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Abstract

Popular machine learning approaches forgo second-order information due to the
difficulty of computing curvature in high dimensions. We present FOSI, a novel
meta-algorithm that improves the performance of any base first-order optimizer
by efficiently incorporating second-order information during the optimization pro-
cess. In each iteration, FOSI implicitly splits the function into two quadratic func-
tions defined on orthogonal subspaces, then uses a second-order method to mini-
mize the first, and the base optimizer to minimize the other. We formally analyze
FOSI’s convergence and the conditions under which it improves a base optimizer.
Our empirical evaluation demonstrates that FOSI improves the convergence rate
and optimization time of first-order methods such as Heavy-Ball and Adam, and
outperforms second-order methods (K-FAC and L-BFGS).

1 Introduction

Consider the optimization problem minθ f (θ) for a twice differential function f : Rn → R. First-
order optimizers such as gradient descent (GD) use only the gradient information to update θ
(Kingma & Ba, 2014; Tieleman et al., 2012; Duchi et al., 2011; Polyak, 1987; Nesterov, 2003).
Conversely, second-order optimizers such as Newton’s method update θ using both the gradient and
the Hessian information. First-order optimizers are thus more computationally efficient as they only
require evaluating and storing the gradient, and since their update step often involves only element-
wise operations, but have a lower convergence rate compared to second-order optimizers in many
settings (Tan & Lim, 2019). Unfortunately, second-order optimizers cannot be used for large-scale
optimization problems such as deep neural networks (DNNs) due to the intractability of evaluating
the Hessian when the dimension n is large.

Despite recent work on hybrid optimizers that leverage second-order information without computing
the entire Hessian (Henriques et al., 2019; Martens & Grosse, 2015; Gupta et al., 2018; Goldfarb
et al., 2020), first-order methods remain the preferred choice for two reasons. First, many hybrid
methods approximate the Hessian rather than the inverse preconditioner directly, resulting in am-
plifying approximation error and noise (Li, 2017). Second, no single optimizer is best across all
problems: the performance of an optimizer can depend on the specific characteristics of the problem
it is being applied to (Nocedal & Wright, 1999; Wilson et al., 2017; Zhou et al., 2020).

Our Contributions. We propose FOSI (for First-Order and Second-order Integration), an alterna-
tive approach. Rather than creating a completely new optimizer, FOSI improves the convergence
of any base first-order optimizer by incorporating second-order information. FOSI iteratively splits
minθ f (θ) into pairs of quadratic problems on orthogonal subspaces, then uses Newton’s method to
optimize one and the base optimizer to optimize the other. Unlike prior approaches, FOSI: (a) esti-
mates the inverse preconditioner directly, reducing errors due to matrix inversion; (b) only estimates
the most extreme eignenvalues and vectors, making it more robust to noise; (c) has low and control-
lable overhead; (d) accepts a base first-order optimizer, making it well suited for a large variety of
tasks; and (e) works as “turn key” replacement for the base optimizer without requiring additional
tuning. We make the following contributions:

• A detailed description of the FOSI algorithm and a thorough spectral analysis of its preconditioner.
We prove FOSI converges under common assumptions, and that it improves the condition number
of the problem for a large family of base optimizers.
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• An empirical evaluation of FOSI on common DNN training tasks with standard datasets, showing
it improves over popular first-order optimizers in terms of convergence and wall time. The best
FOSI optimizer achieves the same loss as the best first-order algorithm in 48%–77% of the wall
time, depending on the task. We also use quadratic functions to explore different features of FOSI,
showing it significantly improves convergence of base optimizers when optimizing ill-conditioned
functions with non-diagonally dominant Hessians.
• An open source implementation of FOSI, available at: https://github.com/hsivan/fosi.

2 Background and Notation

Given θt, the parameter vector at iteration t, second-order methods incorporate both the gradient
gt = ∇ f (θt) and the Hessian Ht = ∇

2 f (θt) in the update step, while first-order methods use only
the gradient. These algorithms typically employ an update step of the form θt+1 = θt + dt, where
dt is a descent direction determined by the information (first and/or second order) from current and
previous iterations. Usually, dt is of the form −ηP−1

t ḡt, where Pt is a preconditioner matrix, ḡt is
a linear combination of current and past gradients, and η > 0 is a learning rate. This results in an
effective condition number of the problem given by the condition number of P−1

t Ht, which ideally
is smaller than that of Ht (Zupanski, 2002). Note that in Newton’s method Pt = Ht, resulting in the
ideal effective condition number of 1.

Since evaluating Ht for large n is intractable, most prior work approximate it. This, however, results
in amplification of approximation errors and gradient noise due to the need of computing the inverse
P−1

t (Li, 2017); techniques such as damping (Martens & Grosse, 2015) that artificially modify the
approximated Hessian further increase the error. As we will later show, FOSI approximates P−1

t
directly, which avoids the error amplification induced by matrix inversion.

The Lanczos algorithm. To obtain information about the curvature of a function f without com-
puting its entire Hessian, we use the Lanczos algroithm (1950). This is an iterative method that finds
the m extreme eigenvalues and eigenvectors of a symmetric matrix A ∈ Rn×n, where m is usually
much smaller than n. After running m iterations, its output is a matrix U ∈ Rn×m with orthonormal
columns and a tridiagonal real symmetric matrix T ∈ Rm×m which can then be used to extract the
approximate eigenvalues and eigenvectors of A.

The Lanczos approximation is more accurate for more extreme eigenvalues, thus to accurately ap-
proximate the k largest and ℓ smallest eigenvalues, m must be larger than k + ℓ. Crucially, the
Lanczos algorithm does not require storing A explicitly. It only requires an operator that receives a
vector v and computes the matrix-vector product Av. In our case, A is the Hessian Ht of f (θ) at the
point θt. We denote by hvpt(v) : Rn → R the operator that returns the Hessian vector product Htv.
This operator can be evaluated in linear time (roughly two approximations of f ’s gradient), using
Pearlmutter’s algorithm (1994).

Notations and definitions. We use diag(v) for a diagonal matrix with diagonal v, 0m or 1m for
a row vector of zeros or ones of size m, and [A, B] for concatenating two matrices n × m1, n ×
m2 into a single n × (m1 + m2) matrix. We also define several notations w.r.t a real symmetric
matrix A with eigenvalues λ1 > ... > λn and eigenvectors v1, ... , vn. Let λ̂ be the row vector with
entries λ1, ... , λk and λn−ℓ+1, ... , λn (the k largest and ℓ smallest eigenvalues), and V̂ ∈ Rn×k+ℓ the
corresponding matrix whose columns are the eigenvectors of the eigenvalues in λ̂. Similarly, λ̂ is
the row vector [λk+1, ... , λn−ℓ] and V̂ ∈ Rn×n−k−ℓ is the corresponding matrix of eigenvectors.

3 First and Second-Order Integration

FOSI is a hybrid method that combines a first-order base optimizer with Newton’s method by utiliz-
ing each to operate on a distinct subspace of the problem. The Lanczos algorithm, which provides
curvature information of a function, is at the core of FOSI. We first provide an algorithm for ap-
proximating extreme eigenvalues and eigenvectors (§3.1). We next present FOSI (§3.2), analyze
its preconditioner (§3.3), discuss use of momentum (§3.4), and analyze convergence in stochastic
settings such as DNN training (§3.5). We then discuss support for closed-form learning rates (§3.6),
reducing spectrum estimation error, and FOSI’s overhead (§3.7).
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3.1 Extreme Spectrum Estimation (ESE)

FOSI uses the Lanczos algorithm to estimate the extreme eigenvalues and vectors of the Hessian
Ht. Recently, Urschel (2021) presented probabilistic upper and lower bounds on the relative error
of this approximation for arbitrary eigenvalues. While the upper bound is dependent on the true
eigenvalues of Ht, which is unknown, the lower bound is dependent solely on m and n. To maintain
the lower bound small, it is necessary to set m such that m = Θ(ln n) and m must be greater than
k + ℓ. We thus define a heuristic for determining m: m = max{4(k + ℓ), 2 ln n}.

We now describe the ESE procedure for obtaining the k largest and ℓ smallest eigenvalues of Ht
and their eigenvectors using Lanczos. ESE takes as input the function f and its parameter value θt,
and uses them to define a Hessian-vector product operator hvpt. Next, it calls the Lanczos algorithm
with a specified number of iterations, m, and the hvpt operator. Our implementation parallelizes hvpt
computations across the batch dimension, since they involve gradient computation, and performs full
orthogonalization w.r.t all previous vectors in each iteration to prevent numerical instability (Meurant
& Strakoš, 2006). Finally, ESE extracts the desired eigenvalues and eigenvectors from Lanczos’s
outputs. The steps are summarized as Algorithm 1 in the Supplementary Material (Appendix A.1).

3.2 The FOSI Optimizer

FOSI takes as input the base optimizer, the function to be optimized, and an initial point, then
performs iterative updates until convergence is reached. In each iteration t, FOSI computes the
gradient gt = ∇ f (θt), potentially updates the spectrum estimation, then uses both to update θt.

FOSI calls the ESE procedure every T ≥ 1 iterations to obtain λ̂ and V̂ , the largest k and smallest ℓ
eigenvalues of Ht and their eigenvectors, and then computes u = 1/|λ̂| using element-wise absolute
values. To avoid approximation errors, we postpone the first invocation of the ESE procedure by W
warmup iterations (we discuss this further in §3.7) During these iterations, the updates are equivalent
to those of the base optimizer, as u and V̂ are initialized as zeros.

Next, FOSI updates θt using the following procedure:

1. Compute the sum of gt’s projections on V̂’s columns, g1 = V̂(V̂T gt), and the sum of gt’s projec-
tions on V̂’s columns, g2 = gt − g1. Due to the orthogonality of the eigenvectors, g1 and g2 are
also orthogonal to each other.

2. Compute the descent direction d1 = −αV̂((V̂T g1)⊙uT ), where ⊙ stands for the Hadamard product.
While the chance of encountering an eigenvalue that is exactly or nearly 0 when using small k
and ℓ values is very small, it is common to add a small epsilon to |λ̂| to avoid division by such
values (Kingma & Ba, 2014) when computing u. Note that an equivalent computation to d1 is
−αV̂ diag(u)V̂T gt, which is an α-scaled Newton’s method step that is limited to V̂ subspace. The
resulting d1 is a linear combination of V̂’s columns.

3. Call the base optimizer to compute a descent direction from g2, denoted by db.
4. Subtract from db its projection on V̂’s columns, d2 = db − V̂(V̂T db). The new vector d2 is

orthogonal to V̂’s columns, hence also to d1.
5. Update the parameters: θt+1 = θt + d1 + d2

Parentheses in the above steps are important as they allow for only matrix-vector products, reducing
computational complexity. Appendix A.2 provides the full pseudocode for FOSI.

Splitting to Two Subspaces. For clarity, we define ω = θt − θ, H1 = V̂ diag(λ̂)V̂T , and H2 =

V̂ diag(λ̂)V̂
T

. Then at each iteration t, FOSI implicitly uses the quadratic approximation f̃ = ft +
ωT gt +

1
2ω

T Htω of f and performs a step to minimize f̃ as follows. It first divides the vector space
that is the eigenvectors of Ht into two orthogonal complement subspaces – one is spanned by V̂’s
columns and the other by V̂ . It then implicitly splits f̃ into two quadratic functions f1 and f2 such
that f̃ is their sum: f1 = 1

2 ft+ωT g1+
1
2ω

T H1ω and f2 = 1
2 ft+ωT g2+

1
2ω

T H2ω. Note that f̃ = f1+ f2,
since gt = g1 + g2 and Ht = H1 + H2. Finally, FOSI minimizes f1 and f2 independently, while using
a scaled Newton’s step to minimize f1 and the base optimizer step to minimize f2.
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Figure 1: FOSI’s update steps (arrows) when minimizing a quadratic function f (θ). FOSI implicitly
separates the space into two orthogonal complement subspaces and then splits the original function
f into two functions f1 and f2 over these subspaces, such that f = f1 + f2. FOSI solves min f
by simultaneously solving min f1 with Newton’s method and min f2 with the base optimizer. The
update step is the sum of d1 and d2, the updates to f1 and f2 respectively.

We observe that f1 has similar slope and curvature as f̃ in the subspace that is spanned by V̂ and
zero slope and curvature in its orthogonal complement V̂ , while f2 has similar slope and curvature
as f̃ in V̂ and zero slope and curvature in V̂ . To minimize f1, FOSI changes θ in the direction
d1 that is a linear combination of V̂’s columns, and to minimize f2, it changes θ in the direction
d2 that is a linear combination of V̂’s columns. Hence, we can look at each step of FOSI as two
simultaneous and orthogonal optimization steps that do not affect the solution quality of each other,
and their sum is a step in the minimization of f̃ . Figure 1 illustrates this idea for the quadratic
function f (θ) = 1.25θ21 + 1.25θ22 + 1.5θ1θ2.

Avoiding Matrix Inversion. We stress that unlike most hybrid methods, FOSI does not require
inverting H1. Rather, the inverse preconditioner is obtained directly and exactly using the output of
ESE: H−1

1 = V̂ diag(u)V̂T . This helps avoid error amplification due to matrix inversion (Li, 2017).

3.3 Preconditioner Analysis

We next analyze FOSI as a preconditioner. For simplicity, the t subscript is omitted from gt and Ht
when it is clear from the text that the reference is to a specific point in time.

For base optimizers that utilize a diagonal matrix as a preconditioner (e.g., Adam), the result is an
efficient computation, as P−1g is equivalent to element-wise multiplication of P−1’s diagonal with
g. When using FOSI with such a base optimizer, the diagonal of the inverse preconditioner, denoted
by q, is calculated using g2, instead of g. Hence, db = −η diag(q)g2, for some learning rate η > 0.

Lemma 1. Let f (θ) be a convex twice differential function and let BaseOpt be a first-order optimizer
that utilizes a positive definite diagonal preconditioner. Let H be f ’s Hessian at iteration t of FOSI
with BaseOpt, and let V diag(λ)VT be an eigendecomposition of H such that V = [V̂ , V̂] and λ =

[λ̂, λ̂]. Then:

1. FOSI’s inverse preconditioner is P−1 = V
(
α diag(u) 0

0 ηM

)
VT , where M is the trailing n−k−ℓ

principal submatrix (lower right corner submatrix) of VT diag(q)V, and diag(q) is the inverse
preconditioner produced by BaseOpt from g2.

2. The preconditioner P is symmetric and positive definite.
3. α is an eigenvalue of the effective Hessian P−1H, and V̂’s columns are in the eigenspace of α.

The proof can be found in Appendix A.3. It includes expressing d1 and d2 as a product of certain
matrices with g, substituting these expressions into θt + d1 + d2, and using linear algebra properties
to prove that the resulting preconditioner is a symmetric positive definite matrix. Finally, we assign
P−1 expression to obtain P−1H. Note that symmetric positive definite preconditioner is necessary
for ensuring that the search direction always points towards a descent direction (Li, 2017).

As expected, we obtained a separation of the space into two subspaces. For the subspace that is
spanned by V̂ , for which FOSI uses scaled Newton’s method, the condition number is 1. For the
complementary subspace, the condition number is determined by BaseOpt’s preconditioner. In the
general case, it is hard to determine the impact of a diagonal preconditioner on the condition number
of the problem, although it is known to be effective for diagonally dominant Hessian (Qu et al., 2020;
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Levy & Duchi, 2019). Appendix A.3 includes an analysis of the special case in which H is diagonal.
We show that even in this case, which is ideal for a diagonal preconditioner, FOSI provides benefit,
since it solves f1 with Newton’s method and provides the base optimizer with f2, which is defined
on a smaller subspace, hence can be viewed as of smaller dimensionality than f .

Identity Preconditioner. For base optimizers with identity preconditioner such as GD, we can
perform a complete spectral analysis of FOSI’s preconditioner and effective Hessian, even for non-
diagonal H. This allows us to obtain the effective condition number and the conditions in which it is
smaller than the original one. However, since FOSI uses two optimizers on orthogonal subspaces, a
more relevant measure for improvement is whether the effective condition number of each subspace
is smaller than the original one. We show that the condition number of the subspace that is spanned
by V̂ is 1 and the condition number of V̂ is λk+1/λn−ℓ. Both condition numbers, of f1 and f2, are
smaller than the condition number of the original H. See Appendices A.4for proofs and analysis.

3.4 Momentum

Momentum accelerates convergence of first-order optimizers and is adapted by many popular opti-
mizers (Qian, 1999; Kingma & Ba, 2014). When using momentum, the descent direction is com-
puted on ḡ, instead of g, where ḡ is a linear combination of the current and past gradients. Momen-
tum could also be used by FOSI; however, FOSI and the base optimizer must apply the same linear
combination on g1 and g2, which entails ḡ = ḡ1 + ḡ2, to maintain the orthogonality of f1 and f2. We
can use ḡ, ḡ1, ḡ2 in the proof of Lemma 1, instead of g, g1, g2 and obtain similar results.

3.5 Convergence in the Stochastic Setting

We adopt the stochastic setting proposed by Wang et al. (2017). Consider the stochastic optimization
problem minθ f (θ) for f (θ) = Ex[F(θ, x)], where F : Rn × Rd → R is twice differentiable w.r.t
θ and x ∈ Rd denotes a random variable with distribution P. When stochastic optimization is
used for DNN training, f is usually approximated by a series of of functions: at each iteration
t, a batch bt containing mt data samples {x1, x2, ... , xmt } is sampled and the function f t is set as
f t(θ) = 1

mt

∑mt
i=1 F(θ, xi). Note that labels, if any, can be added to the data vectors to conform to this

model. Adapting FOSI to stochastic DNN training requires a small change to FOSI’s algorithm. at
the beginning of each iteration, the first action would be to sample a batch bt and set f t. We can call
the ESE procedure with the current f t, or with some predefined f i, i ≤ t, as discussed in §3.7.

We now show convergence of FOSI in the common stochastic setting under common Lipschitz
smoothness assumptions on f and F, and assuming bounded noise level of the stochastic gradient.
Lemma 2. Let BaseOpt be a first-order optimizer that utilizes a positive definite diagonal precon-
ditioner and denote by ∇2F(θ, x) = ∂

2F
∂θ2

the Hessian of F w.r.t θ. Assuming:

1. f (θ) is L-smooth and lower bounded by a real number.
2. For every iteration t, Ext [∇θF(θt, xt)] = ∇ f (θt) and Ext [∥∇θF(θt, xt) − ∇ f (θt)∥2] ≤ σ2, where
σ > 0, xt for t = 1, 2, ... are independent samples, and for a given t the random variable xt is
independent of {θi}ti=1.

3. There exist a positive constant z s.t. for every θ and x, ∥∇2F(θ, x)∥ ≤ z and the diagonal entries
of BaseOpt’s preconditioner are upper bounded by z.

Then, for a given ϵ ∈ (0, 1), the number of iterations N needed to obtain 1
N

∑N
t=1 E[∥∇ f (θt)∥2] ≤ ϵ

when applying FOSI with BaseOpt is N = O(ϵ−1/(1−β)), for step size η chosen proportional to t−β,
where β ∈ (0.5, 1) is a constant.

The proof (in Appendix A.5) works by expressing FOSI in the stochastic quasi-Newton method
form used in Theorem 2.8 of Wang et al. (2017), and proving the Theorem’s conditions are satisfied.

In the convex, non-stochastic scenario, the convergence rate of the base optimizer becomes the
limiting factor, as Newton’s method demonstrates a quadratic convergence rate on f1. Therefore,
FOSI’s convergence rate mirrors that of the base optimizer for f , but with improved constants due
to the smaller condition number of f2. For instance, the convergence analysis of GD yields f (θt) −
f (θ∗) ≤ ∥θ0 − θ∗∥2/(2αt) for α ≤ 1/L. In the convex case, L = λ1 (the maximal eigenvalue of the
Hessian). Since FOSI-GD reduces the maximal eigenvalue to λk+1, its bound is tighter.
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3.6 Automatic Learning Rate Scaling

When the base optimizer has a closed-form expression of its optimal learning rate in the quadratic
setting that is only dependant on the extreme eigenvalues, FOSI can adjust a tuned learning rate η to
better suit the condition number of f2. Fortunately, in most cases of optimizers that utilize a diagonal
preconditioner, such as GD, Heavy-Ball, and Nesterov, there are such closed-forms (Lessard et al.,
2016). Specifically, when applying FOSI with such a base optimizer and given the relevant closed-
form expression for the optimal learning rate, the adjusted learning rate at iteration t would be
η2 = η(η∗2/η

∗), where η∗ is the optimal learning rate for the quadratic approximation f̃ and η∗2 is the
optimal one for f2. FOSI is able to compute this scaling, using the ESE outputs.

The intuition behind this scaling is that the ratio between the optimal learning rates is proportional
to the ratio between the condition number of f̃ and that of f2. The full details regarding this scaling
technique are in Appendix A.6. Note that η∗2/η

∗ ≥ 1. In practice, we suggest a more conservative
scaling that involves clipping over this scaling factor as follows: η2 = ηmin{η∗2/η

∗, c} for c ≥ 1. For
c = 1, η2 = η, and for extremely large c (∞), the scaling factor is not clipped.

3.7 Error and Overhead

ESE Approximation Error. Using Newton’s method in non-quadratic settings in conjunction
with inexact approximation of Hessian eigenvalues through the ESE procedure increases the risk of
divergence. FOSI uses several techniques to address this: scaled Newton’s method, extra numerical
accuracy inside the ESE procedure, full orthogonalization, and warmup. The details are available in
Appendix A.7. In practice, our experiments on a variety of DNNs in §4 demonstrate that FOSI is
robust and substantially improves convergence.

Runtime. FOSI’s runtime differs from that of the base optimizer due to additional computations in
each update step and calls to the ESE procedure. For large and complex functions, the latency of
the update step of both optimizers, the base optimizer and FOSI, is negligible when compared to the
computation of the gradient in each iteration. Furthermore, since each Lanczos iteration is domi-
nated by the Hessian-vector product operation which takes approximately two gradient evaluations,
the latency of the ESE procedure can be approximated by 2mτ, where τ is gradient computation
latency and m the number of Lanczos iterations (see §3.1). The ESE procedure is called every T
iterations, and the parameter T should be set such that FOSI’s runtime is at most ρ times the base
optimizer runtime, for a user-defined overhead ρ > 1. Thus, given the above approximations and
assumptions, we can achieve overhead ρ by setting: T = 2m/(ρ − 1). This heuristic helps avoid
the need to tune T , though FOSI can of course use any T > 0. See Appendix A.8 for additional
details as well as a more accurate expression for T for functions where additional computations are
not negligible in comparison to gradient computations.

Memory. FOSI stores k + ℓ eigenvectors of size O(n), and temporarily uses O(mn) memory when
performing the ESE procedure. In comparison, other second order methods such as K-FAC (Martens
& Grosse, 2015) and Shampoo (Gupta et al., 2018) incur O(

∑
i∈L d2

i + p2
i ) memory overhead, where

di is the input dimension of layer i, pi the output dimension, and L the total number of layers.

4 Evaluation

We first evaluate FOSI’s performance on benchmarks tasks including real-world DNNs with stan-
dard datasets, for both first- and second-order methods. We then validate our theoretical results by
evaluating FOSI on a positive definite (PD) quadratic function with different base optimizers; we
explore the effect of the dimension n, the eigenspectrum, the learning rate, the base optimizer, and
the clipping parameter c on FOSI’s performance. We implemented FOSI in Python using the JAX
framework (Bradbury et al., 2018) 0.3.25. For experiments, we use an NVIDIA A40 GPU.

4.1 Deep Neural Networks

We evaluated FOSI on five DNNs of various sizes using standard datasets, first focusing first-order
methods in common use. We execute FOSI with k = 10 and ℓ = 0, since small eigenvalues are
usually negative. We set α = 0.01, c = 3, and W such that warmup is one epoch. T is determined
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Table 1: Wall time in seconds to reach target validation
accuracy (AC, TL, LR) or loss (LM, AE). The target
(in parentheses) is the best one reached by the base op-
timizer. No single base optimizer is best for all tasks.

Task HB FOSI-HB Adam FOSI-Adam

AC 3822 1850 (40.4%) 5042 3911 (28.9%)

LM 269 207 (1.71) 270 219 (1.76)

AE 354 267 (52.46) 375 313 (51.26)

TL 93 53 (79.1%) 68 33 (79.0%)

LR 16 8 (92.8%) 12 18 (92.8%)
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Figure 2: Training AC (MobileNetV1 on
AudioSet data). FOSI converges faster
than HB and similar to Adam across wall
time (left). However, Adam overfits and
generalizes poorly as indicated by its low
validation accuracy (right).

using the heuristic suggested in § 3.7 aiming at 10% overhead (ρ = 1.1), resulting in T = 800 for all
experiments. The base optimizers compared to FOSI are Heavy-Ball (HB) and Adam; we omit GD
(SGD) as it performed worse than HB in most cases. We use the standard learning rate for Adam
(0.001), and the best learning rate for HB out of 0.1, 0.01, 0.001, with default momentum parameters
β1 = 0.9, β2 = 0.999 for Adam and β = 0.9 for HB. The five evaluated tasks are:

1. Audio Classification (AC): Training MobileNetV1 (approximately 4 million parameters) on the
AudioSet dataset (Gemmeke et al., 2017). The dataset contains about 20,000 audio files, each
10 seconds long, with 527 classes and multiple labels per file. We converted the audio files into
1-second mel-spectrograms and used them as input images for the DNN. The multi-hot label
vector of a segment is the same as the original audio file’s label.

2. Language Model (LM): Training an RNN-based character-level language model with over 1
million parameters (Hennigan et al., 2020) on the Tiny Shakespeare dataset (Karpathy, 2015).
For LM training batches are randomly sampled; there is no defined epoch and we use W = T .

3. Autoencoder (AE): Training an autoencoder model with roughly 0.5 million parameters on the
CIFAR-10 dataset. Implementation is based on Lippe (2022) with latent dimension size 128. We
observed that the HB optimizer in this case is sensitive to the learning rate and diverges easily.
Therefore we run FOSI with c = 1 (prevents learning rate scaling) and W = T , which enables
extra warmup iterations (number of iteration per epoch is 175).

4. Transfer Learning (TL): Transfer learning from ImageNet to CIFAR-10. We start with a pre-
trained ResNet-18 on ImageNet2012 and replace the last two layers with a fully-connected layer
followed by a Softmax layer. We train the added fully-connected layer (5130 params), while the
other layers are frozen (11 million parameters).

5. Logistic Regression (LR): Training a multi-class logistic regression model to predict the 10
classes of the MNIST dataset. The model is a neural network with one fully connected layer of
784 input size followed by a Softmax layer of 10 outputs, containing 7850 parameters. The input
data is the flattened MNIST images. Since logistic regression is a convex function, the model is
also convex w.r.t. the parameters of the network.

Table 1 summarize the experimental results, showing the wall time when reaching a target validation
accuracy (for AC, TL, LR tasks) or target validation loss (for LM, AE tasks). The target metric (in
parentheses) is the best one reached by the base optimizer. FOSI consistently reaches the target
metric faster than the base optimizer (though Adam is faster than FOSI-Adam on LR, FOSI-HB
is faster than both). The improvement in FOSI-HB is more significant than in FOSI-Adam, due
to FOSI-HB’s ability to adapt the learning rate according to the improved condition number of the
effective Hessian.

Figure 2 shows the optimizers’ learning curves for the AC task. The training loss curves suggests
that FOSI significantly improves the performance of HB, but does not help Adam. However, while
Adam’s training loss reaches zero quickly, it suffers from substantial overfitting and generalizes
poorly, as indicated by its accuracy. This supports the idea that there is no single best optimizer for
all problems (Zhou et al., 2020). FOSI aims to improve the best optimizer for each specific task. In
this case, HB is preferred over Adam as it generalizes much better, and FOSI improves over HB.
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Figure 3: Learning curves for minimizing PD quadratic functions fH(θ) = 0.5θT Hθ with varying n
and λ1 values. FOSI converges more than two orders of magnitude faster than its counterparts.

It is important to note that when the base optimizer overfits, FOSI’s acceleration of convergence
also leads to an earlier overfitting point. This can be observed in the validation accuracy curve:
HB begins to overfit near epoch 70 while FOSI begins to overfit at roughly epoch 35. Overall,
throughout our experiments, we have not observed FOSI to overfit more than the base optimizer;
FOSI always reaches the same or superior validation accuracy as the base optimizer.

Summary. FOSI improves convergence of the base optimizer, and is the fastest optimizer for all
five tasks. On average, FOSI achieves the same loss as its base optimizer in 78% of the time on
the training set and the same accuracy/loss in 75% of the time on the validation set. Thus while
the average FOSI iteration takes longer than the base optimizer’s, FOSI requires fewer iterations
resulting in overall faster convergence. Additional results can be found in Appendix B.1.

4.2 Comparison to Second-OrderMethods

We compare FOSI to two representative second-order techniques, K-FAC (Martens & Grosse, 2015)
and L-BFGS (Liu & Nocedal, 1989); these use a block-diagonal approximation of the Hessian as
a preconditioner, subsequently perform its inversion. We repeat the five DNN training experiments
and compare the results of both algorithms to FOSI-HB. We use the KFAC-JAX (Botev & Martens,
2022) implementation for K-FAC and the JAXOpt library (Blondel et al., 2021) for L-BFGS.

We used grid search to tune K-FAC’s learning rate and momentum, and included K-FAC’s adaptive
as one of the options. We utilized adaptive damping and maintained the default and more precise T3
(interval between two computations of the approximate Fisher inverse matrix) value of 5 after testing
larger T3 values and observing no variation in runtime. For tuning L-BFGS hyperparameters, we
used line-search for the learning rate, and performed a search for the optimal L (history size) for each
task, starting from L = 10 (similar to k we used for FOSI) and up to L = 100. The hyperparameters
were selected based on the lowest validation loss obtained for each experiment.

Overall, we observed that both K-FAC and L-BFGS algorithms have slower runtimes and poorer
performance compared to FOSI. They occasionally diverge, can overfit, and rarely achieve the same
level of validation accuracy as FOSI. See Appendix B.1 for figures and additional results.

4.3 Quadratic Functions

To evaluate FOSI’s optimization performance across range of parameters, we use controlled exper-
iments on PD quadratic functions of the form fH(θ) = 0.5θT Hθ. We use GD, HB, and Adam to
minimize fH , as well as FOSI with these base optimizers. We use the default momentum parameters
β1 = 0.9, β2 = 0.999 for Adam and β = 0.9 for HB. The learning rate η for Adam was set to 0.05
after tuning, for GD to the optimal value 2/(λ1 + λn), and for HB we used 2/(

√
λ1 +

√
λn)2 which

is half of the optimal value (due to using constant β rather than optimal). FOSI runs with k = 10,
ℓ = 0, α = 1, and c = ∞ (no clipping on the scaling of the GD and HB learning rates, see §3.6).

Dimensionality and Eigenspectrum. To study the effect of dimensionality and eigenspectrum on
FOSI, we created five fH functions for each n ∈ {100, 1500} by varying λ1 of the Hessian H with
λ1 ∈ {5, 10, 20, 50, 200}. The other eigenvalues were set to λi = 1.5−(i−2) and the eigenvectors were
extracted from a symmetric matrix whose entries were randomly sampled from U(0, 1).

Figure 3 shows learning curves of the optimizers on functions with λ1 = 5 and λ1 = 200. Similar
results were obtained for other functions. FOSI converges at least two orders of magnitude faster
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than its counterparts. In this case, dimensionality has little impact on the performance of different
optimizers. For a specific n value, increasing λ1 causes the base optimizers to converge to less
optimal solutions, but has little impact on FOSI. This is expected for GD and HB, whose learning rate
is limited by the inverse of the largest eigenvalue, hence, larger λ1 implies slower convergence. FOSI
reduces the largest eigenvalue, allowing for larger learning rate that is identical for all functions.
Interestingly, this is observed for Adam as well.

Ill-conditioning and diagonally dominance. We explore the effect of both the condition number
and the diagonally dominance of the function’s Hessian on the different optimizers. We use a set
of quadratic functions with different condition number and different rotation w.r.t. the coordinate
system, which impacts the dominance of the Hessian’s diagonal. While all optimizers are negatively
affected by large condition number, only Adam is affected by the rotation. FOSI improves over the
base optimizer in all cases. The full details and analysis of the results are in Appendix B.2.1

Learning rate and momentum. We explored the effect of various learning rates and momentum
parameters on the optimizers. We find that FOSI improves over Adam, HB, and GD for all learning
rates and momentum (for HB and Adam). The full details of this experiment are in Appendix B.2.2.

5 RelatedWork

Partially second-order optimizers are a group of optimization methods that incorporate some aspects
of second-order information in their optimization process. Optimizers that use a diagonal precon-
ditioner (Yao et al., 2021; Jahani et al., 2022; Henriques et al., 2019; Liu et al., 2023), and in fact
approximate the Hessian diagonal, suffer when the assumption for diagonally dominance Hessian
does not hold (see § 4.3). L-BFGS (Liu & Nocedal, 1989), which uses low-rank approximation of the
Hessian, is sensitive to the rank parameter and an incorrect selection can lead to slow convergence
or divergence. Additionally, it requires line search in each iteration, slowing down the optimization
process further. Recent approaches, such as K-FAC (Martens & Grosse, 2015), Shampoo (Gupta
et al., 2018), K-BFGS (Goldfarb et al., 2020), LocoProp (Amid et al., 2022), Eva (Zhang et al.,
2023), and Yang et al. (2023) exploit the structure of the network to approximate a block diagonal
preconditioner matrix, as an alternative to full second-order methods. However, these techniques
approximate the preconditioner directly instead of approximating its inverse, potentially resulting in
higher approximation errors and noise sensitivity (Li, 2017). They also exhibit comparable limita-
tions to those of diagonal preconditioners due to neglecting Hessian elements outside the diagonal
blocks, such as inter-layer parameter correlations or rotated problems (§4.3). In contrast, by split-
ting the problem into two subspaces FOSI obtains a full low-rank representation of the Hessian for
the first subspace V̂ , which captures both the rotation and curvature of the sub-problem f1. This
contributes to accuracy and stability of the optimization, particularly as it is based on extreme eigen-
values and vectors that can be approximated more accurately.

Other optimization approaches for stochastic settings involve the use of sub-sampling of f i functions
and constructing an approximation of the Hessian based on the gradients of these functions at each
iteration (Roosta-Khorasani & Mahoney, 2019; Xu et al., 2016). However, these methods are lim-
ited to functions with only a few thousand parameters. Hessian-free optimization methods (Martens
et al., 2010; Martens & Sutskever, 2011; Frantar et al., 2021) rely on conjugate gradient to incor-
porate second order information, which while more efficient than Lanczos in terms of memory, it
still often requires many steps to converge and is more sensitive to noise. Finally, while these works
propose a single improved optimizer, FOSI is a meta-optimizer.

6 Discussion and FutureWork

FOSI is a hybrid meta-optimizer that combines a first-order base optimizer with Newton’s method to
improve the optimization process without additional tuning. Evaluation on real and synthetic tasks
demonstrates FOSI improves the wall time to convergence when compared to the base optimizer.
Future research will focus on methods for automatic tuning of different parameters of FOSI, such
as dynamically adjusting parameters k and ℓ according to their impact on the effective condition
number. We also plan to investigate the effect of stale spectrum estimation, which could allow
running the ESE procedure on the CPU in parallel to the training process on the GPU.
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Appendix

A First and Second-Order Integration

A.1 The ESE Algorithm

This section describes the ESE algorithm for obtaining the k largest and ℓ smallest eigenvalues, as
well as their corresponding eigenvectors, of the Hessian Ht. The full details of the algorithm are in
§ 3.1.

ESE first sets the number of Lanczos iterations, m, defines the hvpt operator, and then calls the
Lanczos algorithm. After running Lanczos for m iterations, its output is a matrix U ∈ Rn×m with
orthonormal columns and a tridiagonal real symmetric matrix T ∈ Rm×m

To extract the approximate eigenvalues and eigenvectors of A, let QΛQT be the eigendecomposition
of T , s.t. Λ is a diagonal matrix whose diagonal is the eigenvalues of T sorted from largest to
smallest and Q’s columns are their corresponding eigenvectors. The approximate k largest and ℓ
smallest eigenvalues of A are the first k and last ℓ elements of Λ’s diagonal, and their approximate
corresponding eigenvectors are the first k and last ℓ columns of the matrix product UQ.

Algorithm 1 details the ESE procedure.

Algorithm 1 Extreme Spectrum Estimation.

procedure ESE( f , θt, k, ℓ)
n← length of θt
m← max{4(k + ℓ), 2 ln n}
hvpt ← generate hvp operator from f and θt.
U,T ← Lanczos(m, hvpt)
Q,Λ← eigendecomposition(T )
λ̂← first k and last ℓ entries of Λ’s diagonal
V̂ ← first k and last ℓ columns of UQ
return λ̂, V̂

A.2 The FOSI Algorithm

Algorithm 2 provides the pseudocode for FOSI. The details of the algorithm are in § 3.2.

A.3 Preconditioner Analysis

We start by proving Lemma 1 from § 3.3, and continue by analysing a special case in which the
eigenvectors of H are aligned to the axes of the Euclidean space.

Proof. In case we apply FOSI on an optimizer that uses an inverse diagonal preconditioner s.t.
db = −η diag(q)g2, then:

d1 = −αV̂
((

V̂T g1

)
⊙ u

)
= −αV̂


 V̂T V̂︸︷︷︸

I

(
V̂T g

) ⊙ u

 = −αV̂ diag(u)V̂T g,

d2 = db − V̂
(
V̂T db

)
=

(
I − V̂V̂T

)
db = −η

(
I − V̂V̂T

)
diag(q)g2

= −η
(
I − V̂V̂T

)
diag(q)

(
g − V̂

(
V̂T g

))
= −η

(
I − V̂V̂T

)
diag(q)

(
I − V̂V̂T

)
g.

By assigning these forms of d1 and d2 in the update step θt+1 = θt+d1+d2, we obtain that the update
step is of the form θt+1 = θt − P−1g and the inverse preconditioner is:

P−1 = αV̂ diag(u)V̂T + η
(
I − V̂V̂T

)
diag(q)

(
I − V̂V̂T

)
. (1)

Note that
V̂ diag(u)V̂T = V diag([u, 0n−k−ℓ])VT . (2)
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Algorithm 2 FOSI Optimizer.

initialization:
1: BaseOptStep: given gradient, return descent direction.
2: T : number of iterations between two ESE runs.
3: W: number of warmup iterations before calling ESE.
4: k, ℓ: parameters for ESE, 1 ≤ k + ℓ ≪ n.
5: α: positive learning rate (scalar).
6: u← 0, V̂ ← 0.

procedure UpdateStep(θ, g, V̂ , u)
7: g1 ← V̂

(
V̂T g

)
, g2 ← g − V̂

(
V̂T g

)
8: d1 ← −αV̂

((
V̂T g1

)
⊙ uT

)
9: db ← BaseOptStep(g2)

10: d2 ← db − V̂
(
V̂T db

)
11: θ ← θ + d1 + d2
12: return θ
procedure Optimize( f , θ0)
13: t ← 0
14: while θt not converged do
15: gt ← ∇ f (θt)
16: if t >= W and (t −W) mod T = 0 then
17: λ̂, V̂ ← ESE( f , θt, k, ℓ)
18: u← 1/|λ̂|
19: θt+1 ← UpdateStep(θt, gt, V̂ , u)
20: t ← t + 1

Similarly, and using the fact that V is an orthonormal matrix (V is an orthogonal basis) and hence
VVT = I:

I − V̂V̂T = VIVT − V diag([1k+ℓ, 0n−k−ℓ])VT = V
(
I − diag([1k+ℓ, 0n−k−ℓ])

)
VT

= V diag([0k+ℓ, 1n−k−ℓ])VT . (3)
By assigning equation 2 and equation 3 in equation 1 we obtain:

P−1 =αV diag([u, 0n−k−ℓ])VT + ηV diag([0k+ℓ, 1n−k−ℓ])VT diag(q)V diag([0k+ℓ, 1n−k−ℓ])VT

=V
[
α diag([u, 0n−k−ℓ]) + η diag([0k+ℓ, 1n−k−ℓ])VT diag(q)V diag([0k+ℓ, 1n−k−ℓ])

]
VT .

This completes the proof of claim 1 of the Lemma.

Note that multiplying a diagonal matrix from the left of another matrix is equivalent to scaling
each row of the later by the corresponding diagonal entry of the former, and similarly multiplying a
diagonal matrix from from the right has the same effect on columns. Therefore, the matrix

B = diag([0k+ℓ, 1n−k−ℓ])VT diag(q)V diag([0k+ℓ, 1n−k−ℓ]) (4)
is a matrix whose first k + ℓ rows and first k + ℓ columns are 0.

Denote by M the sub matrix of B that contains the entries i, j s.t. i, j > k + ℓ. Sine BaseOpt
utilizes a positive definite (PD) preconditioner (as stated in the Lemma 1), i.e. diag(q) ≻ 0, hence
VT diag(q)V ≻ 0, and since M is a trailing principal submatrix of VT diag(q)V it is PD (Gentle,
2017, p. 349). M is also symmetric, since B is symmetric. The diagonal matrix diag(u) is also
symmetric and PD. Since a block diagonal matrix is PD if each diagonal block is PD (Gallier et al.,
2020) and symmetric if each block is symmetric, the block diagonal matrix

α diag([u, 0n−k−ℓ]) + ηB =
(
α diag(u) 0

0 ηM

)
(5)

is PD and symmetric.

Since V has full column and row rank, and the block diagonal matrix equation 5 is PD, the inverse
preconditioner

P−1 = V
(
α diag(u) 0

0 ηM

)
VT
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is PD (Gentle, 2017, p. 113). It is also symmetric, as equation 5 is symmetric.

Finally, using the fact that the inverse of a PD and symmetric matrix is PD and symmetric, we
conclude that the preconditioner P is symmetric and PD. This completes the proof of claim 2 of the
Lemma.

We assign the above P−1 in P−1H to obtain the effective Hessian:

P−1H =V
(
α diag(u) 0

0 ηM

)
VT V diag([λ̂, λ̂])VT

=V
 α diag(u) diag(λ̂) 0

0 ηM diag(λ̂)

 VT

=V
(
α diag(1k+ℓ) 0

0 ηM diag(λ̂)

)
VT .

We obtained a partial eigendecomposition of the effective Hessian, which indicates that there are
at least k + ℓ repetitions of the eigenvalues with value α and its corresponding eigenvectors are V̂’s
eigenvectors. This completes the proof of claim 3 of the Lemma. □

In the special case in which the eigenvectors of H are aligned to the axes of the Euclidean space
Rn (i.e. H is diagonal), V is a permutation matrix (has exactly one entry of 1 in each row and each
column and 0s elsewhere). Note that I diag(q)IT is an eigendecomposition of diag(q). Let P be the
permutation of I’s columns, such thatP(I) = V . Then V diag(P(q))VT is also an eigendecomposition
of diag(q), i.e:

diag(q) = V diag(P(q))VT .

Therefore,
VT diag(q)V = VT V diag(P(q))VT V = diag(P(q)),

and M is the n − k − ℓ trailing principal submatrix of diag(P(q)). In other words, the diagonal of
M contains the last n − k − ℓ entries of the vector P(q). By Lemma 1, α is an eigenvalue of P−1H
with k + ℓ repetitions. From the analysis of M we obtain that the remaining n − k − ℓ eigenvalues
of P−1H are: ηP(q)k+ℓ+1λk+1, ... , ηP(q)nλn−ℓ. If q is a good approximation to the Hessian diagonal,
then these eigenvalues should be all close to η since each P(q)i is an approximation to the inverse of
λi−ℓ.

This is an optimal case, since the two optimization problems defined on the two subspaces have
condition number of 1, which enable fast convergence. However, this is a very special case and
the Hessian in most optimization problems is not diagonal. Moreover, even in this case, which is
ideal for a diagonal preconditioner, FOSI provides benefit, since it solves f1 with Newton’s method,
which obtains an ideal effective condition number over V̂ , and provides the base optimizer with f2,
which is defined on a smaller subspace V̂ , hence can be viewed as of smaller dimensionality than f .

A.4 Identity Preconditioner

Here we formalize the claims in § 3.3.
Lemma 3. Under the same assumption as in Lemma 1, with BaseOpt that utilizes a scaled identity
inverse preconditioner ηI for some learning rate η > 0:

1. FOSI’s resulting inverse preconditioner is P−1 = V diag([αu, η1n−k−ℓ])VT .
2. The preconditioner P is symmetric and PD.
3. α is an eigenvalue of the effective Hessian P−1H, and V̂’s columns are in the eigenspace of
α. In addition, the entries of the vector ηλ̂ are eigenvalues of P−1H and their corresponding
eigenvectors are V̂’s columns.

Proof. The proof immediately follows from Lemma 1 by replacing diag(q) with I.

By replacing diag(q) with I in equation 4, we obtain

B = diag([0k+ℓ, 1n−k−ℓ])VT IV diag([0k+ℓ, 1n−k−ℓ]) = diag([0k+ℓ, 1n−k−ℓ]).
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Hence, M = diag(1n−k−ℓ). Assigning this M in P−1 given by Lemma 1 obtains:

P−1 = V
(
α diag(u) 0

0 η diag(1n−k−ℓ)

)
VT = V diag([αu, η diag(1n−k−ℓ)])VT ,

which completes the proof of claim 1 of the Lemma.

P−1 is diagonal matrix with positive diagonal entries, and therefore symmetric and PD. Its inverse,
P, is also symmetric and PD, which completes the proof of claim 2 of the Lemma.

We assign the above P−1 in P−1H to obtain the effective Hessian:

P−1H = V diag([αu, η1n−k−ℓ])VT V diag([λ̂, λ̂])VT = V diag([α1k+ℓ, ηλ̂])VT .

We obtained an eigendecomposition of the effective Hessian, which implies there are k+ℓ repetitions
of the eigenvalues with value α and their corresponding eigenvectors are V̂’s columns, and the entries
of ηλ̂ are eigenvalues and their corresponding eigenvectors are V̂’s columns. This completes the
proof of claim 3 of the Lemma. □

The following Lemma states the conditions in which the effective condition number is smaller than
the original condition number when applying FOSI with a base optimizer that utilizes an identity
preconditioner.
Lemma 4. Under the same assumption as in Lemma 3, denote the effective condition number in-
duced by BaseOpt by κ and the effective condition number induced by FOSI using BaseOpt by κ̃.
Then, κ̃ ≤ κ in the following cases:

1. α < ηλn−ℓ and ηλk+1
α
≤
λ1
λn

2. ηλn−ℓ ≤ α ≤ ηλk+1

3. ηλk+1 < α and α
ηλn−ℓ

≤
λ1
λn

Proof. The identity preconditioner does not affect the condition number, so we have κ = λ1/λn. As
stated in claim 2 of Lemma 3, when using FOSI the distinct eigenvalues of the effective Hessian are
α, ηλk+1, ... , ηλn−ℓ. There are now three distinct ranges for α which affect κ̃:

1. α < ηλn−ℓ. In this case, the smallest eigenvalue of P−1H is α and the largest is ηλk+1, which
leads to κ̃ = ηλk+1/α; therefore, κ̃ ≤ κ ⇐⇒ ηλk+1

α
≤
λ1
λn

.

2. ηλn−ℓ ≤ α ≤ ηλk+1. In this case, the smallest eigenvalue of P−1H is ηλn−ℓ and the largest is
ηλk+1; therefore, κ̃ = λk+1

λn−ℓ
and κ̃ ≤ κ ⇐⇒ λk+1

λn−ℓ
≤
λ1
λn

. Sine λk+1
λn−ℓ
< λ1
λn

is true then κ̃ < κ.

3. ηλk+1 < α. In this case the smallest eigenvalue of P−1H is ηλn−ℓ and the largest is α;
therefore, κ̃ = α

ηλn−ℓ
and κ̃ ≤ κ ⇐⇒ α

ηλn−ℓ
≤
λ1
λn

.

□

While Lemma 4 provides the conditions in which FOSI improves the condition number, as discussed
in § 3.3, FOSI is able to accelerate the convergence of the optimization process even when it does
not improve the condition number.

To show this phenomenon, we use GD and FOSI with GD as a base optimizer to optimize the
quadratic function f (θ) = 0.5θT Hθ, θ ∈ R100. We draw a random orthonormal basis for f ’s Hes-
sian, H, and set its eigenvalues as follows: λ1, ... , λ10 are equally spaced in the range [9, 10] and
λ11, ... , λ100 are equally spaced in the range [0.01, 0.1]. We used the learning rate η = 0.001 and run
FOSI with k = 9, ℓ = 0, α = 1. For this setting we have λ1 = 10, λ10 = 9, λ100 = 0.01 and none of
the conditions in Lemma 4 is satisfied. Since ηλ10 < 1, the only candidate condition in Lemma 4
is condition (3), however, in this case FOSI’s effective condition number is 1/(ηλ100) = 100000,
which is much larger than the original condition number of the problem, which is λ1/λ100 = 1000.
However, as shown in Figure 4, FOSI converges much faster then GD.
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Figure 4: Learning curves of GD and FOSI for the minimization of the quadratic function f (θ) =
0.5θT Hθ, with θ ∈ R100. H’s eigenvectors are a random orthogonal basis, η = 0.001, λ1 = 10, λ10 =
9, λn = 0.01, and FOSI runs with k = 9, ℓ = 0, α = 1. While FOSI’s effective condition number is
larger than the original one, it converges much faster than the base optimizer.

This example emphasises our claim that the condition numbers to look at are those of V̂ and V̂ ,
which are smaller than the original one, and not the condition number of the entire Hessian.

A.5 Convergence Guarantees in the Stochastic Setting

Our proof of Lemma 2 relies on applying Theorem 2.8 from Wang et al. (2017) to FOSI. For clarity,
we restate their theorem with our notations:
Theorem 5 (Theorem 2.8, Wang et al. (2017)). Suppose that the following assumptions hold for {θt}
generated by a stochastic quasi-Newton (SQN) method with batch size mt = m for all t:

(i) f is continuously differentiable, f (θ) is lower bounded by a real number f low for any θ, and
∇ f is globally Lipschitz continuous with Lipschitz constant L.

(ii) For every iteration t, Ext [∇θF(θt, xt)] = ∇ f (θt) and Ext [∥∇θF(θt, xt) − ∇ f (θt)∥2] ≤ σ2,
where σ > 0, xt for t = 1, 2, ... are independent samples, and for a given t the random
variable xt is independent of {θi}ti=1.

(iii) There exist two positive constants, z, z̄, such that zI ⪯ P−1
t ⪯ z̄I for all t.

(iv) For any t ≥ 2, the random variable P−1
t depends only on b1, b2, ..., bt−1 (the random batch

sampling in the t − 1 previous iterations).

We also assume that ηt is chosen as ηt =
z

Lz̄2 t−β with constant β ∈ (0.5, 1). Then, for a given ϵ ∈ (0, 1),

the number of iterations N needed to obtain 1
N

∑N
t=1 E

[
∥∇ f (θt)∥2

]
≤ ϵ is N = O

(
ϵ−

1
1−β

)
.

We now prove Lemma 2.

Proof. First, we need to bring FOSI’s inverse preconditioner P−1 to the standard SQN form stated
in Wang et al. (2017), and then prove that all the assumption of Theorem 2.8 are satisfied.

To bring FOSI’s P−1 from Lemma 2 to the standard SQN form, with update step θt+1 = θt − ηtP−1
t gt,

let α = η = −ηt. After extracting −ηt, P−1 is then given by

P−1 = V
(

diag(u) 0
0 M

)
VT ,

where M is the trailing n − k − ℓ principal submatrix of VT diag(q)V .

Theorem 2.8 is comprised of four assumptions, where its first two assumption, (i) and (ii), are
satisfied by the first two assumptions in Lemma 2. Assumption (iv) requires that for each iteration t,
FOSI’s inverse preconditioner P−1 depends only on b1, b2, . . . , bt−1. This could be easily satisfied by
ensuring that the ESE procedure is called with f i for i < t and that BaseOptStep is called after the
gradient step (switching the 4th and 5th steps in the UpdateStep() procedure), while using db from
the last iteration in the update step. This has no impact on our analysis of FOSI in § 3.3.

To establish assumption (iii) we examine P−1 structure. Given that the Hessian is symmetric PSD,
it follows that for every θ and x, the norm of the Hessian ∇2F(θ, x) is equivalent to its largest
absolute eigenvalue. Therefore, from assumption 3 that

∥∥∥∇2F(θ, x)
∥∥∥ ≤ z, we have that the largest

absolute eigenvalue is bounded above by z. Since f t(θ) = 1
m

∑m
i=1 F(θ, xi), then the largest absolute
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eigenvalue of ∇2 f t(θt) is also bounded by z. In addition, it should be noted that the ESE procedure
provides eigenvalue estimates that are within bounds of the true extreme eigenvalues of the Hessian
of f t (Dorsselaer et al., 2001). Thus, it follows that each entry of |λ̂| is bounded above by z, which
in turn implies that each entry of u is bounded below by 1/z. Moreover, the entries of u are also
bounded above by 1/ϵ for 0 < ϵ < 1 (ϵ is added to entries of |λ̂| that are smaller than ϵ).

Given that BaseOpt utilizes a PD preconditioner (assumption 3), the entries of q are upper bounded
by some positive constant 1/ϵ (assuming w.l.o.g that this is the same constant that upper bounds
u). Moreover, given that the eigenvalues of BaseOpt’s preconditioner are bounded from above by z,
the values of q are lower bounded by 1/z. Since the matrix M is a trailing principal submatrix of
VT diag(q)V , its eigenvalues are bounded by the eigenvalues of VT diag(q)V (eigenvalue interlacing
theorem), which are simply the entries of q.

Finally, since V is a rotation matrix, a multiplication from the left by V and from the right by VT

has no impact on the eigenvalues, which implies that P−1’s eigenvalues are the entries of u and the
eigenvalues of M. Hence, for every iteration t, P−1’s eigenvalues are lower bounded by z = 1/z and
upper bounded by z̄ = 1/ϵ.

After establishing assumptions (i)–(iv), we complete the proof by applying Theorem 2.8 from Wang
et al. (2017). □

A.6 Automatic Learning Rate Scaling

This section provides details regarding the automatic learning rate scaling technique, presented in
§3.6.

Let the base optimizer, BaseOpt, be an optimizer with a closed-form expression of its optimal learn-
ing rate in the quadratic setting, η be a tuned learning rate for BaseOpt over f , and η∗ be the optimal
learning rate of BaseOpt over a quadratic approximation f̃ of f at iteration t. In general, η∗ is not
known since first-order optimizers do not evaluate the extreme eigenvalues. Implicitly, η is a scaled
version of η∗, i.e., η = sη∗ for some unknown positive scaling factor s, usually s < 1.

FOSI creates a quadratic subproblem, f2, with a lower condition number compared to f̃ and solves
it using BaseOpt. Therefore, we propose using η2 = sη∗2, a scaled version of the optimal learning
rate of f2 with the same scaling factor s of η, instead of simply using η. the ESE procedure provides
λ1, λn, λk, λn−ℓ+1, which allows FOSI to automatically adjust η to η2, given the relevant closed-form
expression for the optimal learning rate. Specifically, η2 = η(η∗2/η

∗), with η∗ obtainable from λ1 and
λn, and an approximate value for η∗2 obtainable from λk and λn − ℓ + 1.

A.7 ESE Approximation Error

Using Newton’s method in non-quadratic settings within a subspace obtained from the ESE proce-
dure increases the likelihood of divergence due to inaccuracies in the direction of the steps taken.
These inaccuracies stem from the imprecise approximation of Hessian eigenvalues and eigenvectors
through the ESE procedure.

To mitigate this, we employ a scaled Newton’s method, with a learning rate of 0 < α ≤ 1, for
function f1, as an alternative to the traditional Newton’s method which enforces α = 1.

We also avoid issues of numerical accuracy in the ESE procedure by performing full orthogonaliza-
tion w.r.t all previous vectors in each Lanczos iteration (Meurant & Strakoš, 2006). Moreover, we
use float64 for the ESE procedure computations (only); we retain the original precision for training,
storing parameters, and other computations.

To mitigate Lanczos divergence caused by a plateau-like initial point (Orvieto et al., 2022), we use
warmup iterations before the first ESE call.

Finally, using ESE in a stochastic setting could theoretically result in unsuitable V̂ and λ̂ when called
with f i which misrepresent f . Techniques to address this include using larger batch size only for
the ESE procedure, or averaging the results obtained from different f is. We leave the investigation
of such techniques to future work.
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In practice, our experiments on a variety of DNNs in §4, using an arbitrary f j on ESE calls, demon-
strate that FOSI is robust and substantially improves convergence.

A.8 Runtime Analysis

FOSI’s runtime differs from that of the base optimizer due to additional computations in each update
step and its calls to the ESE procedure.

Let τ1 be the average latency per iteration of the base optimizers, τ2 be the average latency per iter-
ation of FOSI that does not include a call to the ESE procedure (as if T = ∞), and τ3 be the average
latency of the ESE procedure. Given that the base optimizer and FOSI are run for T iterations, the
latency of the base optimizer is Tτ1, and that of FOSI is Tτ2 + τ3, as the ESE procedure is called
once every T iterations. The parameter T impacts FOSI’s runtime relative to the base optimizer. A
small T may result in faster convergence in terms of iterations, since V̂ and λ̂ are more accurate;
however, it also implies longer runtime.1 On the other hand, using a large T may result in divergence
due to inaccurate estimates of V̂ and λ̂. Since the improvement in convergence rate, for any given T ,
is not known in advance, the parameter T should be set such that FOSI’s runtime it at most ρ times
the base optimizer runtime, for a user define ρ > 1. To ensure that, we require ρTτ1 = Tτ2 + τ3,
which implies2

T = τ3/(ρτ1 − τ2). (6)

The average latency of FOSI’s extra computations in an update step (lines 7, 8, and 10 in Algo-
rithm 2), denoted by τ2−τ1, includes three matrix-vector products and some vector additions, which
have a computational complexity of O(n(k + ℓ)). For large and complex functions, the latency of
these extra computations is negligible when compared to the computation of the gradient (line 18 in
Algorithm 2)3, thus leading to the approximation of τ1 ≊ τ2. Furthermore, τ3 can be approximated
by 2mτ1, where m = max{4(k + ℓ), 2 ln n} is the number of Lanczos iterations, since each Lanc-
zos iteration is dominated by the Hessian-vector product operation which takes approximately two
gradient evaluations (see § 3.1). By incorporating these approximations into equation (6), we can
derive a formula for T which does not require any measurements:

T = 2m/(ρ − 1).

Note that this formula is not accurate for small or simple functions, where the gradient can be
computed quickly, and the additional computations are not negligible in comparison. In such cases,
τ1, τ2, and τ3 can be evaluated by running a small number of iterations, and T can be computed
using equation (6) based on these evaluations.

B Evaluation

B.1 Deep Neural Networks

Figure 5 shows the learning curves of FOSI and the base optimizers for different DNN training
tasks: (1) training logistic regression model on the MNIST dataset, (2) training autoencoder on the
CIFAR-10 dataset, (3) transfer learning task in which we train the last layer of trained ResNet-18 on
the CIFAR-10 dataset, and (4) training character-level language model with a recurrent network on
the Tiny Shakespeare dataset. FOSI improves over the base optimizers in most cases. While FOSI
improvement over Adam is less significant than its improvements over Heavy-Ball, there are tasks
for which Heavy-Ball performs better than Adam since it generalizes better.

1We do note, however, that in some settings, such as distributed settings in which network bandwidth is
limited, using fewer iterations is preferred, even at the cost of additional runtime per iteration. In future work
we plan to run the ESE procedure on the CPU in the background in the effort of saving this extra runtime
altogether.

2It should be noted that this calculation does not take into account the extra evaluation steps during the
training process, which has identical runtime with and without FOSI; hence, FOSI’s actual runtime is even
closer to that of the base optimizer.

3For DNNs, gradient computation can be parallelized over the samples in a batch, however, it must be
executed serially for each individual sample. In contrast, operations such as matrix-vector multiplication and
vector addition can be efficiently parallelized.
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Figure 5: Learning curves of different optimizers for different DNN training tasks. In most cases
FOSI obtains faster convergence than the base optimizers across epochs (left) and across wall time
(middle). Since FOSI accelerates convergence, it also leads to an earlier overfitting point when the
base optimizer has a tendency to overfit, as can be observed in the LR validation loss (right).

Table 2: Comparison of wall time (in seconds) for each base optimizer and FOSI at the same train
loss, which is the minimal train loss of the base Optimizer. A lower wall time is preferable as it
indicates the optimizer reaches the best loss at a faster rate.

Task HB FOSI-HB Adam FOSI-Adam

AC 6845 3599 6042 6825

LM 255 177 255 233
AE 372 322 375 338
TL 103 58 104 71
LR 18 10 19 19

Table 2 shows the time it takes for both the base optimizer and FOSI to reach the same train loss,
which is the lowest train loss of the base optimizer. On average, FOSI achieves the same loss over
the training set in 78% of the wall time compared to the base optimizers.

Figure 6 shows the learning curves of FOSI-HB, K-FAC and L-BFGS. In all cases, FOSI converges
faster and to a lower validation loss than K-FAC and L-BFGS. Specifically:

• LR: K-FAC converges quickly but overfits dramatically, resulting in much higher validation loss
than FOSI. L-BFGS converges much more slowly than the other approaches and to a much higher
validation loss.
• TL: Both K-FAC and L-BFGS converge slower than FOSI and result in higher validation loss.
• AE: K-FAC converges quickly but is noisy and leads to a large validation loss (52.1 compared to

51.4 for FOSI), while L-BFGS diverges quickly after the first epoch, even with large values of L.
• LM: we could not get the K-FAC implementation to work on this RNN model (this is a known

issue with K-FAC and RNN (Martens et al., 2018)). L-BFGS converges more slowly, and to a
much higher loss.
• AC: K-FAC converges slower than FOSI and shows substantial overfitting, while L-BFGS does

not converge.
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Figure 6: Learning curves of FOSI-BH, K-FAC, and L-BFGS for the DNN training tasks AE, TL,
LM, and AC. In the TL figure (top-right), L-BFGS (L=40) was omitted due to its poor performance,
resulting in a significantly larger loss than other optimizers and 8x slower wall time. Similarly, in the
AE figure (top-left), L-BFGS (L¡=100) was excluded due to its divergence in the first epoch. In the
LM figure (bottom-left), K-FAC was omitted due to integration issues with RNN. Across all tasks,
FOSI demonstrated faster convergence to a lower validation loss compared to K-FAC and L-BFGS.
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Figure 7: Each (b, ζ) combination in each sub figure is the value of different fb,ζ after 200 iterations
of the optimizer. FOSI improves over the base optimizer for every function. Learning curves for
four functions, indicated by black x markers, can be found in Figure 8.
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Figure 8: Learning curves of four specific fb,ζ functions. Each x mark in Figure 7 is the final value
of the corresponding learning curve here, i.e. the value of f at iteration 200.

B.2 Quadratic Functions

B.2.1 Dimensionality and Eigenspectrum

Here we provide the full details regarding the experiment in § 4.3, where we explore the effect of
both the condition number and the diagonally dominance of the function’s Hessian on the different
optimizers. To do so, we define a set of functions fb,ζ(θ) = 0.5θT Hb,ζθ for b ∈ {1.1, ... , 1.17} and
ζ ∈ {0, ... , 100}, θ ∈ R100, where b and ζ are parameters that define the Hessian Hb,ζ . The parameter
b determines the eigenvalues of Hb,ζ : ∀i ∈ {1, ... , 100} λi = 0.001bi. The parameter ζ determines the
number of rows in Hb,ζ that are not dominated by the diagonal element, i.e., the part of Hb,ζ which
is not diagonally dominant.

To construct Hb,ζ , we start from a diagonal matrix whose diagonal contains the eigenvalues accord-
ing to b. We then replace a square block on the diagonal of this matrix with a PD square block of
dimensions ζ × ζ whose eigenvalues are taken from the original block diagonal and its eigenvectors
are some random orthogonal basis. The result is a symmetric PD block diagonal Hb,ζ with one block
of size ζ × ζ and another diagonal block, and the eigenvalues are set by b.

An important observation is, that for a specific b value, b1, and two different ζ values, ζ1 and ζ2, the
Hessians Hb1,ζ1 and Hb2,ζ2 share the same eigenvalues and their eigenvectors are differ by a simple
rotation. The starting point θ0 in all the experiments is the same and it is rotated by a rotation matrix
that is Hb,ζ’s eigenvectors. As a result, for all the experiments with the same b, the starting values
fb,ζ(θ0) are identical.

Figure 7 shows fb,ζ at the optimal point after 200 iterations of the optimizers for different b and
ζ values. For a specific b value, rotations of the coordinate system (changes in ζ) have no impact
on GD and HB, as seen by the vertical lines with the same value for different ζ values. Their
performance deteriorates for larger b values (more ill-conditioned problems). When applying FOSI,
the new maximal eigenvalues of two functions with similar ζ and different b are still differ by an
order of magnitude, which leads to the differences in FOSI’s performance along the b axis. Adam’s
performance is negatively affected for large b and ζ values. FOSI improves over the base optimizer
in all cases.
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Figure 9: f1.12,90 after 200 iterations with different learning rates. Each curve is for a different
optimizer, while each point in the curve is the final f value after 200 iterations with a specific
learning rate. Left: using a fixed momentum value of 0.9, β for HB and β1 for Adam. Right: the
best momentum ∈ [0.7, 1) for each η. FOSI improves over the base optimizer even when using the
optimal hyperparameter set.

Figure 8 shows the learning curves of the optimizers for four specific fb,ζ functions:
f1.12,50, f1.12,90, f1.16,50, f1.16,90. The black x marks in each sub figure of Figure 7 are the last value
of these learning curves. For both functions with b = 1.12 the learning curves of GD and Heavy-
Ball (as well as FOSI with these base optimizers) are identical, as they are only differ by a rotation,
and similarly for b = 1.16. However, for the same ζ, these optimizers convergence is much slower
for larges b value. FOSI implicitly reduces the maximal eigenvalue in both functions, but the new
two maximal eigenvalues still differ by an order of magnitude, which leads to the differences in
FOSI’s performance (as opposed to the first experiment on quadratic functions). Adam is negatively
impacted when ζ is increased. In this experiment. For smaller ζ values its performance is not im-
pacted by the change in b and it is able to converge to the same value even for functions with larger
curvature.

B.2.2 Learning Rate andMomentum

In the last experiment on quadratic functions, we use each optimizer to optimize the function f1.12,90
multiple times, with different learning rates η ∈ {1e − 5, 10}. FOSI-HB and FOSI-GD were run with
both c = 1 (no scaling) and c = ∞ (no clipping). We repeated the experiment twice. In the first
version we used a fixed momentum parameter 0.9 (β for HB and β1 for Adam). In the second version
we find the best momentum parameter ∈ [0.7, 1) for each η.

Figure 9 shows the results after 200 iterations for every optimizer and learning rate η. FOSI improves
over Adam for all learning rates. For GD and HB, with c = 1, FOSI expands the range of η values for
convergence, changes the optimal η, and leads to superior results after the same number of iterations.
With c = ∞, FOSI improves over the base optimizer for all η values, but the range of η values for
convergence stays similar. Moreover, FOSI’s improvement over the base optimizer when using the
optimal set of hyperparameters is similar to the improvement for a fixed momentum parameters.
Similar trends were observed when repeating the experiment for other fb,ζ functions.
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