
To Promote the Progress of Science and Useful Arts

The Director
of the United States Patent and Trademark Office has received

an application for a patent for a new and useful invention. The title
and description of the invention are enclosed. The requirements
of law have been complied with, and it has been determined that

a patent on the invention shall be granted under the law.

Therefore, this United States

grants to the person(s) having title to this patent the right to exclude others from making,
using, offering for sale, or selling the invention throughout the United States of America or
importing the invention into the United States of America, and if the invention is a process,
of the right to exclude others from using, offering for sale or selling throughout the United
States of America, products made by that process, for the term set forth in 35 U.S.C. 154(a)(2)
or (c)(1), subject to the payment of maintenance fees as provided by 35 U.S.C. 41(b). See the
Maintenance Fee Notice on the inside of the cover.

Director of the United States Patent and Trademark Office

Maintenance Fee Notice
If the application for this patent was filed on or after December 12, 1980, maintenance fees
are due three years and six months, seven years and six months, and eleven years and six
months after the date of this grant, or within a grace period of six months thereafter upon
payment of a surcharge as provided by law. The amount, number and timing of the mainte-
nance fees required may be changed by law or regulation. Unless payment of the applicable
maintenance fee is received in the United States Patent and Trademark Office on or before
the date the fee is due or within a grace period of six months thereafter, the patent will expire
as of the end of such grace period.

Patent Term Notice
If the application for this patent was filed on or after June 8, 1995, the term of this patent
begins on the date on which this patent issues and ends twenty years from the filing date of
the application or, if the application contains a specific reference to an earlier filed applica-
tion or applications under 35 U.S.C. 120, 121, 365(c), or 386(c), twenty years from the filing date
of the earliest such application (“the twenty-year term”), subject to the payment of mainte-
nance fees as provided by 35 U.S.C. 41(b), and any extension as provided by 35 U.S.C. 154(b) or
156 or any disclaimer under 35 U.S.C. 253.

If this application was filed prior to June 8, 1995, the term of this patent begins on the date
on which this patent issues and ends on the later of seventeen years from the date of the
grant of this patent or the twenty-year term set forth above for patents resulting from appli-
cations filed on or after June 8, 1995, subject to the payment of maintenance fees as provided
by 35 U.S.C. 41(b) and any extension as provided by 35 U.S.C. 156 or any disclaimer under
35 U.S.C. 253.

Form PTO-377C (Rev 09/17)

(54) EFFICIENT ADAPTIVE DETECTION OF
COMPLEX EVENT PATTERNS

(71) Applicant: TECHNION RESEARCH &
DEVELOPMENT FOUNDATION
LIMITED, Haifa (IL)

(72) Inventors: Assaf Schuster, Haifa (IL); Ilya
Kolchinsky, Ashdod (IL)

(73) Assignee: TECHNION RESEARCH &
DEVELOPMENT FOUNDATION
LIMITED, Haifa (IL)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 317 days.

(21) Appl. No.: 17/289,625

(22) PCT Filed: Oct. 29, 2019

(86) PCT No.: PCT/IL2019/051171

§ 371 (c)(1),
(2) Date: Apr. 28, 2021

(87) PCT Pub. No.: WO2020/089898

PCT Pub. Date: May 7, 2020

(65) Prior Publication Data

US 2021/0397622 A1 Dec. 23, 2021

Related U.S. Application Data

(60) Provisional application No. 62/751,817, filed on Oct.
29, 2018.

(51) Int. Cl.
G06F 16/245 (2019.01)
G06F 16/2455 (2019.01)

(Continued)
(52) U.S. Cl.

CPC G06F 16/24568 (2019.01); G06F 11/3409
(2013.01); G06F 16/2358 (2019.01);

(Continued)

(58) Field of Classification Search
CPC G06F 16/24568; G06F 16/24542; G06F

16/24565; G06F 16/2358; G06F 11/3409;
G06N 5/01

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2009/0106701 A1 * 4/2009 Yalamanchi G06F 16/26
715/841

2017/0046209 A1 2/2017 Ye et al.
2017/0060947 A1 3/2017 Zhang et al.

OTHER PUBLICATIONS

I. Kolchinsky and A. Schuster (2018). Efficient adaptive detection
of complex event patterns. Proc. VLDB Endow. 11, 11 (Jul. 2018),
1346-1359. https://doi.org/10.14778/3236187.3236190.

(Continued)

Primary Examiner — Truong V Vo
(74) Attorney, Agent, or Firm — The Roy Gross Law
Firm, LLC; Roy Gross

(57) ABSTRACT

A method comprising receiving, as input, a data stream
representing events; receiving a complex event pattern
(CEP) specification representing an occurrence of a CEP in
said data stream based on a set of conditions and set of event
attributes; applying an algorithm to generate a current CEP
plan configured to determine said occurrence of said CEP,
wherein said current CEP plan comprises of a series of
execution steps; optimize said current CEP plan by, itera-
tively: (i) executing said current CEP plan, (ii) identifying,
with respect to each of said execution steps, one of said
conditions whose verification causes said execution step to
be included in said current CEP plan, and (iii) performing a
re-verification of all of said identified conditions using said
updated current values; and re-applying said algorithm when
said re-verification fails with respect to at least one of said
identified conditions, to generate an updated CEP plan.

18 Claims, 18 Drawing Sheets

US011693862B2

(12) United States Patent (10) Patent No.: US 11,693,862 B2
Schuster et al. (45) Date of Patent: Jul. 4, 2023

(51) Int. Cl.
G06F 16/2453 (2019.01)
G06F 16/23 (2019.01)
G06F 11/34 (2006.01)
G06N 5/01 (2023.01)

(52) U.S. Cl.
CPC .. G06F 16/24542 (2019.01); G06F 16/24565

(2019.01); G06N 5/01 (2023.01)

(56) References Cited

OTHER PUBLICATIONS

D. J. Abadi, Y. Ahmad, M. Balazinska, M. Cherniack, J. Hwang, W.
Lindner, A. S. Maskey, E. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and
S. Zdonik. The design of the Borealis stream processing engine. 2nd
Biennial Conference on Innovative Data Systems Research, CIDR
2005. 5. 277-289.
M. Acosta, M. Vidal, T. Lampo, J. Castillo, and E. Ruckhaus.
NAPSID: An Adaptive Query Processing Engine for SPARQL
Endpoints. In:, et al. The Semantic Web—ISWC 2011. ISWC 2011.
Lecture Notes in Computer Science, vol. 7031. Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-642-25073-6_2.
Adi, A. & Etzion, O. (2004). Amit—The situation manager. VLDB,
13, 177-203. doi: 10.1007/s00778-003-0108-y.
J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. 2008.
Efficient pattern matching over event streams. In Proceedings of the
2008 ACM SIGMOD international conference on Management of
data (SIGMOD ’08). Association for Computing Machinery, New
York, NY, USA, 147-160. https://doi.org/10.1145/1376616.
1376634.
M. Akdere, U. CÈetintemel, and N. Tatbul. 2008. Plan-based complex
event detection across distributed sources. Proc. VLDB Endow. 1,1
(Aug. 2008), 66-77. https://doi.org/10.14778/1453856.1453869.
M. Ali, F. Gao, and A. Mileo. CityBench: A configurable benchmark
to evaluate RSP engines using smart city datasets. In Proceedings of
ISWC 2015—14th International Semantic Web Conference, pp.
374-389, Bethlehem, PA, USA, 2015. W3C. doi: 10.1007/978-3-
319-25010-6_25.
A. Aly, W. Aref, M. Ouzzani, and H. Mahmoud. JISC: adaptive
stream processing using just-in-time state completion. In Proceed-
ings of the 17th International Conference on Extending Database
Technology, Athens, Greece, Mar. 24-28, 2014., pp. 73-84. DOI:10.
5441/002/edbt.2014.08.
L. Amini, H. Andrade, R. Bhagwan, F. Eskesen, R. King, P. Selo, Y.
Park, and C. Venkatramani. 2006. SPC: a distributed, scalable
platform for data mining. In Proceedings of the 4th international
workshop on Data mining standards, services and platforms (DMSSP
’06). Association for Computing Machinery, New York, NY, USA,
27-37. https://doi.org/10.1145/1289612.1289615.
Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Datar, M., Ito, K.,
Motwani, R., Srivastava, U., & Widom, J. (2016). STREAM: The
Stanford Data Stream Management System. In: Garofalakis, M.,
Gehrke, J., Rastogi, R. (eds) Data Stream Management. Data-
Centric Systems and Applications. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-28608-0_16.
R. Avnur and J. Hellerstein. Eddies: Continuously adaptive query
processing. SIGMOD Rec., 29(2):261-272, May 2000. https://doi.
org/10.1145/335191.335420.
B. Babcock, M. Datar, R. Motwani, and L. O’Callaghan. 2003.
Maintaining variance and k-medians over data stream windows. In
Proceedings of the twenty-second ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems (PODS ’03).
Association for Computing Machinery, New York, NY, USA, 234-
243. https://doi.org/10.1145/773153.773176.
S. Babu, P. Bizarro, and D. DeWitt. 2005. Proactive re-optimization.
In Proceedings of the 2005 ACM SIGMOD International confer-
ence on Management of data (SIGMOD ’05). Association for
Computing Machinery, New York, NY, USA, 107-118. https://doi.
org/10.1145/1066157.1066171.

S. Babu, R. Motwani, K. Munagala, I. Nishizawa, and J. Widom.
Adaptive ordering of pipelined stream filters. In Proceedings of the
2004 ACM SIGMOD International Conference on Management of
Data, pp. 407-418, New York, NY, USA, 2004. ACM.
S. Babu and J. Widom. StreaMon: An adaptive engine for stream
query processing. In Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data, pp. 931-932,
New York, NY, USA, 2004. ACM.
R. S. Barga, J. Goldstein, M. H. Ali, and M. Hong. Consistent
streaming through time: A vision for event stream processing. In
CIDR, pp. 363-374, 2007.
P. Bizarro, S. Babu, D. J. DeWitt, and J. Widom. Content-based
routing: Different plans for different data. In Proceedings of the 31st
International Conference on Very Large Data Bases, Trondheim,
Norway, Aug. 30-Sep. 2, 2005, pp. 757-768. ACM, 2005.
Chandramouli, Badrish & Goldstein, Jonathan & Maier, David.
(2010). High-Performance Dynamic Pattern Matching over Disor-
dered Streams. Proceedings of the VLDB Endowment vol. 3, Issue
1-2, pp. 220-231, https://doi.org/10.14778/1920841.1920873.
S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.
Hellerstein, W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F.
Reiss, and M. A. Shah. (2003).Telegraphcq: Continuous dataflow
processing for an uncertain world. In Proceedings of the 2003 CIDR
Conference, CIDR, ACM.
Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. 2000.
NiagaraCQ: a scalable continuous query system for Internet data-
bases. SIGMOD Rec. 29, 2 (Jun. 2000), 379-390. https://doi.org/
10.1145/335191.335432.
Coffi, JR., Marsala, C. & Museux, N. Adaptive complex event
processing for harmful situation detection. Evolving Systems 3,
167-177 (2012). https://doi.org/10.1007/s12530-012-9052-7.
Gianpaolo Cugola and Alessandro Margara. 2010. Tesla: a formally
defined event specification language. In Proceedings of the Fourth
ACM International Conference on Distributed Event-Based Sys-
tems (DEBS ’10). Association for Computing Machinery, New
York, NY, USA, 50-61. https://doi.org/10.1145/1827418.1827427.
Gianpaolo Cugola and Alessandro Margara. 2012. Complex event
processing with T-Rex. J. Syst. Softw. 85, 8 (Aug. 2012), 1709-
1728. https://doi.org/10.1016/j.jss.2012.03.056.
Gianpaolo Cugola and Alessandro Margara. 2012. Processing flows
of information: From data stream to complex event processing.
ACM Comput. Surv. 44, 3, Article 15 (Jun. 2012), 62 pages.
https://doi.org/10.1145/2187671.2187677.
M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream
statistics over sliding windows. SIAM J. Comput., 31(6):1794-
1813, Jun. 2002.
Alan Demers, Johannes Gehrke, Mingsheng Hong, Mirek Riedewald,
and Walker White. 2006. Towards expressive publish/subscribe
systems. In Proceedings of the 10th international conference on
Advances in Database Technology (EDBT’06). Springer-Verlag,
Berlin, Heidelberg, 627-644. https://doi.org/10.1007/11687238_38.
Deshpande, Amol & Ives, Zachary & Raman, Vijayshankar. (2007).
Adaptive Query Processing. Foundations and Trends In Databases.
1 (1), 1-140. doi: 10.1561/1900000001.
O. Etzion and P. Niblett. Event Processing in Action. Manning
Publications Co., Greenwich, CT, United States, 2010.
I. Flouris, N. Giatrakos, A. Deligiannakis, M. Garofalakis, M.
Kamp, and M. Mock. Issues in complex event processing: Status
and prospects in the big data era. Journal of Systems and Software,
127:217-236, 2017. https://doi.org/10.1016/j.jss.2016.06.011.
Zachary G. Ives, Alon Y. Halevy, and Daniel S. Weld. 2004.
Adapting to source properties in processing data integration queries.
In Proceedings of the 2004 ACM SIGMOD international conference
on Management of data (SIGMOD ’04). Association for Computing
Machinery, New York, NY, USA, 395-406. https://doi.org/10.1145/
1007568.1007613.
Navin Kabra and David J. DeWitt. 1998. Efficient mid-query
re-optimization of sub-optimal query execution plans. SIGMOD
Rec. 27, 2 (Jun. 1998), 106-117. https://doi.org/10.1145/276305.
276315.
Kolchinsky, I., Schuster, A., & Keren, D. (2016). Efficient Detection
of Complex Event Patterns Using Lazy Chain Automata. ArXiv,
abs/1612.05110.

US 11,693,862 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Ilya Kolchinsky and Assaf Schuster. 2018. Join query optimization
techniques for complex event processing applications. Proc VLDB
Endow. 11, 11 (Jul. 2018), 1332-1345. https://doi.org/10.14778/
3236187.3236189.
Ilya Kolchinsky, Izchak Sharfman, and Assaf Schuster. 2015. Lazy
evaluation methods for detecting complex events. In Proceedings of
the 9th ACM International Conference on Distributed Event-Based
Systems (DEBS ’15). Association for Computing Machinery, New
York, NY, USA, 34-45. https://doi.org/10.1145/2675743.2771832.
Krämer, J., Yang, Y., Cammert, M., Seeger, B., Papadias, D. (2006).
Dynamic Plan Migration for Snapshot-Equivalent Continuous Que-
ries in Data Stream Systems. In:, et al. Current Trends in Database
Technology—EDBT 2006. EDBT 2006. Lecture Notes in Computer
Science, vol. 4254. Springer, Berlin, Heidelberg. https://doi.org/10.
1007/11896548_38.
Lee, OJ., You, E., Hong, MS., Jung, J.J. (2015). Adaptive Complex
Event Processing Based on Collaborative Rule Mining Engine. In:
Nguyen, N., Trawiński, B., Kosala, R. (eds) Intelligent Information
and Database Systems. ACIIDS 2015. Lecture Notes in Computer
Science(), vol. 9011. Springer, Cham. https://doi.org/10.1007/978-
3-319-15702-3_42.
Mengmeng Liu, Zachary G. Ives, and Boon Thau Loo. 2016.
Enabling Incremental Query Re-Optimization. In Proceedings of
the 2016 International Conference on Management of Data
(SIGMOD ’16). Association for Computing Machinery, New York,
NY, USA, 1705-1720. https://doi.org/10.1145/2882903.2915212.
Samuel Madden, Mehul Shah, Joseph M. Hellerstein, and Vijayshankar
Raman. 2002. Continuously adaptive continuous queries over streams.
In Proceedings of the 2002 ACM SIGMOD international conference
on Management of data (SIGMOD ’02). Association for Computing
Machinery, New York, NY, USA, 49-60. https://doi.org/10.1145/
564691.564698.
Volker Markl, Vijayshankar Raman, David Simmen, Guy Lohman,
Hamid Pirahesh, and Miso Cilimdzic. 2004. Robust query process-
ing through progressive optimization. In Proceedings of the 2004
ACM SIGMOD international conference on Management of data
(SIGMOD ’04). Association for Computing Machinery, New York,
NY, USA, 659-370. https://doi.org/10.1145/1007568.1007642.
Yuan Mei and Samuel Madden. 2009. ZStream: a cost-based query
processor for adaptively detecting composite events. In Proceedings
of the 2009 ACM SIGMOD International Conference on Manage-
ment of data (SIGMOD ’09). Association for Computing Machin-
ery, New York, NY, USA, 193-206. https://doi.org/10.1145/1559845.
1559867.
Nehme, R.V., Works, K., Lei, C., Rundensteiner, E.A., & Bertino,
E. (2013). Multi-route query processing and optimization. Journal
of Computer and System Sciences, 79(3), 312-329. https://doi.org/
10.1016/j.jcss.2012.09.010.
M. Sadoghi and H. Jacobsen. Adaptive parallel compressed event
matching. In IEEE 30th International Conference on Data Engi-
neering, Chicago, IL, USA, 2014, pp. 364-375, doi: 10.1109/ICDE.
2014.6816665.

Nicholas Poul Schultz-Møller, Matteo Migliavacca, and Peter Pietzuch.
2009. Distributed complex event processing with query rewriting.
In Proceedings of the Third ACM International Conference on
Distributed Event-Based Systems (DEBS ’09). Association for
Computing Machinery, New York, NY, USA, Article 4, 1-12.
https://doi.org/10.1145/1619258.1619264.
M. Stillger, G. Lohman, V. Markl, and M. Kandil. LEO—DB2’s
LEarning optimizer. In Proceedings of the 27th International Con-
ference on Very Large Data Bases, pp. 19-28, San Francisco, CA,
USA, 2001. Morgan Kaufmann Publishers Inc.
Swami, Arun. (1989). Optimization of large join queries: Combin-
ing heuristics and combinatorial techniques. ACM SIGMOD Record.
18. 367-376. 10.1145/67544.66961.
Nesime Tatbul, Uǧur CÈetintemel, Stan Zdonik, Mitch Cherniack,
and Michael Stonebraker. 2003. Load shedding in a data stream
manager. In Proceedings of the 29th international conference on
Very large data bases—vol. 29 (VLDB ’03). VLDB Endowment,
309-320.
Eugene Wu, Yanlei Diao, and Shariq Rizvi. 2006. High-
performance complex event processing over streams. In Proceed-
ings of the 2006 ACM SIGMOD international conference on
Management of data (SIGMOD ’06). Association for Computing
Machinery, New York, NY, USA, 407-418. https://doi.org/10.1145/
1142473.1142520.
Yi, I., Lee, J., & Whang, K. (2016). APAM: Adaptive Eager-Lazy
Hybrid Evaluation of Event Patterns for Low Latency. Proceedings
of the 25th ACM International on Conference on Information and
Knowledge Management. DOI: http://dx.doi.org/10.1145/2983323.
2983680.
Haopeng Zhang, Yanlei Diao, and Neil Immerman. 2014. On
complexity and optimization of expensive queries in complex event
processing. In Proceedings of the 2014 ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD ’14). Asso-
ciation for Computing Machinery, New York, NY, USA, 217-228.
https://doi.org/10.1145/2588555.2593671.
Yali Zhu, Elke A. Rundensteiner, and George T. Heineman. 2004.
Dynamic plan migration for continuous queries over data streams.
In Proceedings of the 2004 ACM SIGMOD international conference
on Management of data (SIGMOD 04). Association for Computing
Machinery, New York, NY, USA, 431-442. https://doi.org/10.1145/
1007568.1007617.
Eoddata. (2022). End of Day Stock Quote Data and Historical Stock
Prices. Retrieved Sep. 18, 2022, from https://www.eoddata.com/.
Espertech. (Apr. 12, 2022). Complex Event Processing, Streaming
Analytics, Streaming SQL. EsperTech. Retrieved Sep. 18, 2022,
from https://www.espertech.com/.
Aarts, E. and Lenstra, J., Local Search in Combinatorial Optimi-
zation, 1997, 1st edition, John Wiley & Sons, Inc., New, York, NY.
PCT International Search Report for International Application No.
PCT/IL2019/051171, dated Feb. 18, 2020, 3pp.
PCT Written Opinion for International Application No. PCT/IL2019/
051171, dated Feb. 18, 2020, 6pp.
PCT International Preliminary Report on Patentability for Interna-
tional Application No. PCT/IL2019/051171, dated Apr. 27, 2021,
7pp.

* cited by examiner

US 11,693,862 B2
Page 3

U.S. Patent Jul. 4, 2023 Sheet 1 of 18 US 11,693,862 B2

U.S. Patent Jul. 4, 2023 Sheet 2 of 18 US 11,693,862 B2

U.S. Patent Jul. 4, 2023 Sheet 3 of 18 US 11,693,862 B2

U.S. Patent Jul. 4, 2023 Sheet 4 of 18 US 11,693,862 B2

U.S. Patent Jul. 4, 2023 Sheet 5 of 18 US 11,693,862 B2

U.S. Patent Jul. 4, 2023 Sheet 6 of 18 US 11,693,862 B2

U.S. Patent Jul. 4, 2023 Sheet 7 of 18 US 11,693,862 B2

U.S. Patent Jul. 4, 2023 Sheet 8 of 18 US 11,693,862 B2

U.S. Patent Jul. 4, 2023 Sheet 9 of 18 US 11,693,862 B2

U.S. Patent Jul. 4, 2023 Sheet 10 of 18 US 11,693,862 B2

U.S. Patent Jul. 4, 2023 Sheet 11 of 18 US 11,693,862 B2

U.S. Patent Jul. 4, 2023 Sheet 12 of 18 US 11,693,862 B2

U.S. Patent Jul. 4, 2023 Sheet 13 of 18 US 11,693,862 B2

U.S. Patent Jul. 4, 2023 Sheet 14 of 18 US 11,693,862 B2

U.S. Patent Jul. 4, 2023 Sheet 15 of 18 US 11,693,862 B2

U.S. Patent Jul. 4, 2023 Sheet 16 of 18 US 11,693,862 B2

U.S. Patent Jul. 4, 2023 Sheet 17 of 18 US 11,693,862 B2

U.S. Patent Jul. 4, 2023 Sheet 18 of 18 US 11,693,862 B2

EFFICIENT ADAPTIVE DETECTION OF
COMPLEX EVENT PATTERNS

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a National Phase of PCT Patent
Application No. PCT/IL2019/051171 having International
filing date of Oct. 29, 2019, which claims the benefit of
priority of U.S. Provisional Patent Application No. 62/751,
817, filed Oct. 29, 2018, the contents of which are all
incorporated herein by reference in their entirety.

BACKGROUND

This invention relates to the field of computerized com-
plex event processing.

Complex event processing (CEP) is widely employed to
detect occurrences of predefined combinations (patterns) of
events in massive data streams. As new events are accepted,
they are matched using some type of evaluation structure,
commonly optimized according to the statistical properties
of the data items in the input stream. However, in many
real-life scenarios the data characteristics are never known
in advance or are subject to frequent on-the-fly changes. To
modify the evaluation structure as a reaction to such
changes, adaptation mechanisms are employed. These
mechanisms typically function by monitoring a set of prop-
erties and applying a new evaluation plan when significant
deviation from the initial values is observed. This strategy
often leads to missing important input changes or it may
incur substantial computational overhead by over-adapting.

The foregoing examples of the related art and limitations
related therewith are intended to be illustrative and not
exclusive. Other limitations of the related art will become
apparent to those of skill in the art upon a reading of the
specification and a study of the figures.

SUMMARY

The following embodiments and aspects thereof are
described and illustrated in conjunction with systems, tools
and methods which are meant to be exemplary and illustra-
tive, not limiting in scope.

There is provided, in an embodiment, a method compris-
ing: receiving, as input, a data stream representing events;
receiving a complex event pattern (CEP) specification rep-
resenting an occurrence of a CEP in said data stream,
wherein said CEP specification comprises (a) a set of
conditions associated with relations among said events, and
(b) a set of attributes associated with said events; continu-
ously updating, from said data stream, current values asso-
ciated with said set of attributes; applying an algorithm to
generate, based on said CEP specification and said current
values, a current CEP plan configured to determine said
occurrence of said CEP in said data stream, wherein said
current CEP plan comprises of a series of execution steps;
and optimizing said current CEP plan by, iteratively (i)
executing said current CEP plan, (ii) identifying, with
respect to each of said execution steps, one of said condi-
tions as an invariant condition whose verification causes said
execution step to be included in said current CEP plan, (iii)
performing a re-verification of all of said invariant condi-
tions using said updated current values; and (iv) re-applying
said algorithm when said re-verification fails with respect to
at least one of said invariant conditions, to generate an
updated CEP plan.

There is also provide, in an embodiment, a system com-
prising: at least one hardware processor; and a non-transi-
tory computer-readable storage medium having stored
thereon program code, the program code executable by the
at least one hardware processor to: receive, as input, a data
stream representing events, receive a complex event pattern
(CEP) specification representing an occurrence of a CEP in
said data stream, wherein said CEP specification comprises
(a) a set of conditions associated with relations among said
events, and (b) a set of attributes associated with said events,
continuously update, from said data stream, current values
associated with said set of attributes, apply an algorithm to
generate, based on said CEP specification and said current
values, a current CEP plan configured to determine said
occurrence of said CEP in said data stream, wherein said
current CEP plan comprises of a series of execution steps,
and optimize said current CEP plan by, iteratively: (i)
executing said current CEP plan, (ii) identifying, with
respect to each of said execution steps, one of said condi-
tions as an invariant condition whose verification causes said
execution step to be included in said current CEP plan, (iii)
performing a re-verification of all of said invariant condi-
tions using said updated current values; and (iv) re-applying
said algorithm when said re-verification fails with respect to
at least one of said invariant conditions, to generate an
updated CEP plan.

There is further provided, in an embodiment, a computer
program product comprising a non-transitory computer-
readable storage medium having program code embodied
therewith, the program code executable by at least one
hardware processor to: receive, as input, a data stream
representing events, receive a complex event pattern (CEP)
specification representing an occurrence of a CEP in said
data stream, wherein said CEP specification comprises (a) a
set of conditions associated with relations among said
events, and (b) a set of attributes associated with said events,
continuously update, from said data stream, current values
associated with said set of attributes, apply an algorithm to
generate, based on said CEP specification and said current
values, a current CEP plan configured to determine said
occurrence of said CEP in said data stream, wherein said
current CEP plan comprises of a series of execution steps,
and optimize said current CEP plan by, iteratively: (i)
executing said current CEP plan, (ii) identifying, with
respect to each of said execution steps, one of said condi-
tions as an invariant condition whose verification causes said
execution step to be included in said current CEP plan, (iii)
performing a re-verification of all of said invariant condi-
tions using said updated current values; and (iv) re-applying
said algorithm when said re-verification fails with respect to
at least one of said invariant conditions, to generate an
updated CEP plan.

In some embodiments, the set of conditions is selected
from the group consisting of: a state of an attribute of an
event, an occurrence of an event, a nonoccurrence of an
event, an occurrence of a set of events, an occurrence of a
set of events within a pre-defined time period, an occurrence
of a sequence of a set of events, an occurrence of a subset
of a set of events, and an occurrence of an aggregation of a
set of event.

In some embodiments, the CEP is selected from the group
consisting of: an occurrence of a single event, an occurrence
of a single event under a single condition, an occurrence of
multiple events under a single condition, and an occurrence
of multiple events under multiple conditions.

In some embodiments, method further comprises config-
uring, and the program instructions are further executable to

US 11,693,862 B2
1 2

5

10

15

20

25

30

35

40

45

50

55

60

65

configure, a CEP engine to initiate an action in response to
said determining of said occurrence of said CEP.

In some embodiments, the identifying, with respect to
each of said execution steps, comprises: (i) identifying a set
of all of said conditions whose verification causes said
execution step to be included in said current CEP plan; and
(ii) selecting, from said set, the most tightly bounded con-
dition as said invariant condition.

In some embodiments, the algorithm is one of a greedy
heuristic algorithm and a ZStream algorithm.

In addition to the exemplary aspects and embodiments
described above, further aspects and embodiments will
become apparent by reference to the figures and by study of
the following detailed description.

BRIEF DESCRIPTION OF THE FIGURES

Exemplary embodiments are illustrated in referenced fig-
ures. Dimensions of components and features shown in the
figures are generally chosen for convenience and clarity of
presentation and are not necessarily shown to scale. The
figures are listed below.

FIGS. 1A-1B show an example of an evaluation mecha-
nism (a non-deterministic finite automaton) for detecting
this simple pattern by a CEP engine are a block diagram of
an exemplary system, in accordance with some embodi-
ments of the present invention;

FIG. 2 shows a common structure of an ACEP system;
FIGS. 3A-3B demonstrate two possible tree-structured

plans as defined by ZStream;
FIG. 4 is a flowchart of functional steps in a process in

accordance with some embodiments of the present inven-
tion;

FIGS. 5A-5D demonstrate the invariant creation process,
in accordance with some embodiments of the present inven-
tion; and

FIGS. 6A-6D, 7A-7H, and 8A-8H show experimental
results, in accordance with some embodiments of the present
invention.

DETAILED DESCRIPTION

Disclosed herein are a system, method and computer
program product for efficient and precise dynamic determi-
nation of whether and how an evaluation structure should be
reoptimized in the context of real-time detection of complex
events.

In some embodiments, the present method is based on a
small set of constraints to be satisfied by the monitored
values, defined such that a better evaluation plan is guaran-
teed if any of the constraints is violated.

In some embodiments, the present method thus provably
avoids false positives on re-optimization decisions. In some
embodiments, the present method can be applied to known
algorithms for evaluation plan generation.

Real-time detection of complex data patterns is one of the
fundamental tasks in stream processing. Many modern
applications present a requirement for tracking data items
arriving from multiple input streams and extracting occur-
rences of their predefined combinations. Complex event
processing (CEP) is a prominent technology for providing
this functionality, broadly employed in a wide range of
domains, including sensor networks, security monitoring
and financial services. CEP engines represent data items as
events arriving from event sources. As new events are

accepted, they are combined into higher-level complex
events matching the specified patterns, which are then
reported to end users.

One of the core elements of a CEP system is the evalu-
ation mechanism. Popular evaluation mechanisms include
non-deterministic finite automata (NFAs) [Reference 48],
evaluation trees [Reference 41], graphs [Reference 6] and
event processing networks (EPNs) [Reference 28]. A CEP
engine uses an evaluation mechanism to create an internal
representation for each pattern P to be monitored. This
representation is constructed according to the evaluation
plan, which reflects the structure of P. The evaluation plan
defines how primitive events are combined into partial
matches. Typically, a separate instance of the internal rep-
resentation is created at runtime for every potential pattern
match (i.e., a combination of events forming a valid subset
of a full match).

With reference to FIGS. 1A-1B, consider the following
scenario: A system for managing an array of smart security
cameras A, B, C is installed in a building. All cameras are
equipped with face recognition software, and periodical
readings from each camera are sent in real time to the main
server. A detection objective is a scenario in which an
intruder accesses the restricted area via the main gate of the
building rather than from the dedicated entrance. This pat-
tern can be represented as a sequence of three primitive
events:

camera A (installed near the main gate) detects a person;
later, camera B (located inside the building’s lobby)

detects the same person;
finally, camera C detects the same person in the restricted

area.
FIG. 1A demonstrates an example of an evaluation

mechanism (a non-deterministic finite automaton) for
detecting this simple pattern by a CEP engine. This NFA is
created according to the following simple evaluation plan.
First, a stream of events arriving from camera A is inspected.
For each accepted event, the stream of B is probed for
subsequently received events specifying the same person. If
found, the algorithm waits for a corresponding event to
arrive from camera C.

Pattern detection performance can often be dramatically
improved if the statistical characteristics of the monitored
data are taken into account. In the example above, it can be
assumed that fewer people access the restricted area than
pass through the main building entrance. Consequently, the
expected number of face recognition notifications arriving
from camera C is significantly smaller than the expected
number of similar events from cameras A and B. Thus,
instead of detecting the pattern in the order of the requested
occurrence of the primitive events (i.e., A>>B>>C), it would
be beneficial to employ the “lazy evaluation” principle
[Reference 35] and process the events in a different order,
first monitoring the stream of events from C, and then
examining the local history for previous readings of B and
A. This way, fewer partial matches would be created. FIG.
1B depicts the NFA constructed according to the improved
plan.

Numerous methods were proposed for defining evaluation
plans based on the statistical properties of the data, such as
event arrival rates [References 6, 35, 41, 44]. It was shown
that systems tuned according to the a-priori knowledge of
these statistics can boost performance by up to several
orders of magnitude, especially for highly skewed data.

Unfortunately, in real-life scenarios, this a-priori knowl-
edge is rarely obtained in advance. Moreover, the data
characteristics can change rapidly over time, which may

US 11,693,862 B2
3 4

5

10

15

20

25

30

35

40

45

50

55

60

65

render an initial evaluation plan extremely inefficient. In
Example 1, the number of people near the main entrance
might drop dramatically in late evening hours, making the
event stream from camera A the first in the plan, as opposed
to the event stream from C.

To overcome this problem, a CEP engine must continu-
ously estimate the current values of the target parameters
and, if and whenever necessary, adapt itself to the changed
data characteristics. These systems possessing such capa-
bilities may be denoted as Adaptive CEP (ACEP) systems.

A common structure of an ACEP system is depicted in
FIG. 2. The evaluation mechanism starts processing incom-
ing events using some initial plan. A dedicated component
calculates up-to-date estimates of the statistics (e.g., event
arrival rates in Example 1) and transfers them to the opti-
mizer. The optimizer then uses these values to decide
whether the evaluation plan should be updated. If the answer
is positive, a plan generation algorithm is invoked to pro-
duce a new plan (e.g., a new NFA), which is then delivered
to the evaluation mechanism to replace the previously
employed structure. In Example 1, this algorithm simply
sorts the event types in the ascending order of their arrival
rates and returns a chain-structured NFA conforming to that
order.

Correct decisions by the optimizer are crucial for the
successful operation of an adaptation mechanism. As the
process of creating and deploying a new evaluation plan is
very expensive, one would like to avoid “false positives,”
that is, launching re-optimizations that do not improve the
currently employed plan. “False negatives,” occurring when
an important shift in estimated data properties is missed, are
equally undesirable. A flawed decision policy may severely
diminish or even completely eliminate the gain achieved by
an adaptation mechanism.

The problem of designing efficient and reliable algorithms
for re-optimization decision making has been well studied in
areas such as traditional query optimization [Reference 27].
However, it has received only limited attention in the CEP
domain ([References 35, 41]). In [Reference 35], the authors
present a structure which reorganizes itself according to the
currently observed arrival rates of the primitive events.
Similarly to Eddies [Reference 11], this system does not
adopt a single plan to maintain, but rather generates a new
plan for each newly observed set of events regardless of the
performance of the current one. The main strength of this
method is that it is guaranteed to produce the optimal
evaluation plan for any given set of events. However, it can
create substantial bottlenecks due to the computational over-
head of the plan generation algorithm. This is especially
evident for stable event streams with little to no data
variance, for which this technique would be outperformed
by a non-adaptive solution using a static plan.

The second approach, introduced in [Reference 41],
defines a constant threshold t for all monitored statistics.
When any statistic deviates from its initially observed value
by more than t, plan reconstruction is activated. This solu-
tion is much cheaper computationally than the previous one.
However, some re-optimization opportunities may be
missed.

Consider Example 1 again. Recall that the objective is to
detect the events by the ascending order of their arrival rates,
and let the rates for events generated by cameras A, B and
C be rateA=100, rateB=15, rateC=10, respectively. Obvi-
ously, events originating at A are significantly less sensitive
to changes than those originating at B and C. Thus, if the
statistics are monitored with a threshold t>6, a growth in C
to the point where it exceeds B will not be discovered, even

though the re-optimization is vital in this case. Alternatively,
setting a value t<6 will result in detection of the above
change, but will also cause the system to react to fluctuations
in the arrival rate of A, leading to redundant plan re-
computations.

No single threshold in the presented scenario can ensure
optimal operation. However, by removing the conditions
involving t and monitoring instead a pair of constraints
{rateA>rateB, rateB>rateC}, plan re-computation would be
guaranteed if and only if a better plan becomes available.

This paper presents a novel method for making efficient
and precise on-the-fly adaptation decisions. The present
method is based on defining a tightly bounded set of
conditions on the monitored statistics to be periodically
verified at runtime. These conditions, referred to in the
present disclosure as ‘invariants,’ are generated during the
initial plan creation, and are constantly recomputed as the
system adapts to changes in the input. The invariants are
constructed to ensure that a violation of at least one of them
guarantees that a better evaluation plan is available.

Accordingly, in some embodiments, the present disclo-
sure provides for a mechanism which provably avoid false
positives on re-optimization decisions, while achieving
notably low numbers of false negatives as compared to
existing alternatives, as shown by empirical results. The
present method can be applied to any deterministic algo-
rithm for evaluation plan generation and used in any stream
processing scenario.

In some embodiments, the present disclosure formally
defines the reoptimizing decision problem for the complex
event processing domain; presents a novel method for
detecting re-optimization opportunities in ACEP systems by
verifying a set of invariants on the monitored data charac-
teristics and formally prove that no false positives are
possible when this method is used; and extends the basic
method to achieve a balance between computational effi-
ciency and precision. In some embodiments, the present
disclosure further demonstrates how to apply the invariant-
based method on two known algorithms for evaluation
structure creation, the greedy order-based algorithm [Refer-
ence 34] and ZStream algorithm [Reference 41], and discuss
the generalization of these approaches to broader categories
of algorithms (Section 4). Extensive experimental evalua-
tions comparing the invariant-based method to existing
state-of-the-art solutions, as performed on two real-world
datasets, show that the present method achieves the highest
accuracy and the lowest computational overhead.

Notations and Terminology

A pattern recognized by a CEP system is defined by a
combination of primitive events, operators, predicates, and
a time window. The patterns are formed using declarative
specification languages ([References 22, 26, 48]).

Each event is represented by a type and a set of attributes,
including the occurrence timestamp. Throughout this paper
it is assumed that each primitive event has a well-defined
type, i.e., the event either contains the type as an attribute or
it can be easily inferred from the event attributes using
negligible system resources. Pattern size (i.e., the number of
distinct primitive events in a pattern) is denoted by n.

The predicates to be satisfied by the participating events
are usually organized in a Boolean formula. Any condition
can be specified on any attribute of an event, including the
timestamp (e.g., for supporting multiple time windows).

The operators describe the relations between the events
comprising a pattern match. Among the most commonly

US 11,693,862 B2
5 6

5

10

15

20

25

30

35

40

45

50

55

60

65

used operators are sequence (SEQ), conjunction (AND),
disjunction (OR), negation (typically marked by ", requires
the absence of an event from the stream) and Kleene closure
(marked by ‘*’, accepts multiple appearances of an event in
a specified position). A pattern may include an arbitrary
number of operators.

To illustrate the above, consider Example 1 again. Three
event types will be defined according to the identifiers of the
cameras generating them: A, B and C. For each primitive
event, the attribute person_id will be set to contain a unique
number identifying a recognized face. Then, to detect a
sequence of occurrences of the same person in three areas in
a 10-minute time period, the following pattern specification
syntax, taken from SASE [Reference 48], will be used:

PATTERN SEQ (A a, B b, C c)
WHERE ((a.person_id=b.person_id) A
(b.person_id=c.person_id))
WITHIN 10 minutes.
On system initialization, the pattern declaration is passed

to the plan generation algorithm to create the evaluation
plan. The evaluation plan provides a scheme for the CEP
engine, according to which its internal pattern representation
is created. The plan generation algorithm accepts a pattern
specification P and a set of statistical data characteristic
values Stat. It then returns the evaluation plan to be used for
detection. If these values are not known in advance, a
default, empty Stat, is passed. Multiple plan generation
algorithms have been devised, efficiently supporting patterns
with arbitrarily complex combinations of the aforemen-
tioned operators [References 34, 32, 41].

In Example 1, Stat contains the arrival rates of event types
A, B and C, the evaluation plan is an ordering on the above
types, and is a simple sorting algorithm, returning a plan
following the ascending order of the arrival rates. The CEP
engine then adheres to this order during pattern detection.
Another popular choice for a statistic to be monitored is the
set of selectivities (i.e., the probabilities of success) of the
inter-event conditions defined by the pattern. Examples of
plan generation algorithms requiring the knowledge of con-
dition selectivities are presented below.

The plan generation algorithm attempts to utilize the
information in Stat to find the best possible evaluation plan
subject to some predefined set of performance metrics,
which is denoted as Perf. These metrics may include
throughput, detection latency, network communication cost,
power consumption, and more. For instance, one possible
value for Perf in Example 1 is {throughput, memory}, as
processing the events according to the ascending order of
their arrival rates was shown to vastly improve memory
consumption and throughput of a CEP system [Reference
35].

In the general case, is considered to be a computa-
tionally expensive operation. It is also assumed that this
algorithm is optimal; that is, it always produces the best
possible solution for the given parameters. While this
assumption rarely holds in practice, the employed tech-
niques usually tend to produce empirically good solutions.

An evaluation plan is not constrained to be merely an
order. FIG. 3A (left-deep plan) and 3B (right-deep plan)
demonstrate two possible tree-structured plans as defined by
ZStream [Reference 41]. An evaluation structure following
such a plan accumulates the arriving events at their corre-
sponding leaves, and the topology of the internal nodes
defines the order in which they are matched and their mutual
predicates are evaluated. Matches reaching the tree root are
reported to the end users. From this point on, such plans will
be denoted as tree-based plans, whereas plans similar to the

one used for Example 1 will be called order-based plans.
While the methods discussed in this paper are independent
of the specific plan structure, order-based and tree-based
plans will be used in the present examples.
Detection-Adaptation Loop

During evaluation, an ACEP system constantly attempts
to spot a change in the statistical properties of the data and
to react accordingly. This process, referred to as the detec-
tion-adaptation loop, is depicted in Algorithm 1 below:

Algorithm 1: Detection-adaptation loop in an ACEP system

Input: pattern specification P, plan generation algorithm
, reoptimizing decision function , initial statistic

values in_stat ˛ STAT
curr_plan (P, in_stat)
while more events are available:

process incoming events using curr_plan
curr_stat (estimate current statistic values
if (curr_stat):

new_plan (P, curr_stat)
if new_plan is better than curr_plan:

curr_plan new_plan
apply curr_plan

The system accepts events from the input stream and
processes them using the current evaluation plan. At the
same time, the values of the data statistics in Stat are
constantly re-estimated by the dedicated component (FIG.
2), often as a background task. While monitoring simple
values such as the event arrival rates is trivial, more complex
expressions (e.g., predicate selectivities) require advanced
solutions. In the present disclosure, existing techniques from
the field of data stream processing [References 12, 25] are
used. These histogram-based methods allow to efficiently
maintain a variety of stream statistics over sliding windows
with high precision and require negligible system resources.

Opportunities for adaptation are recognized by the reop-
timizing decision function , defined as follows:

:STATfi{true,false}

where STAT is a set of all possible collections of the
measured statistic values. accepts the current estimates
for the monitored statistic values and decides whether re-
optimization is to be attempted. Whenever returns true,

is invoked. The output of is a new evaluation plan,
which, if found more efficient than the current plan subject
to the metrics in Perf, is subsequently deployed.

Methods for replacing an evaluation plan on-the-fly with-
out significantly affecting system performance or losing
intermediate results are a major focus of current research
[Reference 27]. Numerous advanced techniques were pro-
posed in the field of continuous query processing in data
streams [References 8, 36, 51]. In the present disclosure, the
CEP-based strategy introduced in [Reference 35] is used.
Let t0 be the time of creation of the new plan. Then, partial
matches containing at least a single event accepted before t0
are processed according to the old plan pold, whereas the
newly created partial matches consisting entirely of “new”
events are treated according to the new plan pnew. Note that
since pold and pnew operate on disjoint sets of matches, there
is no duplicate processing during execution. At time t0+W
(where W is the time window of the pattern), the last “old”
event expires and the system switches fully to pnew.

In general, the deployment procedure is considered to be
a costly operation and will attempt to minimize the number
of unnecessary plan replacements.

US 11,693,862 B2
7 8

5

10

15

20

25

30

35

40

45

50

55

60

65

Reoptimizing Decision Problem
The reoptimizing decision problem is the problem of

finding a function that maximizes the performance of a
CEP system subject to Perf. It can be formally defined as
follows: given the pattern specification P, the plan genera-
tion algorithm , the set of monitored statistics Stat, and
the set of performance metrics Perf, find a reoptimizing
decision function that achieves the best performance of
the ACEP detection-adaptation loop (Algorithm 1) subject to
Perf.

In practice, the quality of is determined by two factors.
The first factor is the correctness of the answers returned by

. Wrong decisions can either fall into the category of false
positives (returning true when the currently used plan is still
the best possible) or false negatives (returning false when a
more efficient plan is available). Both cases cause the system
to use a sub-optimal evaluation plan. The second factor is the
time and space complexity of . In this sense, an accurate
yet resource-consuming implementation of may severely
degrade system performance regardless of its output.

The tree-based NFA [Reference 35] defines a trivial
decision function , unconditionally returning true. In
ZStream [Reference 41] this functions loops over all values
in the input parameter curr_stat and returns true if and only
if a deviation of at least t is detected.
Invariant-Based Method for the Reoptimizing Decision
Problem

FIG. 4 is a flowchart of functional steps in a process in
accordance with some embodiments of the present inven-
tion.

At step 400, the process receives, receiving, as input, a
data stream representing events.

At step 400A, current attribute values are continuously
updated from said data stream.

At step 402, the process receives a complex event pattern
(CEP) specification representing an occurrence of a CEP in
said data stream. The CEP specification comprises (a) a set
of conditions associated with relations among the events,
and (b) a set of attributes associated with the events.

At step 404, a CEP-generating algorithm is applied, to
generate, based on the CEP specification and attribute cur-
rent values, a current CEP plan configured to determine the
occurrence of the CEP in the data stream. The current CEP
plan comprises of a series of execution steps.

At step 406, an iterative process is performed to optimize
the current CEP plan by:

(i) 406A: executing the current CEP plan,
(ii) 406B: identifying, with respect to each execution step,

one invariant conditions whose verification causes the
execution step to be included in the current CEP plan,
an

(iii) 406C: performing a re-verification of all the identified
invariant conditions using updated current attribute
values; and

(iv) 406D: re-applying the CEP-generating algorithm
when the re-verification fails with respect to at least one
invariant condition, to generate an updated CEP plan.

As illustrated above, the main drawback of the previously
proposed decision functions is their coarse granularity, as the
same condition is verified for every monitored data property.
The present disclosure proposes a different approach, based
on constructing a set of fine-grained invariants that reflect
the existing connections between individual data character-
istics. The reoptimizing decision function will then be
defined as a conjunction of these invariants.

Invariant Creation
A decision invariant (or simply invariant) will be defined

as an inequality of the following form:

f1(stat1)<f2(stat2),

where stat1, stat2˛STAT are sets of the monitored statistic
values and f1, f2: STATfi are arbitrary functions.

The present disclosure is interested in finding a single
invariant for each building block of the evaluation plan in
current use. A building block is defined as the most primi-
tive, indivisible part of a plan. An evaluation plan can then
be seen as a collection of building blocks. For instance, the
plan for detecting a sequence of three events of types A, B
and C, discussed in Example 1, is formed by the following
blocks:

(i) “Accept an event of type C”;
(ii) “Scan the history for events of type B matching the

accepted C”;
(iii) “Scan the history for events of type A matching the

accepted C and B”.
In general, in an order-based plan, each step in the

selected order will be considered a block, whereas for
tree-based plans a block is equivalent to an internal node.

It is known that the specific plan from the above example
was chosen because the plan generation algorithm sorts
the event types according to their arrival rates. If, for
instance, the rate of B exceeded that of A, the second block
would have been “Scan the history for events of type A
matching the accepted C” and the third would also have
changed accordingly. In other words, the second block of the
plan is so defined because, during the run of , the
condition rateB<rateA was at some point checked, and the
result of this check was positive. Following the terminology
defined above, in this example STAT consists of all valid
arrival rate values and f1, f2 are trivial functions, i.e.,
f1(x)=f2(x)=x.

Any condition (over the measured statistic values) whose
verification has led the algorithm to include some building
block in the final plan will be denoted as a deciding
condition. Obviously, no generic method exists to distin-
guish between a deciding condition and a regular one. This
process is to be applied separately on any particular algo-
rithm based on its semantics. In the present example,
assume that the arrival rates are sorted using a simple
min-sort algorithm, selecting the smallest remaining one at
each iteration. Then, any comparison between two arrival
rates will be considered a deciding condition, as opposed to
any other condition which may or may not be a part of the
implementation of this particular algorithm.

When is invoked on a given input, locations can be
marked in the algorithm’s execution flow where the deciding
conditions are verified. Any actual verification of a deciding
condition is called a block-building comparison (BBC). For
instance, assume that execution of the present min-sort
algorithm begins, and a deciding condition rateC<rateA is
verified. Further assume that rateC is smaller than rateA.
Then, this verification is a BBC associated with the building
block “Accept an event of type C first”, because, unless this
deciding condition holds, the block will not be included in
the final plan. This will also be the case if rateC<rateB is
subsequently verified and rateC is smaller. If rateB is smaller,
the opposite condition, rateB<rateC, becomes a BBC asso-
ciated with a block “Accept an event of type B first”.
Overall, (n-1) BBCs take place during the first min-sort
iteration, (n-2) during the second iteration, and so forth.

In general, for each building block b of any evaluation
plan, there can be determined a deciding condition set

US 11,693,862 B2
9 10

5

10

15

20

25

30

35

40

45

50

55

60

65

(DCS). A DCS of b consists of all deciding conditions that
were actually checked and satisfied by BBCs belonging to b
as explained above. Note that, by definition, the intersection
of two DCSs is always empty. In the present example,
assuming that the blocks listed above are denoted as b1, b2,
b3, the deciding condition sets are as follows:

DCS1={rateC<rateB,rateC<rateA},

DCS2={rateB<rateA},

DCS3=ø.

As long as the above conditions hold, no other evaluation
plan can be returned by . On the other hand, if any of the
conditions is violated, the outcome of will result in
generating a different plan. If the decision function is
defined as a conjunction of the deciding condition sets,
situations will be recognized in which the current plan
becomes sub-optimal with high precision and confidence.

However, verifying all deciding conditions for all build-
ing blocks is very inefficient. In the present simple example,
the total number of such conditions is quadratic in the
number of event types participating in the pattern. For more
complicated plans and generation algorithms, this depen-
dency may grow to a high-degree polynomial or even
become exponential. Since the adaptation decision is made
during every iteration of Algorithm 1 above, the overhead
may negatively affect the system throughput and the
response time.

To overcome this problem, the number of conditions will
be constrained to be verified by to one per building block.
For each deciding condition set DCSi, there will be deter-
mined the tightest condition, that is, the one that was closest
to being violated during plan generation. This tightest con-
dition will be selected as an invariant of the building block
bi. In other words, there may be alternatively defined an
invariant as a deciding condition selected for actual verifi-
cation by out of a DCS. More formally, given a set

DCSi={c1, . . . ,cm}

such that

ck=(fk,1(statk,1)<fk,2(statk,2)),

a condition that minimizes the expression

(fk,2(statk,2)-fk,1(statk,1))

as an invariant of the building block bi.
In the example above, the invariant for DCSi is

rateC<rateB, since it is known that rateB<rateA, and therefore
rateB-rateC<rateA-rateC. It is clear that rateB is a tighter
bound for the value of rateC than rateA.

To summarize, the process of invariant creation proceeds
as follows. During the run of on the current set of
statistics Stat, its execution is closely monitored. Whenever
a block-building comparison is detected for some block b,
the corresponding deciding condition to the DCS of b is
added. After the completion of , the tightest condition of
each DCS is extracted and added to the invariant list.

FIGS. 5A-5D demonstrate the invariant creation process
applied on the pattern from Example 1 and the rate-sorting
algorithm discussed above. Each of FIGS. 5A-5B depicts
a different stage in the plan generation and presents the
DCSs and the BBCs involved at this stage. Accordingly,
FIG. 5A shows selecting the first event type in the detection
order; in FIG. 5B, C is set as the first event type, and
selection of the second event type is in process; in FIG. 5C,

B is set as the second type, and only a single event type
remains for the third position; and in FIG. 5D, the evaluation
plan and the invariant set are finalized.

As discussed above, this generic method has to be adapted
to any specific implementation of . This is trivially done
for any which constructs the solution plan in a step-by-
step manner, selecting and appending one building block at
a time. However, for algorithms incorporating other
approaches, such as dynamic programming, it is more
challenging to attribute a block-building comparison to a
single block of the plan.
Invariant Verification and Adaptation

During the execution of the detection-adaptation loop
(Algorithm 1 above), traverses the list of invariants built
as described above. It returns true if a violated invariant was
found (according to the current statistic estimates) and false
otherwise. This list is sorted according to the order of the
respective building blocks in the evaluation plan. In
Example 1, first the invariant rateC<rateB will be verified,
followed by rateB<rateA. The reason is that an invariant
implicitly assumes the correctness of the preceding invari-
ants (e.g., rateB<rateA assumes that rateC<rateB holds; oth-
erwise, it should have been changed to rateC<rateA). For
tree-based plans, the verification proceeds in a bottom-up
order. For example, for the tree plan displayed in FIG. 3A,
the order is (A, B)fi(A, B, C).

If a violation of an invariant is detected, is invoked to
create a new evaluation plan. In this case, the currently used
invariants are invalidated and a new list is created following
the process described above. Subsequent verifications per-
formed by are then based on the new invariants.

Assuming that any invariant can be verified in constant
time and memory, the complexity of using the invariant-
based method is O(B), where B is the number of the building
blocks in an evaluation plan. This number is bounded by the
pattern size (the number of event types participating in a
pattern) for both order-based and tree-based plans. To guar-
antee this result, an application of the invariant-based
method on a specific implementation of has to ensure
that the verification of a single invariant is a constant-time
operation.
Correctness Guarantees and the K-Invariant Method

It will now be formally proven that the invariant-based
method presented above guarantees that no false positive
detections will occur during the detection-adaptation loop.

Theorem 1: Let be a reoptimizing decision function
implemented according to the invariant-based method.
Let be a deterministic plan generation algorithm in
use and let p be the currently employed plan. Then, if
at some point during execution returns true, the
subsequent invocation of will return a plan p', such
that p'„p.

By definition, if returns true, then there is at least one
invariant whose verification failed, i.e., its deciding condi-
tion does not hold anymore. Let c be the first such condition,
and let bi be the building block such that c˛DCSi (recall that
there is only one such bi). Then, by determinism of and
by the ordering defined on the invariants, the new run of

will be identical to the one that produced p until the
block-building comparison that checks c. At that point, by
definition of the block-building comparison, the negative
result of validating c will cause to reject bi as the current
building block and select a different one, thus producing a
plan p', which is different from p.

Since it is assumed that always produces the optimal
solution, the above result can be extended.

US 11,693,862 B2
11 12

5

10

15

20

25

30

35

40

45

50

55

60

65

Corollary 1: Let be an invariant-based reoptimizing
decision function and let be a deterministic plan
generation algorithm in use. Then, if at some point
during execution returns true, the subsequent invo-
cation of will return a plan that is more efficient than
the currently employed one.

Note that the opposite direction of Theorem 1 does not
hold. It is still possible that a more efficient evaluation plan
can be deployed, yet this opportunity will not be detected by

because there is only picked a single condition from each
deciding condition set. If the whole union of the above sets
were to be included in the invariant set, even stronger
guarantees could be achieved, as stated in the following
theorem.

Theorem 2: Let be a reoptimizing decision function
implemented according to the invariant-based method,
with all conditions from all DCSs included in the
invariant set. Let be a deterministic plan generation
algorithm in use and let p be the currently employed
plan. Then, if and only if at some point during the
execution returns true, the subsequent invocation of

will return a plan p', such that p'„p.
The first direction follows immediately from Theorem 1.

For the second direction, let p'„p and let bi˛p, bi'˛p be the
first building blocks that differ in p and p'. By ’s deter-
minism, there exist f1, f2, stat1, stat2s. t.

(f1(stat1)<f2(stat2))˛DCSi

(f2(stat2)<fi(stati))˛DCSi,

as otherwise there would be no way for to deterministi-
cally choose between bi and bi. Since p' was created by

using the currently estimated statistic values, it can be
deduced that f2(stat2)<f1(stat1) holds. Consequently, f1(stat1)
<f2(stat2) does not hold. By the assumption that all deciding
conditions are included in the invariant set, will neces-
sarily detect this violation, which completes the proof.

The above result shows that greater precision can be
gained if the number of monitored invariants per building
block is not limited. However, as discussed above, validat-
ing all deciding conditions may drastically increase the
adaptation overhead.

The tradeoff between performance and precision can be
controlled by introducing a new parameter K, defined as the
maximal number of conditions from a deciding set to select
as invariants. The method using a specific value of K is
referred to as the K-invariant method, as opposed to the
basic invariant method discussed above. Note that the 1-in-
variant method is equivalent to the basic one. The K-invari-
ant method becomes more accurate and more time-consum-
ing for higher values of K. The total number of the invariants
in this case is at most K·(B-1).
Distance-Based Invariants

By Corollary 1 above, it is guaranteed that a new, better
evaluation plan will be produced following an invariant
violation. However, the magnitude of its improvement over
the old plan is not known. Consider a scenario in which two
event types in a pattern have very close arrival rates. Further
assume that there are slight oscillations in the rates, causing
the event types to swap positions periodically when ordered
according to this statistic. If an invariant is defined compar-
ing the arrival rates of these two types, then will discover
these minor changes and two evaluation plans with little to
no difference in performance will be repeatedly produced
and deployed. Although not a “false positive” by definition,
the overhead implied by this situation may exceed any
benefit of using an adaptive platform.

To overcome this problem, the notion of the minimal
distance d will be introduced, defined as the smallest relative
difference between the two sides of the inequality required
for an invariant to be considered as violated. That is, given
a deciding condition fk,1(statk,1)<fk,2(statk,2), the invariant
will be constructed to be verified by as follows:

(1+d)·fk,1(statk,1)<fk,2(statk,2).

The experimental study detailed elsewhere herein dem-
onstrates that a correctly chosen d leads to a significant
performance improvement over the basic technique. How-
ever, finding a sufficiently good d is a difficult task, as it
depends on the data, the type of statistics, the invariant
expression, and the frequency and magnitude of the runtime
changes. Accordingly, the following directions are identified
for solving this problem:

(i) Parameter scanning: empirically checking a range of
candidate values to find the one resulting in the best
performance. This method is the simplest, but often
infeasible in real-life scenarios.

(ii) Data analysis methods: deriving d from the currently
available statistics can provide a good estimate in some
cases. For instance, it can be calculated as the average
relative difference between the sides of a deciding
condition obtained during the initial plan generation,
or, more formally:

d � AVG
�
�
���
�� fk,2�statk,2� � fk,1�statk,1���

min� fk,1�statk,1�, fk,2�statk,2��
	

���.

The effectiveness of this approach depends on the
distribution and the runtime behavior of the statisti-
cal values. Specifically, false positives may be pro-
duced when the values are very close and the
changes are frequent. Still, it is expected to perform
reasonably well in the common case. This technique
can also be utilized to produce a starting point for
parameter scanning.

(iii) Meta-adaptive methods: dynamically tuning d on-
the-fly to adapt it to the current stream statistics. This
might be the most accurate and reliable solution. At the
start, an initial value is selected, possibly obtained
using the above techniques. Then, as invariants are
violated and new plans are computed, d is modified to
prevent repeated re-optimization attempts when the
observed gain in plan quality is low. An even higher
precision can be achieved by additionally utilizing
fine-grained per-invariant distances.

Applications of the Invariant-Based Method
There is presented a generic method for defining a reop-

timizing decision function as a list of invariants. As was
shown, additional steps are required in order to apply this
method to a specific choice of the evaluation plan structure
and the plan generation algorithm. Namely, the following
should be strictly defined: (i) what is considered a building
block in a plan; (ii) what is considered a block-building
comparison in ; and (iii) how to associate a BBC with a
building block. Additionally, efficient verification of the
invariants must be ensured. In this section, this process will
be exemplified on two plan-algorithm combinations taken
from previous works in the field. The experimental results
shown elsewhere herein will also be conducted on these
adapted algorithms.

US 11,693,862 B2
13 14

5

10

15

20

25

30

35

40

45

50

55

60

65

Greedy Algorithm for Order-Based Plans
The greedy heuristic algorithm based on cardinalities and

predicate selectivities was first described in [Reference 46]
for creating left-deep tree plans for join queries. It was
adapted to the CEP domain in [Reference 34]. The algorithm
supports all operators described above and their arbitrary
composition. Its basic form, it only targets conjunction and
sequence patterns of arbitrary complexity. Support for other
operators and their composition is implemented by either
activating transformation rules on the input pattern or apply-
ing post-processing steps on the generated plan (e.g., to
augment it with negated events).

The algorithm proceeds iteratively, selecting at each step
the event type which is expected to minimize the overall
number of partial matches (subsets of valid pattern matches)
to be kept in memory. At the beginning, the event type with
the lowest arrival rate (multiplied by the selectivities of any
predicates possibly defined solely on this event type) is
chosen. At each subsequent step i; i>1, the event type to be
selected is the one that minimizes the expression
(Pj=1

irpj
·Pj,k£iselpj,pk

), where rx stands for the arrival rate of
the xth event type in a pattern, selx,y is the selectivity of the
predicate defined between the xth and the yth event types
(equals to 1 if no predicate is defined), p1, . . . , pi-1 are the
event types selected during previous steps, and pi is the
candidate event type for the current step. Since a large part
of this expression is constant when selecting pi, it is suffi-
cient to find an event type, out of those still not included in
the plan, minimizing (rpi

·selpi,pi
·Pk<iselpk,pi

).
Algorithm 2 depicts the plan generation process. When all

selectivities satisfy selx,y, =1, i.e., no predicates are defined
for the pattern, this algorithm simply sorts the events in an
ascending order of their arrival rates:

Algorithm 2: Greedy Algorithm for Order-Based Plans

Input: event types e1, ... , en, arrival rates r1, ... , rn,
inter-event predicate selectivities
sel1,1, ... , seln,n

Output: order-based evaluation plan E = ep1
, ep2

, ... , epn
E ø; p1 = argminj{rj · selj,j}
add ep1

to E
for i from 2 to n:

pi = argminjˇE{rj · selj,j · Pk<i selpk,j
}

add epi
to E

return E

A building block for order-based evaluation plans pro-
duced by Algorithm 2 may be defined as a single directive
of processing an event type in a specific position of a plan.
That is, a building block is an expression of the form
“Process the event type ej at ith position in a plan”. Obvi-
ously, a full plan output by the algorithm contains exactly n
blocks, and a total of O(n2) blocks is considered during the
run. Deciding conditions created for such a block are defined
as:

r j � sel j, j�
k�i

selpk , j � r j� � sel j� , j� ��
k�i

selpk , j� .

Here, ej', j'„j is an event type which was considered to
occupy ith position at some point but eventually ej was
selected. Note that, while in the worst case the products may
contain up to n-1 multiplicands, in most cases the number
of the predicates defined over the events in a pattern is

significantly lower than n2. Therefore, invariant verification
will be executed in near-constant time.

Dynamic Programming Algorithm for Tree-Based Plans

The authors of ZStream [41] introduced an efficient
algorithm for producing tree-based plans based on dynamic
programming (Algorithm 3):

Algorithm 3: ZStream algorithm for tree-based plans

Input: event types e1, ... , en, arrival rates r1, ... , rn,
inter-event predicate selectivities
sel1,1, ... , seln,n

Output: tree-based evaluation plan T
subtrees new two-dimensional matrix of size n · n
for i from 1 to n:

subtrees[i][1].cardinality = subtrees[i][1].cost = ri
for i from 2 to n:

for j from 1 to n - i + 1:
for k from j + 1 to j + i:

new_cardinality = Card(
subtrees[k - j][j].cardinality,
subtrees[i - (k - j)][k].cardinality)

new_cost = subtrees[k - j][j].cost +
+ subtrees[i - (k - j)][k].cost + new_cardinality

if new_cost < subtrees[i][j].cost:
subtrees[i][j].tree = new_tree(

subtrees[k - j][j],subtrees[i - (k - j)[k])
subtrees[i][j].cardinality = new_cardinality
subtrees[i][j].cost = new_cost

return subtrees[n][1].tree

The algorithm consists of n-1 steps, where during the ith

step the tree-based plans for all subsets of the pattern of size
i+1 are calculated (for the trees of size 1, the only possible
tree containing the lone leaf is assumed). During this cal-
culation, previously memorized results for the two subtrees
of each tree are used. To calculate the cost of a tree T with
the subtrees L and R, the following formula is used:

Cost �T� � �
�
���

ri T is a leaf

Cost �L� �Cost �R� �Card �L, R� otherwise,

where Card(L, R) is the cardinality (the expected number of
partial matches reaching the root) of T, whose calculation
depends on the operator applied by the root. For example,
the cardinality of a conjunction node is defined as the
product of the cardinalities of its operands multiplied by the
total selectivity of the conditions between the events in L
and the events in R. That is,

Card(T)=Card(L)·Card(R)·SEL(L,R),

where SEL(L, R) is a product of all predicate selectivities
seli,j:i˛L,j˛R. Leaf cardinalities are defined as the arrival
rates of the respective event types.

To apply the invariant-based method, each internal node
of a tree-based plan will be defined as a building block. This
way, up to O(n3) blocks will be formed during the run of
Algorithm 3, with only O(n) included in the resulting plan.

A comparison between the costs of two trees will be
considered a block-building comparison for the root of the
less expensive tree. The deciding conditions for this algo-
rithm will be thus defined simply as Cost(T1)<Cost(T2),
where T1, T2 are the two compared trees. These comparisons
are invoked at each step during the search for the cheapest

US 11,693,862 B2
15 16

5

10

15

20

25

30

35

40

45

50

55

60

65

tree over a given subset of events. For k events, the number
of candidate trees is

Ck�1 �
�2k � 2�	
������������������������������k � 1�	k 	 ,

where Cm is the mth Catalan number. Therefore, picking only
one comparison as an invariant and dismissing the rest of the
candidates may create a problem of false negatives, and
K-invariant method is recommended instead.

The obvious problem with the above definition is that tree
cost calculation is a recursive function, which contradicts
the constant-time invariant verification assumption. This
recursion will be eliminated by utilizing the following
observation. In Algorithm 3, all block-building comparisons
are performed on pairs of trees defined over the same set of
event types. By invariant definition, one of these trees is
always a subtree of a plan currently being in use. Recall that
invariants on tree-based plans are always verified in the
direction from leaves to the root. Hence, if any change was
detected in one of the statistics affecting the subtrees of the
two compared trees, it would be noticed during verification
of earlier invariants. Thus, it is safe to represent the cost of
a subtree in an invariant as a constant whose value is
initialized to the cost of that subtree during invariant cre-
ation (i.e., plan construction).
General Applicability of the Invariant-Based Method

The approaches described above only cover two special
cases. Here, the present disclosure is egenralied to apply the
invariant-based method to any greedy or dynamic program-
ming algorithm. The applicability of the present method to
other algorithm categories is also considered.

A generalized variation of the technique illustrated above
can be utilized for any greedy plan generation algorithm. To
that end, a part of a plan constructed during a single greedy
iteration should be defined as a building block. Additionally,
a conjunction of all conditions evaluated to select a specific
block is to be defined as a block-building comparison
associated with this block. Since most greedy algorithms
require constant time and space for a single step, the
complexity requirements for the invariant verification will
be satisfied.

Using similar observations, it can be generalized that the
approach described above to any dynamic programming
algorithm. A subplan memorized by the algorithm will
correspond to a building block. A comparison between two
subplans will serve as a BBC for the block that was selected
during the initial run.

In general, the invariant-based method can be similarly
adapted to any algorithm that constructs a plan in a deter-
ministic, bottom-up manner, or otherwise includes a notion
of a “building block”.

In contrast, algorithms based on local search (adapted to
CEP in [34]) cannot be used in conjunction with the invari-
ant-based method. Rather than building a plan step-by-step,
these algorithms start with a complete initial solution and
modify it to create an improved version [3].
Experimental Evaluation

In this section, the results of experimental evaluations are
presented. The objectives of this empirical study were
twofold. First, the objective is to assess the overall system
performance achieved by the present approach and the
computational overhead implied by its adaptation process as
compared to the existing strategies for ACEP systems. The

objective is to explore how changes in the parameters of the
present method and of the data characteristics impact the
above metrics.
Experimental Setup

The two CEP models described above were implemented:
the lazy NFA [35] with the greedy order-based algorithm
[46] and the ZStream model with tree-based dynamic pro-
gramming algorithm [41]. Also added was support for three
adaptation methods (i.e., implementations of): (i) the
unconditional reoptimization method from [35]; (ii) the
constant-threshold method from [41]; and (iii) the invariant-
based method. To accurately estimate the event arrival rates
and predicate selectivities on-the-fly, the algorithm from
[25] was utilized for maintaining statistics over sliding
window.

Since the plan generation algorithms used during this
study create plans optimized for maximal throughput,
throughput was chosen as a main performance metric,
reflecting the effectiveness of the above algorithms in the
presence of changes in the input. Similar results could be
obtained for algorithms targeting any other optimization
goal, such as minimizing latency or communication cost.

Two real-world datasets were used in the experiments. For
each of them, 5 sets of patterns containing different opera-
tors were created, as follows:

(i) sequences;
(ii) sequences with an additional event under negation;
(iii) conjunctions;
(iv) sequences with a single event under Kleene closure;

and
(v) composite patterns, consisting of a disjunction of three

sequences.
Each set contained 6 patterns of sizes varying from 3 to

8. Pattern size was defined as the number of events in a
pattern for sets 1-4 and the number of events in each
subpattern for set 5.

The first dataset contains vehicle traffic sensor data,
provided by City of Aarhus, Denmark [7] and collected over
a period of 4 months from 449 observation points, with
13,577,132 primitive events overall. Each event represents
an observation of traffic at the given point. The attributes of
an event include, among others, the point ID, the average
observed speed, and the total number of observed vehicles
during the last 5 minutes. The arrival rates and selectivities
for this dataset were highly skewed and stable, with few
on-the-fly changes. However, the changes that did occur
were mostly very extreme. The patterns for this dataset were
motivated by normal driving behavior, where the average
speed tends to decrease with the increase in the number of
vehicles on the road. The objective was to detect violations
of this model, i.e., combinations (sequences, conjunctions,
etc., depending on the operator involved) of three or more
observations with either an increase or a decline in both the
number of vehicles and the average speed.

The second dataset was taken from the NASDAQ stock
market historical records [52]. Each record in this dataset
represents a single update to the price of a stock, spanning
a 1-year period and covering over 2,100 stock identifiers
with prices updated on a per minute basis. The input stream
contained 80,509,033 primitive events, each consisting of a
stock identifier, a timestamp, and a current price. For each
stock identifier, a separate event type was defined. In addi-
tion, the data was preprocessed to include the difference
between the current and the previous price. Contrary to the
traffic dataset, low skew in data statistics was observed, with
the initial values nearly identical for all event types. The
changes were highly frequent, but mostly minor. The pat-

US 11,693,862 B2
17 18

5

10

15

20

25

30

35

40

45

50

55

60

65

terns to evaluate were then defined as combinations of
different stock identifiers (types), with the predefined price
differences (e.g., for a conjunction pattern AND (A, B, C)
A.diff<B.diff<C.diff was required).

All models and algorithms under examination were
implemented in Java. All experiments were run on a com-
puter with 2.20 Ghz CPU and 16.0 GB RAM.
Experimental Results

In the first experiment, the performance of the invariant-
based method for different values of the invariant distance d,
obtained by parameter scanning, was evaluated. In this
experiment, only the sequence pattern sets were used. For
each of the four possible dataset-algorithm combinations,
the system throughput was measured as a function of the
tested pattern size and of d, with its values ranging from 0
(which corresponds to the basic method) to 0.5.

The results are displayed in FIG. 6A (traffic dataset/
greedy algorithm), 6B (traffic dataset/ZStream algorithm),
6C (stocks dataset/greedy algorithm), 6D (stocks dataset/
ZStream algorithm). It can be observed that in each scenario,
there exists an optimal value dopt, which depends on the data
and the algorithm in use, consistently outperforming the
other values for all pattern sizes. For distances higher than
dopt, too many changes in the statistics are undetected, while
the lower values trigger unnecessary adaptations. Overall,
the throughput achieved by using invariants with distance
dopt is 2 to 25 times higher than that of the basic method
(d=0).

Then, the average relative difference method was vali-
dated by comparing its output value davg to dopt (obtained via
parameter scanning as described above) for each scenario.
For the traffic dataset, the computed values were consider-
ably close to the optimal ones for patterns of length 6 and
above, with precision reaching at least 87% (for ZStream
algorithm and pattern length 7) and as high as 92% (Greedy
algorithm, length 8). For the stocks dataset, the achieved
accuracy was only 31-44%. This may be attributed to the
low data skew.

Next, an experimental comparison was performed of all
previously described adaptation methods. The comparison
was executed separately for each dataset-algorithm combi-
nation. For the invariant-based method, the dopt values
obtained during the first experiment were used. For the
constant-threshold method, an optimal threshold topt was
empirically found for each of the above combinations using
a similar series of runs.

FIGS. 7A-7H show the comparison results of the adap-
tation methods applied on the traffic dataset combined with
the greedy algorithm (7A-7D) and ZStream algorithm (7E-
7H).

Each graph in sets 7A-7D and 7E-7H presents different
statistics as a function of the pattern size. The first graph
shows the throughput achieved using each of the adaptation
methods. Here, there was also included the “static” method,
where no adaptation is supported and the dataset is pro-
cessed using a single, predefined plan. The second graph is
a different way of viewing the previous one, comparing the
adaptation methods by the relative speedup they achieve
over the “static plan” approach. The third graph depicts the
total number of reoptimizations (actual plan replacements)
recorded during each run. Finally, the computational over-
head of each method is reported as a percentage of the total
execution time spent on executions of and (i.e.,
checking whether a reoptimization is necessary and com-
puting new plans).

The throughput comparison demonstrates the superiority
of the invariant-based method over its alternatives for all

scenarios. Its biggest performance gain is achieved in the
traffic scenario, characterized by high skew and major
statistic shifts. This gain reaches its peak for larger patterns,
with the maximal recorded performance of more than 6
times that of the second-best constant-threshold method: the
greater the discrepancy between the data characteristics, the
more difficult it is to find a single threshold to accurately
monitor all the changes. Since this discrepancy may only
increase as more statistic values are added to the monitored
set, it is expected that the superiority of this method to keep
growing with the pattern size beyond the values experi-
mented with.

For the stocks dataset (FIGS. 8A-8H), the throughput
measurements for the constant-threshold and the invariant-
based methods are considerably closer. Due to the near-
uniformity of the statistic values and of their variances,
finding a single topt is sufficient to recognize most important
changes. Hence, the precision of the constant-threshold
method is very high on this input. Nevertheless, the invari-
ant-based method achieves a performance speedup for this
dataset as well (albeit only about 30-60%) without adding
significant overhead. Also, for the same reason, the static
plan performs reasonably well in this scenario, decidedly
outperforming the unconditional method. The latter suffers
from extreme over-adapting to the numerous small-scale
statistic shifts.

The total number of reoptimizations performed in each
scenario (FIGS. 7C, 7G, 7C, 8G) backs up and augments the
above results. The invariant-based method requires few plan
replacements while also achieving the best throughput. The
extremely high numbers produced by the unconditional
strategy lead to its poor performance. For the traffic dataset,
the constant-threshold method tends to approach these num-
bers for larger patterns. This can either be a sign of multiple
false positives or over-adapting. For the stocks dataset, this
method is similar to the invariant-based.

FIGS. 7D, 7H, 8D, 8H present the computational over-
head of the compared approaches. Here, the same behavior
is observed for all dataset-algorithm combinations. While
the invariant-based and the constant-threshold methods con-
sume negligible system resources, unconditional reoptimi-
zation results in up to 11% of the running time devoted to the
adaptation process.

As evident by the experiments with stock market data,
smaller number of reoptimizations and lower computational
overhead do not necessarily result in better overall system
performance. On this dataset, the invariant-based method
achieves the highest throughput despite a slightly higher
overhead as compared to the second-best constant-threshold
method. This can be attributed to the false negatives of the
latter, that is, cases in which it missed a reoptimization
opportunity and kept using an old plan despite a better one
being available.

In all experiments, the relative gain of the invariant-based
method was considerably higher for ZStream algorithm than
for the greedy one. There are two reasons for this result.
First, the more complex structure of the tree-based plans
makes it more difficult to capture the dependencies between
plan components without fine-grained invariants. Second, as
this algorithm is more computationally expensive, the pen-
alty for a redundant reoptimization is higher. Following
these observations, it is believed that the invariant-based
method is capable of achieving even larger benefit for more
advanced and precise (and hence more complex) plan gen-
eration algorithms. Utilizing this method will thus encour-
age the adoption of such algorithms by CEP engines.

US 11,693,862 B2
19 20

5

10

15

20

25

30

35

40

45

50

55

60

65

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in
one or more computer readable medium(s) having computer
readable program code embodied thereon.

Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, includ-
ing but not limited to wireless, wireline, optical fiber cable,
RF, etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any
combination of one or more programming languages,
including an object-oriented programming language such as
Java, Smalltalk, C++ or the like and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. The program
code may execute entirely on the user’s computer, partly on
the user’s computer, as a stand-alone software package,
partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider).

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of

methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a hardware pro-
cessor of a general-purpose computer, special purpose com-
puter, or other programmable data processing apparatus to
produce a machine, such that the instructions, which execute
via the processor of the computer or other programmable
data processing apparatus, create means for implementing
the functions/acts specified in the flowchart and/or block
diagram block or blocks.

These computer program instructions may also be stored
in a computer readable medium that can direct a computer,
other programmable data processing apparatus, or other
devices to function in a particular manner, such that the
instructions stored in the computer readable medium pro-
duce an article of manufacture including instructions which
implement the function/act specified in the flowchart and/or
block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide
processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

The flowcharts and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical
function(s). It should also be noted that, in some alternative
implementations, the functions noted in the block may occur
out of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration,
can be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

In the description and claims of the application, each of
the words “comprise” “include” and “have”, and forms
thereof, are not necessarily limited to members in a list with

US 11,693,862 B2
21 22

5

10

15

20

25

30

35

40

45

50

55

60

65

which the words may be associated. In addition, where there
are inconsistencies between this application and any docu-
ment incorporated by reference, it is hereby intended that the
present application controls.

REFERENCES

[1] E. Aarts and J. Lenstra, editors. Local Search in Com-
binatorial Optimization. John Wiley & Sons, Inc., New
York, N.Y., USA, 1st edition, 1997.

[2] D. J. Abadi, Y. Ahmad, M. Balazinska, M. Cherniack, J.
Hwang, W. Lindner, A. S. Maskey, E. Rasin, E. Ryvkina,
N. Tatbul, Y. Xing, and S. Zdonik. The design of the
Borealis stream processing engine. In CIDR, pages 277-
289, 2005.

[3] M. Acosta, M. Vidal, T. Lampo, J. Castillo, and E.
Ruckhaus. Anapsid: An adaptive query processing engine
for sparql endpoints. In International Semantic Web Con-
ference (1), volume 7031, pages 18-34. Springer, 2011.

[4] A. Adi and O. Etzion. Amit—the situation manager. The
VLDB Journal, 13(2):177-203, 2004.

[5] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman.
Efficient pattern matching over event streams. In Proceed-
ings of the 2008 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’08, pages 147-160,
New York, N.Y., USA, 2008. ACM.

[6] M. Akdere, U. Çetintemel, and N. Tatbul. Plan-based
complex event detection across distributed sources.
PVLDB, 1(1):66-77, 2008.

[7] M. Ali, F. Gao, and A. Mileo. Citybench: A configurable
benchmark to evaluate rsp engines using smart city data-
sets. In Proceedings of ISWC 2015-14th International
Semantic Web Conference, pages 374-389, Bethlehem,
Pa., USA, 2015. W3C.

[8] A. Aly, W. Aref, M. Ouzzani, and H. Mahmoud. JISC:
adaptive stream processing using just-in-time state
completion. In Proceedings of the 17th International
Conference on Extending Database Technology, Athens,
Greece, Mar. 24-28, 2014, pages 73-84.

[9] L. Amini, H. Andrade, R. Bhagwan, F. Eskesen, R. King,
P. Selo, Y. Park, and C. Venkatramani. Spc: A distributed,
scalable platform for data mining. In Proceedings of the
4th International Workshop on Data Mining Standards,
Services and Platforms, pages 27-37, New York, N.Y.,
USA, 2006. ACM.

[10] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar,
K. Ito, R. Motwani, U. Srivastava, and J. Widom.
STREAM: The Stanford Data Stream Management Sys-
tem, pages 317-336. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2016.

[11] R. Avnur and J. Hellerstein. Eddies: Continuously
adaptive query processing. SIGMOD Rec., 29(2):261-
272, May 2000.

[12] B. Babcock, M. Datar, R. Motwani, and L.
O’Callaghan. Maintaining variance and k-medians over
data stream windows. In Proceedings of the Twenty-
second ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, pages 234-243, New
York, N.Y., USA, 2003. ACM.

[13] S. Babu, P. Bizarro, and D. DeWitt. Proactive re-
optimization. In Proceedings of the 2005 ACM SIGMOD
International Conference on Management of Data, pages
107-118, New York, N.Y., USA. ACM.

[14] S. Babu, R. Motwani, K. Munagala, I. Nishizawa, and
J. Widom. Adaptive ordering of pipelined stream filters.
In Proceedings of the 2004 ACM SIGMOD International

Conference on Management of Data, pages 407-418, New
York, N.Y., USA, 2004. ACM.

[15] S. Babu and J. Widom. Streamon: An adaptive engine
for stream query processing. In Proceedings of the 2004
ACM SIGMOD International Conference on Manage-
ment of Data, pages 931-932, New York, N.Y., USA,
2004. ACM.

[16] R. S. Barga, J. Goldstein, M. H. Ali, and M. Hong.
Consistent streaming through time: A vision for event
stream processing. In CIDR, pages 363-374, 2007.

[17] P. Bizarro, S. Babu, D. J. DeWitt, and J. Widom.
Content-based routing: Different plans for different data.
In Proceedings of the 31st International Conference on
Very Large Data Bases, Trondheim, Norway, Aug.
30-Sep. 2, 2005, pages 757-768. ACM, 2005.

[18] B. Chandramouli, J. Goldstein, and D. Maier. High-
performance dynamic pattern matching over disordered
streams. PVLDB, 3(1-2):220-231, 2010.

[19] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy,
S. Madden, V. Raman, F. Reiss, and M. A. Shah.
Telegraphcq: Continuous dataflow processing for an
uncertain world. In CIDR, 2003.

[20] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. Niagaracq:
A scalable continuous query system for internet data-
bases. SIGMOD Rec., 29(2):379-390, 2000.

[21] J. Coffi, C. Marsala, and N. Museux. Adaptive complex
event processing for harmful situation detection. Evolving
Systems, 3(3):167-177, September 2012.

[22] G. Cugola and A. Margara. Tesla: a formally defined
event specification language. In DEBS, pages 50-61.
ACM, 2010.

[23] G. Cugola and A. Margara. Complex event processing
with T-REX. J. Syst. Softw., 85(8):1709-1728, 2012.

[24] G. Cugola and A. Margara. Processing flows of infor-
mation: From data stream to complex event processing.
ACM Comput. Surv., 44(3):15:1-15:62, 2012.

[25] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Main-
taining stream statistics over sliding windows. SIAM J.
Comput., 31(6):1794-1813, June 2002.

[26] A. Demers, J. Gehrke, M. Hong, M. Riedewald, and W.
White. Towards expressive publish/subscribe systems. In
Proceedings of the 10th International Conference on
Advances in Database Technology, pages 627-644.
Springer-Verlag.

[27] A. Deshpande, Z. Ives, and V. Raman. Adaptive query
processing. Foundations and Trends in Databases, 1(1):
1-140, January 2007.

[28] O. Etzion and P. Niblett. Event Processing in Action.
Manning Publications Co., 2010.

[29] I. Flouris, N. Giatrakos, A. Deligiannakis, M. Garo-
falakis, M. Kamp, and M. Mock. Issues in complex event
processing: Status and prospects in the big data era.
Journal of Systems and Software, 127:217-236, 2017.

[30] Z. Ives, A. Halevy, and D. Weld. Adapting to source
properties in processing data integration queries. In Pro-
ceedings of the 2004 ACM SIGMOD International Con-
ference on Management of Data, pages 395-406, New
York, N.Y., USA, 2004. ACM.

[31] N. Kabra and D. DeWitt. Efficient mid-query re-
optimization of sub-optimal query execution plans. SIG-
MOD Rec., 27(2):106-117, June 1998.

[32] I. Kolchinsky, A. Schuster, and D. Keren. Efficient
detection of complex event patterns using lazy chain
automata. CoRR, abs/1612.05110, 2016.

US 11,693,862 B2
23 24

5

10

15

20

25

30

35

40

45

50

55

60

65

[33] I. Kolchinsky and A. Schuster. Efficient adaptive detec-
tion of complex event patterns. CoRR, abs/1801.08588,
2017.

[34] I. Kolchinsky and A. Schuster. Join query optimization
techniques for complex event processing applications.
PVLDB, 11(11):1332-1345, 2018.

[35] I. Kolchinsky, I. Sharfman, and A. Schuster. Lazy
evaluation methods for detecting complex events. In DEB
S, pages 34-45. ACM, 2015.

[36] J. Kramer, Y. Yang, M. Cammert, B. Seeger, and D.
Papadias. Dynamic plan migration for snapshot-equiva-
lent continuous queries in data stream systems. In Pro-
ceedings of the 2006 International Conference on Current
Trends in Database Technology, pages 497-516, Berlin,
Heidelberg, 2006. Springer-Verlag.

[37] O. Lee, E. You, M. Hong, and J. Jung. Adaptive
Complex Event Processing Based on Collaborative Rule
Mining Engine, pages 430-439. Springer International
Publishing, Cham, 2015.

[38] M. Liu, Z. Ives, and B. Loo. Enabling incremental
query re-optimization. In Proceedings of the 2016 Inter-
national Conference on Management of Data, pages
1705-1720, New York, N.Y., USA. ACM.

[39] S. Madden, M. Shah, J. Hellerstein, and V. Raman.
Continuously adaptive continuous queries over streams.
In Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, pages 49-60, New
York, N.Y., USA, 2002. ACM.

[40] V. Markl, V. Raman, D. Simmen, G. Lohman, H.
Pirahesh, and M. Cilimdzic. Robust query processing
through progressive optimization. In Proceedings of the
2004 ACM SIGMOD International Conference on Man-
agement of Data, pages 659-670, New York, N.Y., USA.
ACM.

[41] Y. Mei and S. Madden. ZStream: a cost-based query
processor for adaptively detecting composite events. In
SIGMOD Conference, pages 193-206. ACM, 2009.

[42] R. Nehme, K. Works, C. Lei, E. Rundensteiner, and E.
Bertino. Multi-route query processing and optimization. J.
Comput. Syst. Sci., 79(3):312-329, May 2013.

[43] M. Sadoghi and H. Jacobsen. Adaptive parallel com-
pressed event matching. In IEEE 30th International Con-
ference on Data Engineering, 2014, pages 364-375, 2014.

[44] N. P. Schultz-Møller, M. M., and P. R. Pietzuch.
Distributed complex event processing with query rewrit-
ing. In DEBS. ACM, 2009.

[45] M. Stillger, G. Lohman, V. Markl, and M. Kandil.
Leo—db2’s learning optimizer. In Proceedings of the
27th International Conference on Very Large Data Bases,
pages 19-28, San Francisco, Calif., USA, 2001. Morgan
Kaufmann Publishers Inc.

[46] A. Swami. Optimization of large join queries: Com-
bining heuristics and combinatorial techniques. SIGMOD
Rec., 18(2):367-376, 1989.

[47] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and
M. Stonebraker. Load shedding in a data stream manager.
In Proceedings of the 29th International Conference on
Very Large Data Bases—Volume 29, pages 309-320.
VLDB Endowment, 2003.

[48] E. Wu, Y. Diao, and S. Rizvi. High-performance
complex event processing over streams. In SIGMOD
Conference, pages 407-418. ACM, 2006.

[49] I. Yi, J. G. Lee, and K. Y. Whang. Apam: Adaptive
eager-lazy hybrid evaluation of event patterns for low
latency. In Proceedings of the 25th ACM Conference on
Information and Knowledge Management, pages 2275-
2280. ACM, 2016.

[50] H. Zhang, Y. Diao, and N. Immerman. On complexity
and optimization of expensive queries in complex event
processing. In SIGMOD, pages 217-228, 2014.

[51] Y. Zhu, E. Rundensteiner, and G. Heineman. Dynamic
plan migration for continuous queries over data streams.
In Proceedings of the 2004 ACM SIGMOD International
Conference on Management of Data, pages 431-442, New
York, N.Y., USA, 2004. ACM.

[52] http://www.eoddata.com.
[53] http://www.espertech.com.

What is claimed is:
1. A method comprising:
receiving, as input, a data stream representing events;
receiving a complex event pattern (CEP) specification

representing an occurrence of a CEP in said data
stream, wherein said CEP specification comprises (a) a
set of conditions associated with relations among said
events, and (b) a set of attributes associated with said
events;

continuously updating, from said data stream, current
values associated with said set of attributes;

applying an algorithm to generate, based on said CEP
specification and said current values, a current CEP
plan configured to determine said occurrence of said
CEP in said data stream, wherein said current CEP plan
comprises of a series of execution steps; and

optimizing said current CEP plan by, iteratively:
(i) executing said current CEP plan,
(ii) identifying, with respect to each of said execution

steps, one of said conditions as an invariant condi-
tion whose verification causes said execution step to
be included in said current CEP plan,

(iii) performing a re-verification of all of said invariant
conditions using said updated current values; and

(iv) re-applying said algorithm when said re-verifica-
tion fails with respect to at least one of said invariant
conditions, to generate an updated CEP plan.

2. The method of claim 1, wherein said set of conditions
is selected from the group consisting of: a state of an
attribute of an event, an occurrence of an event, a nonoc-
currence of an event, an occurrence of a set of events, an
occurrence of a set of events within a pre-defined time
period, an occurrence of a sequence of a set of events, an
occurrence of a subset of a set of events, and an occurrence
of an aggregation of a set of event.

3. The method of claim 1, wherein said CEP is selected
from the group consisting of: an occurrence of a single
event, an occurrence of a single event under a single
condition, an occurrence of multiple events under a single
condition, and an occurrence of multiple events under mul-
tiple conditions.

4. The method of claim 1, further comprising configuring
a CEP engine to initiate an action in response to said
determining of said occurrence of said CEP.

5. The method of claim 1, wherein said identifying, with
respect to each of said execution steps, comprises:

(i) identifying a set of all of said conditions whose
verification causes said execution step to be included in
said current CEP plan; and

(ii) selecting, from said set, the most tightly bounded
condition as said invariant condition.

6. The method of claim 1, wherein said algorithm is one
of a greedy heuristic algorithm and a ZStream algorithm.

US 11,693,862 B2
25 26

5

10

15

20

25

30

35

40

45

50

55

60

65

7. A system comprising:
at least one hardware processor; and
a non-transitory computer-readable storage medium hav-

ing stored thereon program code, the program code
executable by the at least one hardware processor to:
receive, as input, a data stream representing events,
receive a complex event pattern (CEP) specification

representing an occurrence of a CEP in said data
stream, wherein said CEP specification comprises (a)
a set of conditions associated with relations among
said events, and (b) a set of attributes associated with
said events,

continuously update, from said data stream, current
values associated with said set of attributes,

apply an algorithm to generate, based on said CEP
specification and said current values, a current CEP
plan configured to determine said occurrence of said
CEP in said data stream, wherein said current CEP
plan comprises of a series of execution steps, and

optimize said current CEP plan by, iteratively:
(i) executing said current CEP plan,
(ii) identifying, with respect to each of said execu-

tion steps, one of said conditions as an invariant
condition whose verification causes said execution
step to be included in said current CEP plan,

(iii) performing a re-verification of all of said invari-
ant conditions using said updated current values,
and

(iv) re-applying said algorithm when said re-verifi-
cation fails with respect to at least one of said
invariant conditions, to generate an updated CEP
plan.

8. The system of claim 7, wherein said set of conditions
is selected from the group consisting of: a state of an
attribute of an event, an occurrence of an event, a nonoc-
currence of an event, an occurrence of a set of events, an
occurrence of a set of events within a pre-defined time
period, an occurrence of a sequence of a set of events, an
occurrence of a subset of a set of events, and an occurrence
of an aggregation of a set of event.

9. The system of claim 7, wherein said CEP is selected
from the group consisting of: an occurrence of a single
event, an occurrence of a single event under a single
condition, an occurrence of multiple events under a single
condition, and an occurrence of multiple events under mul-
tiple conditions.

10. The system of claim 7, further comprising configuring
a CEP engine to initiate an action in response to said
determining of said occurrence of said CEP.

11. The system of claim 7, wherein said identifying, with
respect to each of said execution steps, comprises:

(i) identifying a set of all of said conditions whose
verification causes said execution step to be included in
said current CEP plan; and

(ii) selecting, from said set, the most tightly bounded
condition as said invariant condition.

12. The system of claim 7, wherein said algorithm is one
of a greedy heuristic algorithm and a ZStream algorithm.

13. A computer program product comprising a non-
transitory computer-readable storage medium having pro-
gram code embodied therewith, the program code execut-
able by at least one hardware processor to:

receive, as input, a data stream representing events;
receive a complex event pattern (CEP) specification rep-

resenting an occurrence of a CEP in said data stream,
wherein said CEP specification comprises (a) a set of
conditions associated with relations among said events,
and (b) a set of attributes associated with said events;

continuously update, from said data stream, current values
associated with said set of attributes;

apply an algorithm to generate, based on said CEP speci-
fication and said current values, a current CEP plan
configured to determine said occurrence of said CEP in
said data stream, wherein said current CEP plan com-
prises of a series of execution steps; and

optimize said current CEP plan by, iteratively:
(i) executing said current CEP plan,
(ii) identifying, with respect to each of said execution

steps, one of said conditions as an invariant condi-
tion whose verification causes said execution step to
be included in said current CEP plan,

(iii) performing a re-verification of all of said invariant
conditions using said updated current values, and

(iv) re-applying said algorithm when said re-verifica-
tion fails with respect to at least one of said invariant
conditions, to generate an updated CEP plan.

14. The computer program product of claim 13, wherein
said set of conditions is selected from the group consisting
of: a state of an attribute of an event, an occurrence of an
event, a nonoccurrence of an event, an occurrence of a set of
events, an occurrence of a set of events within a pre-defined
time period, an occurrence of a sequence of a set of events,
an occurrence of a subset of a set of events, and an
occurrence of an aggregation of a set of event.

15. The computer program product of claim 13, wherein
said CEP is selected from the group consisting of: an
occurrence of a single event, an occurrence of a single event
under a single condition, an occurrence of multiple events
under a single condition, and an occurrence of multiple
events under multiple conditions.

16. The computer program product of claim 13, further
comprising configuring a CEP engine to initiate an action in
response to said determining of said occurrence of said CEP.

17. The computer program product of claim 13, wherein
said identifying, with respect to each of said execution steps,
comprises:

(i) identifying a set of all of said conditions whose
verification causes said execution step to be included in
said current CEP plan; and

(ii) selecting, from said set, the most tightly bounded
condition as said invariant condition.

18. The computer program product of claim 13, wherein
said algorithm is one of a greedy heuristic algorithm and a
ZStream algorithm.

* * * * *

US 11,693,862 B2
27 28

5

10

15

20

25

30

35

40

45

50

55

	E_Grant_Covers_All_508 5
	E_Grant_Covers_All_508 6

		USPTO Director
	2023-07-03T11:25:38-0400
	United States Patent and Trademark Office
	United States Patent and Trademark Office
	Digitally Sealed

