universality property, we need to
define the general class of binary classification tasks we consider.
Assumption 1 (Tasks with smooth separators). We say that a binary classification task (x, y) admits
a smooth separator if there exists a neural network s : Rd → R such that y(x) = sgn(s(x)),∀x ∈
supp(X).

Note that due to the universal approximation ability of neural networks, the set of tasks satisfying
Assumption 1 is quite large. Moreover, Assumption 1 is a sufficient but not necessary condition.
We will later prove universality for a wide class of graph problems and we believe many others exist.
For now, let us finally state our result on the resource consumption and universal approximation of
RLCs in tasks with smooth separators.
Assumption 2 (Absolutely continuous randomness source). We say that the randomness source u is
absolutely continuous if at least one of its coordinates ui, 1 ≤ i ≤ du has an absolutely continuous
marginal distribution.

Theorem 1 (Resource consumption of universal RLCs). Let (x, y) be a binary classification task
that admits a smooth separator as in Assumption 1. Then, there exists an RLC with neural network
fθ⋆ and absolutely continuous randomness source u (Assumption 2) that is universal in the limit, i.e.,

Fθ⋆(x) = y(x),∀x ∈ X ,

and makes random predictions that are correct with probability

P (maj({sgn(⟨a(j)θ⋆ , x⟩ − b(j)
θ⋆ )}mj=1) = y(x)) > 1− exp{−2ϵ2m2},

where ϵ is the minimum bias of Fθ⋆ .

Further, if p† is the number of parameters used by a deterministic neural network with one hidden
layer to achieve zero-error in the task, fθ has at most

p ≤ p† +O(1) parameters.

4



The complete proof is in Appendix A Note that Theorem 1 does not assume or explore any invariance
in the task. It is a general universality result that we will leverage in our study of invariant RLCs,
but of independent interest. One way to interpret Theorem 1 is as a probabilistic version of the
classical universal approximation theorem of multi-layer perceptrons [8]. The result on the number
of parameters is important to make it clear that RLCs do not need to find a solution more complex
than one given by a deterministic model in the supervised learning task.

Until now, we have established the expressive power of RLCs, i.e., that, under mild assumptions,
they can be as expressive and resource-efficient as deterministic neural networks. But, there is still
the general question: When are RLCs more resource-efficient than deterministic neural networks?
In [27] it was constructed an specific task where an RLC (although the authors do not name it as
such) uses a constant number of parameters, while a deterministic neural network would need a
number of parameters that grows with the input dimension. Here, we are interested in more general
settings. In the next section we will show a large class of invariant tasks where invariant RLCs are
more resource-efficient than their invariant deterministic neural network counterparts.

3 G-invariant Randomized Linear Classifiers

Now, we turn our focus to binary classification tasks that are invariant to compact group transforma-
tions. That is, let G be a compact group with an action of g ∈ G on x ∈ X denoted by g · x. A task
(x, y) is G-invariant if y(x) = y(g · x),∀x ∈ X ,∀g ∈ G. It is easy to see that an RLC that perfectly
classifies the task in the probabilistic notion, i.e., Fθ⋆(x) = y(x),∀x ∈ X , will also be probabilistic
G-invariant, i.e., Fθ⋆(x) = Fθ⋆(g · x),∀x ∈ X ,∀g ∈ G. Thus, if we know that a task is G-invariant,
can we restrict our model class to G-invariant RLCs? At first, the answer is not obvious. We need a
design principle that guarantees a search space with only G-invariant solutions while at least one of
them has zero error. In Theorem 2 we present the result that guides our design of invariant RLCs.

Theorem 2 (G-invariant RLCs). Let (x, y) be a G-invariant task with a smooth separator as in
Assumption 1. Then, the set of RLCs with a G-invariant distribution in the classifier weights, i.e.,

aθ
d
= g · aθ,∀g ∈ G,

and absolutely continuous randomness source (cf. Assumption 2) is both probabilistic G-invariant
and universal in (x, y). That is,

Fθ(x) = Fθ(g · x),∀x ∈ X ,∀g ∈ G,∀θ ∈ Rp,

and
∃θ⋆ ∈ Rp : Fθ⋆(x) = y(x),∀x ∈ X ,∀g ∈ G.

The complete proof is in Appendix A From above, we now know that designing universal RLCs for
invariant tasks can be cast to the problem of designing universal G-invariant distributions —together
with a separate (possibly dependent) bias distribution. This design principle differs fundamentally
from deterministic invariant representation learning. Here, instead of designing architectures that are
G-invariant, we wish to design architectures that induce a G-invariant distribution. That is, the RLC
neural network fθ is not itself G-invariant.

Next, we will define a very useful assumption about the data generation process. It will allow us to
leverage representation results in probability theory to both design universal and efficient G-invariant
distributions and allow for variable-size set and graph data.

Assumption 3 (Infinitely G-invariant data). Let G∞ be a homomorphism of G into the composition
of homormophisms of G in all finite dimensions, e.g., if G is the set of permutations of {1, . . . , d},
G∞ is the set of permutations of N. We say that a task (x, y) has infinitely G-invariant data if

there exists an infinite sequence of random variables (xi)
∞
i=1

d
= g∞ · (xi)

∞
i=1,∀g∞ ∈ G∞, where

x d
= (xi)i∈S for S ∈

(N
d

)
, with

(N
d

)
being the set of all d-size subsets of N.

Although the above might seem unintuitive, the representation theorems also help us make sense of
them. The data generation process will take the same form as our linear weights distribution. As we
will see, for sets it means that items are sampled i.i.d. given a common latent factor of the set [9]. In
graphs edges are also generated i.i.d. given latent factors of their endpoints and the graph [1].

5



Proposition 1 (Infinitely G-invariant RLCs). Let (x, y) be a G-invariant task with infinitely G-
invariant data (Assumption 3) with a smooth separator as in Assumption 1. Then, the set of RLCs
with an infinitely G-invariant distribution in the linear classifier weights, i.e., as in Assumption 3
(aθi)∞i=1

d
= g∞ · (aθi)

∞
i=1,∀g∞ ∈ G∞, where aθ

d
= (aθi)i∈S , for S ∈

(N
d

)
, and absolutely continuous

randomness source (cf. Assumption 2) is probabilistic G-invariant and universal for (x, y) as in
Theorem 2.

The complete proof is in Appendix A Next, we design G-invariant RLCs drawing from results in
the representation theory of probability distributions. We consider tasks with set and graph data. In
Appendix B we also consider spherical data. For each, we derive conditions for G-invariance and
universality, highlighting their resource gain when compared to their deterministic counterpart.

3.1 RLCs for set data

Here we consider tasks that are invariant to permutations, i.e., our input is a set1 of vectors. More
formally, we let our input be supported on X := (Rk)d2 and G := Sym([d]) be the group of
permutations of [d] := {1, . . . , d}. Then, for an input x ∈ X the action g · x is given by permuting
the d vectors of size k according to g.

The key insight to design RLCs for set data is leveraging the classic de Finetti’s theorem [9]. In
summary, de Finetti showed how any infinite sequence of exchangeable random variables can be
expressed as an infinite sequence of i.i.d. random variables conditioned on a common latent measure.
Now, when Assumption 3 is true, de Finetti tells us that we can sample our weights aθ by first
sampling a common noise and use it as input to the same function, which generates the linear
weights together with an independent noise in an i.i.d. manner. Note that the bias does not have
the exchangeability property. Thus, it needs to receive the same shared noise as the set but use a
different function, since it is not necessarily sampled in the same way. Next, we formalize these
notions by defining the class of Randomized Set Classifiers (RSetCs) and characterizing its universal
approximation power together with resource consumption.
Definition 1 (Randomized Set Classifiers (RSetCs)). A Randomized Set Classifier (RSetC) uses two
neural networks fθf : R2 → Rk and gθg : R2 → R together with d + 2 sources of randomness: u,
(ui)

d
i=1, and ub. The random linear classifier coefficients are generated with

aθ
(k)
i

d
= fθf (u,ui) and bθ

d
= gθg (u,ub),

where aθ
(k)
i is the ith chunk of k random linear weights, i.e., the weights multiplying the ith vector.

Proposition 2 (Universality and resource consumption of RSetCs). Let (x, y) be a permutation-
invariant task with a smooth separator as in Assumption 1 and infinitely permutation-invariant data
as in Assumption 3. Then, RSetCs as in Definition 1 with absolutely continuous randomness source
(cf. Assumption 2) are probabilistic G-invariant and universal for (x, y) (as in Theorem 2). Further,
the number of parameters needed by RSetCs in this task will depend only on the smallest finite
absolute moments of the weight and bias distributions in the zero-error solution, i.e., the ones given
by fθ⋆

f
(u,ui) and gθ⋆

g
(u,ub).

The complete proof is in Appendix A We highlight that Proposition 2 is combining de Finetti’s
theorem [9], Kallenberg’s noise transfer theorem [16] and recent results on the capacity of neural
networks to generate distributions from noise [34].

What is the practical impact of Assumption 3 in set tasks? Assumption 3 implies that an input set
x is generated by first sampling some latent variable Θ ∼ ν which is then used to sample items in
an i.i.d. manner x1, x2, . . . |∼Θi.i.d. PΘ. We can make sense of this with an example in e-commerce
systems. If the set represents items in a shopping cart, the latent factor Θ can be thought of as a
summary of the user’s shopping behavior. Overall, this assumption is not appropriate if there could
be mutually exclusive items in the set.

When are RSetCs better than Deep Sets? We contrast the results of RSetCs with Deep Sets [35]
due to its universality and computational efficiency [32]. Overall, other deterministic set models

1If the support is discrete we shall consider multisets instead.
2Note that this does not change the reference to d in previous results.

6



are either variations of Deep Sets that inherent the same properties [20, 24] or are computationally
inefficient [23]. Apart from universality, it is important to note from Proposition 2 how the number of
parameters used by the RSetC does not depend on the set size. Instead, its resource consumption is
related to how smooth the distribution of linear classifiers weights and bias are. Since all the weights
have the same distribution (conditioned on u), the set size is not relevant. This comes in contrast to
Deep Sets, which as shown in [32] only achieves universality when the hidden-layer and the input set
have the same size.

Moreover, Deep Sets is known to have poor set size generalization abilities, i.e., when the test set
contains larger sets than the training set [31]. In RSetCs, although the number of parameters does
not depend on the set size, the distribution of linear coefficients can use this information. Overall,
the gain in robustness to set size might come from RSetCs performing simple linear transformations
of the input. That is, for small changes in the set size, the output is not expected to change abruptly.
This opposes to Deep Sets, where the representations of the items are aggregated and input to a neural
network. Thus, any small addition to the set can arbitrarily change the output. Although we cannot
always guarantee size generalization for RSetCs, we give empirical evidence in Section 4 that they
do seem to be a lot more robust than Deep Sets.

3.2 RLCs for graph data

Here we consider tasks that take graphs as input. Given a (possibly weighted) graph G = (V,E) with
d vertices and M edges, we take as input a vector x of size d2 representing the vectorized adjacency
matrix of G. Our invariance is then to graph isomorphism. That is, we again have the permutation
group G := Sym([d]), but now with a different action. Here g · x jointly permutes the rows and
columns of the adjacency matrix corresponding to x. This way, x and g · x represent isomorphic
graphs. We will then assume that our graph tasks are G-invariant, i.e., two isomorphic graphs x, g · x
will always have the same label.

Now, we can leverage Aldous-Hoover’s theorem, the analogous of de Finetti’s theorem for joint
exchangeability in 2-dimensional arrays. It gives us a model, invariance and universality results
analogous to the ones for RSetCs.
Definition 2 (Randomized Graph Classifiers). A Randomized Graph Classifier (RGraphC) uses two
neural networks fθf : R4 → R and gθg : R → R together with d2 + d+ 1 sources of randomness: u,

(u(n)
i )

d

i=1, (u(e)
ij )

i,j∈[d]
, and ub. The random linear classifier coefficients are generated with

aθij
d
= fθf (u,u(n)

i ,u(n)
j ,u(e)

ij ), and bθ
d
= fθf (u,ub),

where aθij is the random linear weight multiplying the entry of x that corresponds to the entry in row
i and column j of the graph’s adjacency matrix.

Note that we can use the same proof of Proposition 2 and have an equivalent result for RGraphCs.
However, since graphs are discrete objects the smooth separator assumption (cf. Assumption 1) might
not be so easily satisfied. To address this, we define a sufficiently large class of graph models that
RGraphCs can approximate.
Definition 3 (Inner-product decision graph problems). Let G = (V,E) be a graph over d vertices
with vectorized adjacency matrix x ∈ X := supp(x) ⊆ Rd2

. We say that a graph property
y : X → {−1, 1} is an inner product verifiable property if there exists a set of vectors S ⊆ Rd2

and
a constant b ∈ R such that:

• For all graphs x+ ∈ X satisfying the property y(x+) = 1, there exists s ∈ S, such that ⟨s, x+⟩ ≥ b;

• For all graphs x− ∈ X not satisfying the property y(x−) = −1, we have ⟨x−, s′⟩ < b,∀s′ ∈ S.

As an example of such property, consider connectivity. The set S above is defined to be the set of all
binary vectors representing adjacencies of spanning trees. The threshold in this case would be d− 1.
If G is connected, then there exists a spanning tree for G. When taking the inner product of x and
the vector s ∈ S representing the spanning tree, the result would be the number of edges in the tree,
which is d− 1. In contrast, if G is not connected, it does not have a spanning tree. This means that for
all vectors s′ in S, the inner product ⟨s′, x⟩ is less than d− 1. We can use the same logic to show that
properties arising from NP-complete problems such as independent set, or simple ones that GNNs

7



cannot approximate, such as diameter, girth and connectivity are all encompassed by Definition 3.
We are now ready to state the probabilistic invariance and universality result for RGraphCs.

Theorem 3. Let (x, y) be a graph isomorphism-invariant task that either i) has a smooth separator
as in Assumption 1 or ii) is an inner-product decision graph problem as in Definition 3. Further,
the task has infinitely graph isomorphism-invariant data as in Assumption 3. Then, there exists
an RGraphC as in Definition 2 with absolutely continuous randomness source (cf. Assumption 2)
that is probabilistic G-invariant and universal for (x, y) (as in Theorem 2). Further, the number of
parameters of this RGraphC will depend only on the smallest finite absolute moments of its weight
and bias distributions, i.e., the ones given by fθf (u,ui) and gθg (u,ub).

The complete proof is in Appendix A The main insight behind Theorem 3 is using techniques from
randomized algorithms to derive the universality of RLCs in the graph tasks from Definition 3. The
other results follow the same line as Proposition 2 while replacing de Finetti’s with Aldous-Hoover’s
theorem.

What is the practical impact of Assumption 3 in graph tasks? Janson and Diaconis [15] showed
that Assumption 3 is equivalent to having the input graphs sampled from a graphon model. For the
reader unfamiliar with graphons, this class encompasses from simple random graph models like
G(n, p) [12], to modern matrix factorization methods in recommender systems [29]. Moreover, this
assumption has been recently used to design representations that are invariant to graph size, see [3].

When are RGraphCs better than GNNs? We contrast the results of RGraphCs with GNNs[17,
22, 26] due its widespread use, empirical success and computational efficiency. A known issue with
GNNs is its inability to approximate simple tasks such as graph connectivity [14]. This comes from
the fact that GNNs cannot distinguish simple non-isomorphic graphs such as any pair of d-regular
graphs. As such, GNNs cannot universally approximate tasks that assign different labels to any of
such pairs. In contrast, RGraphCs can approximate any problem that either has a smooth boundary or
can be tested with an inner product as in Definition 3.

Note that we can always define a task following Definition 3 that distinguishes between a specific
graph and any other non-isomorphic input. Thus, unlike deterministic models, the set of tasks
RGraphCs can solve is not attached to solving the graph isomorphism problem. It is simply attached
to whether the decision problem can be tested with an inner product. Note that this does not imply
that our model solves the graph isomorphism problem. To do so, we would need to test on an
exponential number of tasks. The main implication of this observation is that the expressive power
of probabilistic graph models is not attached to the ability to distinguish non-isomorphic graphs,
but to the task’s complexity. Thus, we are not doomed to fail at simple tasks like GNNs. Finally,
note that GNNs aggregate messages using Deep Sets (or some variation of it). Thus, its approximation
power, even for graphs that it can distinguish, requires a number of parameters that grows with the
graphs’ number of vertices.

Finally, we highlight that there exist more expressive, but still non-universal, models such as higher-
order GNNs [22] and subgraph GNNs [2, 7]. However, they suffer from a heavy use of computational
resources and are restricted to smaller, but existent, set of non-isomorphic graphs it cannot distinguish.
As such, they suffer from the same aforementioned problems as GNNs.

4 Experiments

Until now, our theory characterized the model space of invariant RLCs. It is natural to wonder
whether such guarantees translate into practice. Concretely, we focus on investigating three questions
related to our theoretical contributions.

Q1. Are RSetCs more parameter-efficient than Deep Sets in practice? (cf. Proposition 2)
Q2. Are RSetCs more robust than Deep Sets with out-of-distribution data? (cf. discussion in
Section 3.1)
Q3. Can RGraphCs efficiently solve tasks that GNNs struggle in practice? (cf. Theorem 3)

Sorting task. To address Q1 and Q2, we consider the sorting task proposed in [32]. Our input is
given by x, supp(x) = Rd, xi ∼ N (0, 1) for some odd number of dimensions d and the labeling
function by y(x) = 1 if for a vector w,wi := (−1)i+1 we have wT sort(x) ≥ 0 or −1 otherwise.
We chose this task since it was shown in [32] that Deep Sets needs a hidden-layer at least as large
as the input set (d) to approximate it with zero error. Thus, to showcase the parameter efficiency of

8



RSetCs in practice (cf. Proposition 2) we test both models in this task, while fixing the hidden layer
at 5 on both. To make the results comparable, we train RSetCs with a single hidden layer (in both
networks) and Deep Sets with a single hidden layer in each of its networks as well. Finally, to answer
Q2 we test both models on sets twice as large as the ones used in training.

Sign task. We would also like to investigate Q1 in a setting where Deep Sets is not supposed to
struggle. That is, we would like to know whether RSetCs can be more parameter-efficient in tasks that
are (supposedly) easy for Deep Sets. For this, we consider the sign task y(x) := sgn(

∑d
i=1 sgn(xi))

with xi ∼ N(0, 1). Note that the networks in Deep Sets would need to simply learn the sign function
and thus its parameters should not depend on the set size. To showcase the parameter efficiency of
RSetCs, we consider Deep Sets with one and two hidden layers (in both networks) while keeping
RSetCs with a single hidden layer. The rest of the experimental setup follows the sorting task
verbatim.

Connectivity task. We chose the task of deciding whether a graph sampled from a G(n, p) model
with p = 1.1 · log(n)/n is connected or not. Unlike RGraphCs, GNNs provably cannot approximate
this simple task [14]. By comparing the performance of GNNs and RGraphCs in this task, we
can empirically verify Theorem 3. Moreover, in contrast to GNNs, Theorem 3 tells us that the
required number of parameters in RGraphCs is not attached to the graph size. Hence, we also test the
performance of both models in this task while increasing the size of the input graphs and keeping
hidden layer sizes fixed to 2 in both models. To make results comparable, we use a GNN with 3
layers and an RGraphC with 3 hidden layers of size in each network. Since in each GNN layer there
are two network layers, the parameter sizes in the GNN and in the RGraphC are comparable.

Experimental setup. We used the Deep Sets architecture as proposed in the original paper [35].
For the GNN, we used the GIN [33] architecture, which completely captures the GNN properties
mentioned in Section 3.2. Finally, to give perspective on how bad a model is performing, we also
contrast the results with a constant classifier, i.e., how a classifier that always predicts the most
common class performs. All models were trained with Pytorch [25] using Adagrad [10] for a
maximum of 1000 epochs with early stopping. The reported results in Figures 1 and 2b are with
respect to five runs. The training sets consisted of 1000 examples, while the the validation and test
sets contained 100 examples. We detail the hyperparameters and their search in Appendix C.

A1 (RSetC parameter efficiency). In Figure 1a we see the (test set) results for RSetCs and Deep
Sets when varying the size of the input for a fixed hidden layer. We note that even in the first task,
d = 5, when Deep Sets is supposed to approximate the task well it fails to generalize. Overall, for all
input sizes we can see RSetCs consistently outperforming Deep Sets. On the other hand, in most of
the tasks Deep Sets performs similarly or even worse than a constant classifier. Finally, in the sign
task from Figure 2a we see that the performance of a single hidden-layer RSetC is closer to a two
hidden-layer Depe Sets, showing its parameter efficiency even in tasks where Deep Sets is supposed
to efficiently succeed. Thus, we can verify Theorem 2 and Proposition 2 in practice.

A2 (RSetC out-of-distribution robustness). We can see in Figure 1b how RSetCs provide consis-
tently better results than Deep Sets when tested in sets twice the size as the ones used in training.
This provides evidence to the size generalization discussion in Section 3.1. We can see that RSetCs
perform even similarly to the in-distribution case, while Deep Sets is consistently worse than a
constant classifier. Moreover, the high variance in Deep Sets’ results confirm our observation in
Section 3.1 about its sensitivity.

A3 (RGraphC universality and parameter efficiency). In Figure 2b we can see the results for
RGraphCs vs. GNNs in the connectivity task. We note how the lack of expressive power coupled
with the parameter inefficiency of GNNs is reflected in its poor performance, that decreases as the
input size increases. In contrast, Theorem 3 is confirmed by RGraphCs’ better performance even
when the input size is increased (and the number of parameters is fixed). Finally, just as in Deep Sets
we note a very high variance in the GNN results. This is often observed in tasks where there is no
continuous features in the input, see e.g., [7].

5 Conclusions
Our work established the first class of models that leverages randomness to achieve universality
and invariance in binary classification tasks. We combined tools from randomized algorithms and
probability theory in our results. By leveraging this new principle, we were able to present resource-

9



(a) Results with in-distribution test set.
(b) Results using a test set containing sets twice
the size of the ones used in training.

Figure 1: Results for the sorting task. We use a fixed hidden layer size of 5 in both models, while varying the
training input size. The mean accuracy, together with standard deviation values, is reported using five runs.

(a) Results for the sign task. We use a fixed hidden
layer size of 5 in both models, while varying the
training input size. The mean accuracy, together
with standard deviation values, is reported using
five runs.

(b) Results for the connectivity task. We use a
fixed hidden layer size of 2 in both models, while
varying graph size. We report mean accuracy and
standard deviation over five runs.

Figure 2: Results for the sign (set) and the connectivity (graph) tasks.

efficient models that, under mild assumptions, are universal and invariant in a probabilistic sense.
This work can be extended in many different ways, e.g., designing architectures for other group
invariances, such as SO(n) or designing specific optimization procedures for RLCs. It is also
interesting to understand the practical benefit of RLCs and their invariant counterparts in real-world
tasks.

Acknowledgements

We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada
(NSERC), RGPIN-2021-03445 and of the Hasso Plattner Institute. L. Cotta is funded in part, by a
postdoctoral fellowship provided by the Province of Ontario, the Government of Canada through
CIFAR, and companies sponsoring the Vector Institute. This work was done in part, when G. Yehuda
was visiting the Simons Institute for the Theory of Computing.

References
[1] Aldous, D. J. (1981). Representations for partially exchangeable arrays of random variables. Journal of

Multivariate Analysis, 11(4):581–598.

10



[2] Bevilacqua, B., Frasca, F., Lim, D., Srinivasan, B., Cai, C., Balamurugan, G., Bronstein, M. M., and
Maron, H. (2022). Equivariant subgraph aggregation networks. In International Conference on Learning
Representations.

[3] Bevilacqua, B., Zhou, Y., and Ribeiro, B. (2021). Size-invariant graph representations for graph classification
extrapolations. arXiv preprint arXiv:2103.05045.

[4] Bronstein, M. M., Bruna, J., Cohen, T., and Veličković, P. (2021). Geometric deep learning: Grids, groups,
graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478.

[5] Chen, Z., Villar, S., Chen, L., and Bruna, J. (2019). On the equivalence between graph isomorphism testing
and function approximation with GNNs. In Advances in Neural Information Processing Systems, pages
15868–15876.

[6] Cohen, T. and Welling, M. (2016). Group equivariant convolutional networks. In International conference
on machine learning, pages 2990–2999. Pmlr.

[7] Cotta, L., Morris, C., and Ribeiro, B. (2021). Reconstruction for powerful graph representations. Advances
in Neural Information Processing Systems, 34.

[8] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314.

[9] De Finetti, B. (1929). Funzione caratteristica di un fenomeno aleatorio. In Atti del Congresso Internazionale
dei Matematici: Bologna del 3 al 10 de settembre di 1928, pages 179–190.

[10] Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic
optimization. Journal of machine learning research, 12(7).

[11] Elesedy, B. (2022). Group symmetry in pac learning. In ICLR 2022 Workshop on Geometrical and
Topological Representation Learning.

[12] Erdos, P., Renyi, A., et al. (1960). On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci,
5(1):17–60.

[13] Freedman, D. A. (1962). Invariants under mixing which generalize de finetti’s theorem. The Annals of
Mathematical Statistics, 33(3):916–923.

[14] Garg, V., Jegelka, S., and Jaakkola, T. (2020). Generalization and representational limits of graph neural
networks. In International Conference on Machine Learning, pages 3419–3430. PMLR.

[15] Janson, S. and Diaconis, P. (2008). Graph limits and exchangeable random graphs. Rendiconti di
Matematica e delle sue Applicazioni. Serie VII, pages 33–61.

[16] Kallenberg, O. (1997). Foundations of modern probability, volume 2. Springer.

[17] Kipf, T. N. and Welling, M. (2016). Variational graph auto-encoders. NIPS Workshop on Bayesian Deep
Learning.

[18] Kipf, T. N. and Welling, M. (2017). Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representation.

[19] Kondor, R. and Trivedi, S. (2018). On the generalization of equivariance and convolution in neural networks
to the action of compact groups. In International Conference on Machine Learning, pages 2747–2755. PMLR.

[20] Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., and Teh, Y. W. (2019). Set transformer: A framework for
attention-based permutation-invariant neural networks. In International conference on machine learning,
pages 3744–3753. PMLR.

[21] Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S. (1993). Multilayer feedforward networks with a
nonpolynomial activation function can approximate any function. Neural networks, 6(6):861–867.

[22] Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E., Rattan, G., and Grohe, M. (2019).
Weisfeiler and Leman go neural: Higher-order graph neural networks. In AAAI Conference on Artificial
Intelligence, pages 4602–4609.

[23] Murphy, R. L., Srinivasan, B., Rao, V., and Ribeiro, B. (2019). Janossy pooling: Learning deep permutation-
invariant functions for variable-size inputs. International Conference on Learning Representations.

[24] Ong, E. and Veličković, P. (2022). Learnable commutative monoids for graph neural networks. arXiv
preprint arXiv:2212.08541.

[25] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., et al. (2019). Pytorch: An imperative style, high-performance deep learning library. In Advances
in neural information processing systems, pages 8026–8037.

[26] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. (2009). The graph neural
network model. IEEE Transactions on Neural Networks, 20(1):61–80.

11



[27] Sieradzki, Y., Hodos, N., Yehuda, G., and Schuster, A. (2022). Coin flipping neural networks. In
International Conference on Machine Learning, pages 20195–20214. PMLR.

[28] Simon, B. (1996). Representations of finite and compact groups. American Mathematical Soc.

[29] Srinivasan, B. and Ribeiro, B. (2020). On the equivalence between positional node embeddings and
structural graph representations. In Iclr.

[30] Upfal, E. and Mitzenmacher, M. (2005). Probability and computing.

[31] Velickovic, P., Buesing, L., Overlan, M. C., Pascanu, R., Vinyals, O., and Blundell, C. (2020). Pointer
graph networks. stat, 1050:11.

[32] Wagstaff, E., Fuchs, F. B., Engelcke, M., Osborne, M. A., and Posner, I. (2022). Universal approximation
of functions on sets. Journal of Machine Learning Research, 23(151):1–56.

[33] Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019). How powerful are graph neural networks? In
International Conference on Learning Representations.

[34] Yang, Y., Li, Z., and Wang, Y. (2022). On the capacity of deep generative networks for approximating
distributions. Neural Networks, 145:144–154.

[35] Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., and Smola, A. J. (2017). Deep
sets. In Advances in neural information processing systems, pages 3391–3401.

12


