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ABSTRACT
Cloud computing handles a vast share of the world’s com-
puting, but it is not as efficient as it could be due to its lack of
support for memory elasticity. An environment that supports
memory elasticity can dynamically change the size of the
application’s memory while it’s running, thereby optimizing
the entire system’s use of memory. However, this means
at least some of the applications must be memory-elastic.
A memory elastic application can deal with memory size
changes enforced on it, making the most out of all of the
memory it has available at any one time. The performance of
an ideal memory-elastic application would not be hindered
by frequent memory changes. Instead, it would depend on
global values, such as the sum of memory it receives over
time.

Memory elasticity has not been achieved thus far due to a
circular dependency problem. On the one hand, it is difficult
to develop computer systems for memory elasticity without
proper benchmarking, driven by actual applications. On the
other, application developers do not have an incentive to
make their applications memory-elastic, when real-world
systems do not support this property nor do they incentivize
it economically.

To overcome this challenge, we propose a system ofmemory-
elastic benchmarks and an evaluation methodology for an
application’s memory elasticity characteristics. We validate
this methodology by using it to accurately predict the per-
formance of an application, with a maximal deviation of 8%
on average. The proposed benchmarks and methodology
have the potential to help bootstrap computer systems and
applications towards memory elasticity.
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1 INTRODUCTION
Today’s cloud providers make every effort to improve their
resource utilization and thereby make more money off the
same hardware. Rigid allocation prevents them from utilizing
the hardware efficiently, so they offer clients various options
for resource elasticity [11]. These elastic options allow clients
to change their resource consumption on the fly by exploiting
resources that are momentarily unused by other clients.
Resource elasticity is seamless in services such as

Application-as-a-Service (AaaS) and serverless computing.
Here, clients rent a black-box execution environment that
exposes a limited application programming interface (API)
they can use. The environment’s resource consumption and
workload distribution are controlled by the provider. Thus,
the client shares resources with other clients who occupy the
same environment. In such services, the provider handles the
client’s resource elasticity, relieving the client of this burden.

However, these environments may not suit all applications.
Some clients need a broader API, have a proprietary applica-
tion, or use an uncommon application that is not supported
by the provider. Other clients may have specific performance
requirements that the provider is unable to guarantee. For
example, clients might need to be physically closer to their
data or maintain some continuity between runs.

Clients who require more than what is provided by AaaS
and serverless computing will deploy their applications us-
ing Infrastructure-as-a-Service (IaaS) and Container-as-a-
Service (CaaS). In such services, clients rent a bundle of rigid,
exclusive, resources in the form of a single virtual machine
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(VM) or an OS container. Many IaaS and CaaS providers offer
CPU elasticity in the form of burstable performance, which
offers a basic level of CPU performance but can ’burst’ to a
higher level when required. Under certain conditions, this
lets clients use more CPU than their initial allocation, in the
same VM/container. These providers include Google [13],
Amazon [3], Azure [24], CloudSigma [7], and RackSpace [27].

With the current proliferation of CPU elasticity schemes,
CPU utilization is adequately optimized and more clients
can be allocated to the same physical servers [11]. This
leaves memory as the bottleneck resource: it is an expen-
sive resource that limits machine occupancy. Memory elas-
ticity schemes should be a natural extension to CPU elas-
ticity, allowing clients to use more memory in the same
VM/container than their initial memory allocation. Clients
who can tolerate a temporary memory shortage could bene-
fit from these schemes by lowering the amount of memory
they rent exclusively. They could then compensate for the re-
duced requirement by bursting when they really need more
memory. For example, clients who can postpone memory-
intensive phases in their operations, can reserve a small
initial amount of memory and make use of more memory
whenever it is available (e.g., for maintenance operations).
This enables clients to time-share memory and the provider
can squeeze more applications onto the same hardware [11].
To achieve this, clients need memory-elastic applications

that can change their maximal memory usage on the fly
and whose performance is proportional to their memory us-
age. Unfortunately, memory-elastic applications are scarce.
Although developers usually strive to make their applica-
tion’s performance proportionate to its CPU and bandwidth
availability, most applications are not designed with mem-
ory elasticity in mind. Developers generally address only
the maximal memory footprint of their application. They
treat it as constant or a value dictated by the current applica-
tion workload. The operating system’s swapping mechanism
allows seamless application operation when the available
memory is insufficient, but this results in a graceless perfor-
mance degradation; even a minor memory loss may degrade
the performance significantly.

Why do developers toil towards making performance scale
nicely with the CPU and bandwidth, but neglect doing this
for memory? Developing memory-elastic applications re-
quires more work. With a proliferation of memory-elastic
systems, developers could be incentivized to make this effort,
as they did with CPU elastic applications.
Research has been done into systems that allow fre-

quent memory allocation changes [2, 14]. However, with-
out memory-elastic applications, such systems cannot be
used to their full potential and will not be accepted by the
commercial community. As early as 2010, cloud provider

CloudSigma allowed clients to change their memory alloca-
tion and billing during runtime. Unfortunately, other com-
mercial cloud providers did not follow in their footsteps
and this option is no longer promoted on the CloudSigma
web-page.

We’re seeing a circular dependency problem between
memory-elastic applications and systems that require and
incentivize such properties. When one of these elements is
scarce, there is no incentive to develop the other because
real benefit only comes when both elements exist.
A proof that memory-elastic applications exist or can be

created is essential to break this circular dependency. Our
first contribution is a set of memory-elastic applications
with a memory to performance trade-off (Section 4.3).

Once the circular dependency problem is solved, and elas-
tic memory systems and applications exist commercially, a
language and method for quantifying application elasticity
will help clients choose a resource bundle that best suits their
application. In addition, quantifying an application’s elastic-
ity will help cloud providers test and optimize their systems.
Our second contribution comprises a methodology and
terminology for evaluating memory elasticity (Section 3).
These specify how to determine a memory elasticity score
for each application that can be used as a memory elasticity
benchmark.

The methodology is implemented as an open-sourcemem-
ory elasticity evaluation framework (Section 4). We validated
the evaluation process using our framework (Section 5) over
a set of memory-elastic applications. The results show that
our memory elasticity score can accurately predict an appli-
cation’s performance, with an average deviation of 8%.
The methods and applications we introduce, along with

our memory elasticity metrics, will allow clients to choose
less expensive memory elastic schemes and reduce costs.
Accordingly, the number of IaaS clients per server will no
longer be constrained by memory, allowing elastic CPU allo-
cation schemes to demonstrate their full potential of nearly
80% CPU utilization [11].

2 MEMORY ELASTICITY METHODS
This section presents several application properties that can
be used to allow memory elasticity.

2.1 Applications with Resource Trade-off
Mechanisms that were designed to allow trade-off between
memory and other resources can be used to provide memory
elasticity.
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Memory as cache: Some applications use the RAM to
cache computation results, network traffic, and so on (e.g., us-
ing memcached1). They can increase their memory footprint
when memory is cheap or more available to the application.
For example, an application might switch to caching mode
for network requests when memory is abundant and avoid
caching when high bandwidth is more available or cheaper
than memory. Since caches are designed to drop data fre-
quently, cache-enabled applications are already designed to
withstand data loss when the memory footprint decreases.

Similarly, applications that rely on the operating system’s
page cache to reduce the storage latency (e.g., PostgreSQL2)
may also be affected by how much memory is available to
the operating system. They can seamlessly improve their
performance when more memory is available to the operat-
ing system. For example, PostgreSQL exhibits performance
proportional to the memory availability, as presented in Fig-
ure 1.
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Figure 1: PostgreSQL tested with Pgbench [20] work-
load, with 40 clients, while changing thememory allo-
cation on the fly.

Intermediate calculations: Applications that use huge
amounts of on-disk data (e.g., databases, Hadoop) can use
larger memory buffers to reduce disk access and speed up
temporarily data-heavy operations, such as sorting and large
matrix multiplication.

Garbage collected memory: Applications with auto-
matic memory management (e.g., Java applications) may
need fewer garbage-collection cycles with a larger heap, and
improve their performance as depicted in Figure 2. On the
other hand, when the memory is too large, the garbage col-
lection might take longer, as shown by Soman et al. [30].

2.2 Memory-Aware Applications
Memory-aware applications adjust their memory consump-
tion according to the available memory observed during
their initiation period, but cannot adjust it during runtime.
Specifically, most of the commonly used memory trade-offs
1Memcached is a popular, open-source, in-memory data store used to reduce
the number of times an external data source must be read.
2PostgreSQL is a database application.
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Figure 2: Lusearch benchmark from the DaCapo
benchmark suite [5] with different limits on themaxi-
mal heap size in an off-the-shelf JVM. These measure-
ments were produced by restarting the JVM for each
maximal heap size.

we mentioned (subsection 2.1) are predefined and imple-
mented as memory-aware applications. Memcached only
allows the cache size to be set at startup, PostgreSQL’s tem-
porary buffers are defined using a static configuration file,
and the Java-Virtual-Machine (JVM) allows setting the mini-
mum and maximum heap size only using the command-line
parameters at startup.

These applications can be made memory-elastic by restart-
ing them when the memory changes, but this solution is not
suitable when the application needs to be continuously avail-
able. With a small effort, as shown in subsection 4.3, these
applications can be tweaked to become memory-elastic.

2.3 Multiple Short-Lived Jobs
Some applications have multiple short-lived jobs, each with
different memory requirements. For example, web servers
might require a certain memory to handle each session. They
may be able to handle more concurrent sessions when more
memory is available. To deal with lack of memory, they can
cap the number of concurrent sessions; thus, they trade off
memory for latency and throughput.
Another example is batch workload schedulers, such as

SLURM or Sun Grid Engine, which execute many short-lived
jobs, eachwith a predefined resource requirement. The sched-
uler can adapt the concurrency according to the actual mem-
ory allocation, running more concurrent jobs when more
memory is available. Alternatively, if the jobs are memory-
aware, it can keep the concurrency constant and adapt the
memory requirements of each job such that the combined
memory requirements of all running jobs will match the
allocation. Moreover, it can combine these two strategies.

2.4 Rigid Applications
Applications that cannot use any of the above techniques
will resort to memory-swapping once the available memory
is not sufficient for their memory required footprint. This
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option is usually not advisable as it suffers from inadequate
performance.

3 MEMORY ELASTICITY METRICS
Any developer who implements a mechanism from the pre-
vious section will naturally want to measure its effect on the
application’s memory elasticity. Developers are used to mea-
suring and comparing metrics such as throughput, goodput,
latency, jitter, and load capacity. Such metrics quantify the
application’s performance and enable its comparison to sim-
ilar applications or to other versions of the same application.
But can we use them to quantify the application’s elasticity?
We could compare the performance of two applications

under the same dynamic memory conditions and consider
the one with the better results as more memory-elastic. How-
ever, the results may be sensitive to the order or frequency
of memory allocations. A single scenario or even several
scenarios do not necessarily indicate how the applications
behave under untested scenarios. This is because we try to
infer memory elasticity from observations of metrics that
only hint about elasticity, but do not measure it directly.
Our goal is to quantify an application’s behavior in a dy-

namic memory scenario and compare it to other applications,
using metrics that directly relate to memory elasticity. We
target metrics that capture the characteristics that make an
application more memory-elastic.
In this section, we present our novel memory elasticity

metrics, which predict how well an application can utilize
momentarily available memory, assuming it has the neces-
sary load that requires the memory. First we define a set of
static metrics to describe the application’s elasticity, with-
out considering the implications of changing the memory
allocation during runtime. This part determines the mem-
ory domain in which the application has the potential to
be memory-elastic. If the application has such a domain, a
second set of metrics can then be defined within this domain.
These dynamic metrics quantify how well the application
responds within the elasticity domain to dynamic memory
changes—changes made during runtime. Finally, in section 4,
we describe the experiments we designed to compute these
metrics for each application.
In addition to the elasticity metrics, which are compara-

ble across applications, we define elasticity characteristics
that can be used by clients to configure their VM and their
application.

3.1 Static Metrics
First, we define a static memory→performance function
(Pmem) that describes the performance of the application
given a static memory allocation. Then, we define the appli-
cation’s elasticity domain. We denote bymemL the memory

allocation that is sufficient for the application to yield the
minimum required performance. This might be the mem-
ory below which thrashing occurs or it might be defined by
a service level agreement (SLA). We denote by memH the
maximal memory allocation that yields any performance
improvement over a smaller memory allocation. If memL
is identical tomemH , the application is simply inelastic, in
which case any other elasticity metric is irrelevant. If the
application might be elastic, we define its elasticity domain
as [memL ,memH ] and its elasticity range asmemH −memL .
An application with a larger elasticity range can withstand
more dynamic scenarios and thus is considered more elas-
tic. Therefore, our first elasticity metric is the application’s
elasticity range.
We also define the improvement factor per memory unit

(IFMU) in the elasticity domain as:

IFMU =

Pmem (memH )

Pmem (memL )

memH −memL
. (1)

An application with greater IFMU has the potential to gain
more from a dynamic memory scenario. Hence, the applica-
tion’s IFMU is our second elasticity metric.
An example of a performance function (Pmem) is illus-

trated in Figure 3. In this example, the application needs at
least 1 GB of RAM (memL = 1GB), and gains no performance
improvement beyond 4.5 GB of RAM (memH = 4.5GB). Thus,
its elasticity domain is 1 GB to 4.5 GB, its elasticity range is
3.5 GB, and its IFMU is about 3 per GB.
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Figure 3: Illustrating performance measurements of
an application.

3.2 Dynamic Metrics
When the memory changes during runtime, the performance
is not necessarily affected immediately. An application might
require some time to utilize the added memory. For example,
it takes time to fill the cache and it takes even longer to notice
an improved hit-rate due to the re-use of cached items. Upon
memory reduction, an application might need to prepare for
eviction a few seconds ahead of the change, to avoid memory
swapping.
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Agmon Ben-Yehuda et al. [2] defined Tmem as an upper
bound on the time of the transient performance before stabi-
lization. We extend this scalar definition of Tmem to a func-
tion with two variables Tmem(s,d), where s denotes a source
memory allocation and d denotes a target (destination) mem-
ory allocation.
Figure 4 illustrates Tmem in two scenarios: memory is in-

creased in the first and decreased in the second. In phase A
(starts at time=t0) the memory allocation is α , with an aver-
age performance of Pmem(α). As phase B begins (time=t1),
the memory allocation changes to β , but the performance
stabilizes in Pmem(β) only after t2 − t1 seconds (time = t2).
This time is defined as Tmem(s=α,d=β) = t2 − t1. To gener-
alize, when s < d and the memory is increasing, Tmem(s,d)
indicates the period starting with the allocation change and
ending with the application reaching the statically measured
performance (Pmem(d)).

To prepare for the decreased memory allocation in phase
C (time=t3), the application starts releasing memory ahead
of the memory change (time = t4). This time is defined as
Tmem(s=β,d=α) = t4−t3. To generalize, when s > d and the
memory is decreasing, Tmem(s,d) indicates how far ahead
of the memory change the application started to modify its
state to accommodate the updated memory allocation and
reduce its performance accordingly. We assume here that the
application properly prepares for the memory reduction and
manages to release its memory before the allocation is ap-
plied. If this is not the case, and the application fails to release
its memory, it is considered a bug or a misconfiguration.
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mem = α
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mem = α

Tmem(α, β) Tmem(β, α)

Figure 4: The definition ofTmem given an application’s
performance under dynamic conditions.

Tmem is not a good enough metric to compare different
applications. During the transient period, application A may
reach 90% of the maximal performance after a short period;
after this period, it slowly increases to Pmem(d). Application
B may have the exact sameTmem and Pmem as A, but during
the transient time its performance is low for most of the time.

It only increases near the end of the transient, as illustrated
in Figure 5a.
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(a) Measured performance.
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Figure 5: Illustration of two applications with the
sameTmem and Pmem , but with a different performance
loss during the transient period.

The clients using these applications pay for memory that
does not immediately translate to their expected perfor-
mance for the same duration (Tmem ). However, a client using
application A loses more performance over time than a client
using application B, as illustrated by the filled areas above
the performance curves in Figure 5a. These filled areas repre-
sents the aggregate performance loss and are formally defined
by

Lmem(s,d) =

∫ Tmem (s ,d )

0
(Pmem(max{s,d}) − p(x))dx , (2)

where p(x) is the performance of the application at time
x ∈ [0,Tmem(s,d)] during the memory transition.

To account for this misrepresentation of actual perfor-
mance, we define the effective Tmem , denoted by Emem(s,d),
which is comparable across applications. Consider a fictional
scenario, in which the performance changes abruptly be-
tween the two performance levels with a time delay, as illus-
trated in Figure 5b. In this fictional scenario, the time delay
is chosen so the performance loss in the fictional scenario
is identical to the measured performance loss (Equation 2).
Emem(s,d) is defined as that time delay. It is the aggregate
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performance loss for the memory change, divided by the
performance difference between the levels. Formally,

Emem(s,d) =
Lmem(s,d)

|Pmem(d) − Pmem(s)|
. (3)

Similarly, upon a decrease in memory allocation, the perfor-
mance drops in the fictional scenario to Pmem(d) seconds
before the memory allocation actually changes.
Application A has a shorter Emem(s,d) compared with

B, as illustrated in Figure 5b. Because their Pmem functions
are identical, we can directly infer that application A has
less performance loss, and thus it is more memory-elastic
than application B. Therefore, we consider an application
with a shorter Emem(s,d) as being more memory-elastic. The
application’s Emem function is our third and final memory
elasticity metric.

4 EVALUATION
In this section we explain how developers can measure their
own application’s memory elasticity characteristics and met-
rics. Then, we design a validation method for these metrics.
Finally, we discuss the applications we evaluated using these
metrics.

4.1 Measuring the Elasticity Metrics
In section 2, we defined three key elasticity metrics that are
comparable across applications: elasticity range, IFMU, and
Emem . In addition, we defined different characteristics such
as elasticity domain, Pmem and Tmem , which can be used
by clients to configure their VM and their application. The
following are the experiments we designed to measure these
metrics and characteristics for each application.

Static Metrics. To find each application’s characteristics
(memL , memH and Pmem), we perform a few incremental
tests. First, we roughly estimatememL andmemH , and then
we determine their exact values.

We perform static tests in which we choose a high-enough
static memory allocation as an initial guess formemH , and
test the application with this allocation. This high-enough
memory allocation can be estimated on the basis of prelimi-
nary knowledge (e.g., the application’s working set size in the
chosen workload). Otherwise, this test can be repeated with
different higher memory allocations, until the performance
is similar in at least two different memory allocations.

In this test we also measure the warm-up time: how long
it takes the application to reach its maximal performance
and maximal memory usage. The warm-up time is required
for future experiments.
We need additional static tests in order to choose a low

static memory allocation that will serve as an initial guess
formemL . This is chosen such that the application can still

function properly and the OS swapping mechanism is not
activated. Avoiding swapping is a strict requirement for this
test, since guest swapping may swap out other applications’
memory, or even that of the operating system. This would
increase the memory available to the tested application and
possibly lead to unexpected results.

Next, we perform a pyramid test, in which an application
starts working on a guest virtual machine (VM) with a maxi-
mal memory allocation (i.e., our initial guess ofmemH ). We
allow the application to warm up for the warm-up duration
we found in the static tests. Then we gradually decrease the
memory allocation, in steps, until we reach our initial guess
ofmemL . Throughout each step, the memory allocation re-
mains constant. To avoid measuring transient effects, each
step includes enough time to measure the application’s per-
formance in a reliable manner after the warm-up time. The
time that is considered to be sufficient is usually dictated
by the workload. For example, PostgreSQL benchmark (pg-
bench) recommends running a test for at least a few minutes
to get reproducible results.

To validate that the application’s performance in a certain
memory allocation step is not affected by the step fromwhich
it descended, we repeat the process in reverse—gradually
increasing the allocation by steps to the maximum.We verify
that the performance in the increasing phase is similar to the
performance in the decreasing phase for each tested memory
allocation.

We also record the application’s average performance and
its standard deviation for each memory allocation. We then
use these measurements to determine the exactmemL and
memH values, and the Pmem function for the application.

For the results presented in this paper, we tested the guest
memory allocations in steps of 512 MB: 1024 MB, 1536 MB,
2048 MB, and so forth, until there was no performance im-
provement. The lowest memory allocation we could measure
without swapping was 896 MB.

Dynamic Metrics. First, for each application we determine its
safe retreat time: how much time ahead of the memory drop
the application must start reducing its memory consumption
to avoid swapping. To this end, we conduct a drop-test in
which the memory allocation drops frommemH tomemL .
Here, the application starts changing its state as soon as it is
notified of the memory allocation drop. Our default settings
gave the application a prior notice of 30 seconds. We then
measure how long it takes the application to reach the lower
memory state. This duration is used as the application’s safe
retreat time for the subsequent tests.

To generateTmem(s,d) and Emem(s,d) for each application,
we perform an oscillation test. In such a test, the memory
allocation oscillates between two values for five cycles, and
the performance is recorded. We performed an oscillation
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test for each application, for any pair of values taken from
the values tested in the pyramid test.

As previously defined (subsection 3.2), when we increase
the memory, the transition period lasts from the applica-
tion of the new memory allocation to the stabilization of
the performance. We define that the performance stabilizes
when the application’s average performance over a prede-
fined time-window reaches Pmem(d) for the first time after
the allocation change. The time-window size is different for
each application and is chosen according to the application’s
characteristics (e.g., PostgreSQL requires a window of a few
minutes to mask the measurement noise).

When we decrease the memory, the transition period lasts
from the time the application proactively prepares for the
lower memory allocation until the new memory is allocated.
This definition relies on the valid measurement of the safe
retreat time. Indeed, we validated in our experiments that
the safe retreat time was sufficient. We also log the applica-
tion’s internal memory state during the experiment for this
purpose.
For each application, for each transition in each test, we

compute Tmem(s,d) and Emem(s,d) from the performance
measurements. Then, for each application, we compute the
average values of Tmem(s,d) and Emem(s,d) for each pair
of source and target (s,d), to be used as the Tmem(s,d) and
Emem(s,d) for that application.

4.2 Validating our Metrics
To validate our memory elasticity metrics, we needed to
show they are able to predict the application’s performance
in any dynamic memory scenario. To start, we randomly
generated multiple benchmark traces of differences in mem-
ory allocations; these indicated the histories of how much
memory was added or taken from the previous allocation.
The traces represented different scenarios, characterized by
two properties:
(1) Rate: the number of memory changes per hour.
(2) Amplitude: the maximal difference between two con-

secutive memory allocations.
Since the purpose of this set of experiments was to validate
the dynamic properties against trace results and not compare
applications, we tested each application on several of these
traces in which its elasticity could be expressed. The rates
were limited by the application’sTmem . That is, the allocation
cycle time ( 360rate seconds) had to be greater than the maxi-
mal Tmem . The amplitudes were limited by the application’s
elasticity range.

Then, we calculated the average actual performance of the
application over the entire period of the experiment, exclud-
ing the warm-up time at the beginning of the experiment. We
calculated the expected “ideal” average performance, using

the static profiler by applying the static memory performance
function (Pmem ) to the application’s memory allocation. We
also calculated the expected “realistic” average performance,
using the elastic profiler, which calculates the performance
in the fictional scenario, inferred by the application’s Emem
function.

To calculate how accurate each of our (ideal and realistic)
predictions were compared with the actual performance, we
used the following norm:

100 ·
����predicated performance

actual performance
− 1

���� , (4)

which is the maximal deviation (in percentage) from the
actual performance.

Our memory elasticity metrics are meaningful if they can
be used to accurately predict the application’s performance
with good probability. If these metrics are valid, they will
allow us to evaluate and quantify an application’s elasticity
by performing four simple tests: static-test, pyramid-test,
drop-test, and oscillation-test, without the need to repeat
this validation process for future applications.

4.3 Applications and Benchmarks
We wanted to identify applications that could be used as
elastic benchmarks. Our preference was for memory-elastic
off-the-shelf applications, but we also modified applications
or tweaked their settings to enable memory-elasticity.

Most benchmarks suites are composed of a benchmarking
utility that runs different applications. These benchmarking
utilities generally execute an application for a short period
and measure the average performance over that period (e.g.,
DaCappo [5], SPEC CPU [6]). This operation is repeated to
produce statistically significant results. However, this stan-
dard mode of operation is not fitting for the measurement
of performance over different runtime phases, especially
while changing memory allocations. To this end, the applica-
tion needs to continuously run over a period of time that is
significantly longer than the transient effects of a memory
allocation change.
To evaluate elasticity we require a benchmarking utility

that executes an application for any time period with a con-
stant load and reports frequent performance statistics during
the benchmark runtime. This could work well, for example,
to test an elastic application that is an always-on, always-
available service, responding to client requests. Ideally, the
application being tested should be able to change its mode or
adapt its memory utilization given notification of an upcom-
ingmemory allocation, or do so seamlessly without requiring
a hint.

We tested the following applications.
Memcached [9] is a memory cache service that runs in

the background alongside another application. It can be



SYSTOR ’20, June 2–4, 2020, Haifa, Israel L. Funaro et al.

used to cache computation results, network responses, and
so forth. The performance function (Pmem) of off-the-shelf
memcached resembles a step function and is typical of
the operating system’s efforts to handle memory pressure
through swapping [2]. We used the elastic adaptation of
memcached3 [1, 2, 25], which supports memory elasticity by
changing its memory footprint upon receiving a command
via a socket. Memcached has its memory arranged in linked
lists of slabs, for which it maintains metadata, so that it can
tell which slab to overwrite. The elastic memcached used
this mechanism to choose which memory slabs to lose when
the memory footprint needed to be decreased, along with the
malloc_trim() function, which forces libc to release memory
from the heap back to the operating system. As its workload
driver, we used memaslap with concurrency of 20, a window
size of 100K, and 90% get requests (the rest are set requests).
MemoryConsumer4 [2] is a dedicated dynamic memory

benchmark that accesses random pages in a predefined mem-
ory region. When allocated less memory, it is informed of
the change and only attempts to access memory pages it
can reach (without the risk of touching out-of-boundary
pages). The application initiates a ’sleep’ operation to ar-
tificially prevent access to any pages beyond the memory
it knows it has; this reduces the throughput without caus-
ing any additional issues resulting from actually touching
swapped out pages. Hence, its hit rate increases linearly with
the available memory. The benefit of this artificial bench-
mark is that it is designed to have an almost zeroTmem , with
highly reproducible performance measurements. We tested
it with a constant load of 10 threads accessing the memory
simultaneously.

4.4 Implementation Details
We implemented the benchmarking framework in Python 3.7.
Some of the code is based on the evaluation framework for
Ginseng [2, 10], which is based on the memory overcommit-
ment manager (MOM) by Litke [22]. The code is available as
open source at: github.com/liran-funaro/elastic-benchmarks.

4.5 Experimental Setup
We evaluated our framework on a machine with 16 GB of
RAM and 2 Intel(R) Xeon(R) E5-2420 CPUs @ 1.90 GHz with
15 MB LLC. Each CPU had 6 hyper-threaded cores, for a
total of 24 hardware threads. Each application was set up in
advance in a qcow2 image of a guest virtual machine, running
on a QEMU/KVM instance. Each guest VM was allocated
with 4 cores, and was pinned to cores on a single NUMA
node. We controlled the guest memory using the memory
balloonmodule [31]. The host ran Ubuntu 16.04.1 with kernel

3Available from: https://github.com/liran-funaro/memcached.
4Available from: https://github.com/liran-funaro/memory-consumer-cpp.

4.8.0-58-generic #63, and the guests ran Ubuntu 18.04.2 with
kernel 4.15.0-50-generic #54. To reduce measurement noise,
we disabled hyper-threading, pstate, and ksm in the host,
and tested one benchmark at a time.

5 RESULTS
In this section, we analyze each of the applications by evalu-
ating the application’s static and dynamic metrics, and vali-
dating them.

5.1 Memcached
The static evaluation of the elastic memcached is presented in
Figure 6. This application’s memory domain is from 896 MB
to 3584 MB, making its memory range 2688 MB. Our static
evaluation suggested that memcached requires 7 minutes of
warm-up time and its improvement factor (IFMU) is 1.8 per
GB.
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Figure 6: Memcached performance (“get” hits per sec-
ond) as a function of allocated memory.

The dynamic evaluation of memcached is depicted in Fig-
ure 7. The drop-test suggests that memcached needs about
6 seconds of safe retreat time. We can see that for some
parameters when d < s , Emem(s,d) > 6. This is although
Tmem(s,d) = 6 for these parameters. This is because mem-
cached has to do extra work in order to choose the least
used items to release. This reduces its performance below
the average performance for the target memory and makes
the effective transient period longer than the actual one.
When d > s , larger memory changes induce longer Emem , as
expected.

Off-the-shelf memcached had the exact same range, IFMU,
and Pmem as the elastic one. However, its dynamic evaluation
showed that it suffers far more from transitions, as depicted
in Figure 7b. The measured Emem of the elastic memcached is
at least 33% shorter than that of the off-the-shelf one, and for
most of the transitions, it is at least 90% shorter (Figure 7c).
Given that the static properties of the application did not
change, we can clearly determine that the effort to modify
memcached to be memory-elastic has been useful.

github.com/liran-funaro/elastic-benchmarks
https://github.com/liran-funaro/memcached
https://github.com/liran-funaro/memory-consumer-cpp


Memory Elasticity Benchmark SYSTOR ’20, June 2–4, 2020, Haifa, Israel

89
6

10
24

15
36

20
48

25
60

30
72

35
84

From Memory (MB)

3584
3072
2560
2048
1536
1024

896T
o

M
em

or
y

(M
B

) 112 96 87 71 59 48

90 89 69 63 47 8

83 73 64 31 9 6

54 60 19 5 6 6

35 31 8 5 5 6

7 5 5 5 5 5

5 5 5 5 5 5
20

40

60

80

100

E
m
em

(S
ec

on
ds

)

(a) Elastic memcached average measured
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(b) Off-the-shelf memcached averagemea-
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(c) Emem reduction (percentage) when us-
ing the elastic memcached compared to
the non-elastic one.

Figure 7: Elastic and off-the-shelf memcached oscilla-
tion test results.

5.2 Memory Consumer
The static evaluation of memory consumer is depicted in
Figure 8. This application’s memory domain is 896 MB to
2048 MB, making its memory range 1152 MB. The static
evaluation suggests that memory consumer needs less than 1
minute of warm-up and it has an improvement factor (IFMU)
of 2.2 per GB.

The dynamic evaluation of memory consumer is depicted
in Figure 9. The drop-test suggested that memory consumer
needs about 3 seconds of safe retreat time. Memory consumer
has minor Emem values (compared with any memcached ver-
sion), because it immediately allocates and releases memory.
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Figure 8: Memory consumer performance as a func-
tion of allocated memory.

Memory consumer was designed specifically to have such
low Emem values.

The Emem drop values (d < s) are longer than the increase
values (d > s), which is counterintuitive. In a real application,
we expect that it takes more time to occupy the memory than
to release it. This application, however, allocates the memory
immediately, but releases the memory ahead of the memory
allocation, to be on the safe side.
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Figure 9: Memory consumer average measured Emem .

5.3 Validation
In addition to the above tests, for each application, we vali-
dated the dynamicmetrics according to themethod described
in subsection 4.2.

5.3.1 Memcached. The accuracy distribution of the static
and the elastic profiler is presented in Figure 10. The static
profiler’s accuracy has an average deviation of 13% from the
actual performance. Its accuracy has a high variation of up to
40% as seen in Figure 10. The elastic profiler, however, is twice
as accurate. It predicts the performance of memcached with
an average deviation of 8% from the actual performance over
all verification parameters, and with no deviation greater
than 20%.

5.3.2 Memory Consumer. The accuracy distribution of the
static and the elastic profiler of memory consumer is depicted
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Figure 10: Memcached profiler prediction accuracy
distribution. Each rectangle shows the results for dif-
ferent parameters according to its row and column.
The joined row shows all the experiments with any
memory amplitude, and the joined column shows all
the experiments with any change rate.

in Figure 11. The static and the elastic profilers can predict
the performance with an average deviation of less than 1%
from the actual performance. The elastic profiler cannot im-
prove much over the static one because the transient period
for memory consumer is negligible. We only validated this
application with one combination of parameters because it
produced sufficient accuracy. Thus, we would not gain more
insight from less dynamic scenarios.
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Figure 11: Memory consumer profiler prediction accu-
racy distribution with a rate of 300 memory changes
per hour and a maximal amplitude of 2 GB.

6 RELATEDWORK
Since the time memory balloons were developed by Wald-
spurger [31], several systems and concepts have been built to
enable system administrators to dynamically reallocate RAM
among virtual machines (e.g., Litke [22], Shrawankar and
Eram Shaikh [29], Gordon et al. [14, 18], Nathuji et al. [26],
Dolev et al. [8], and Heo et al. [15]).

Many researchers have addressed the issue of evaluating
a system’s elasticity [12, 16, 17, 19, 32]. However, little work

has been done on the evaluation and development of mem-
ory elasticity for applications. This is in contrast with the
application CPU elasticity, which was studied extensively,
as reviewed by Kumar [21].

The nom profit maximizing operating system has an inter-
active, on-the-fly configurable network stack, which adapts
to different monetary conditions according to its service level
agreement [4]. All these systems could be better evaluated
given a solid benchmark suite for elastic memory.

Salomie et al. [28] implemented a kernel module that sup-
ports ballooning pages right out of the application’s memory
to the host (i.e., application level ballooning) and demon-
strated it on a Java-virtual-machine (JVM). Such a solution
may be helpful for transferring memory faster, but it depends
on a specific operating system and requires the installation
of a kernel module. This approach increases the coupling
between software layers, which complicates the adoption of
the application.
The Automatically Tuned Linear Algebra Software (AT-

LAS) [33] is memory aware: it configures itself by bench-
marking to optimally use the hardware it runs on, consider-
ing mainly the size of the cache. It does so upon installation
and does not change the configuration on-the-fly.

7 CONCLUSIONS AND FUTUREWORK
We introduced a first-ever validated method for the mea-
surement of application elasticity in a comparable manner.
This method breaks the stalemate that has trapped the de-
velopment of memory elastic applications and systems. It
opens the door to an era of yet unseen optimizations, where
memory can be considered an elastically used resource and
its elasticity can be measured.
We developed a framework to demonstrate our method.

Our evaluation demonstrated that the Emem values of mem-
ory consumer are significantly lower than memcached val-
ues; this indicated that memory consumer has a higher elas-
ticity with regard to the transient period. In addition, the
elastic memcached had significantly shorter Emem values
compared to the non-elastic version.
We verified our framework by showing it can predict

the performance of an application under dynamic memory
changes with high accuracy. Our evaluations showed an av-
erage deviation of 8% and 1% of the actual performance for
memcached and memory consumer, respectively.

Additional applications will allow more clients to use this
framework to evaluate their memory elasticity bundle offer-
ings, and allow providers to easily evaluate new memory-
elastic systems. We note that PostgreSQL and the Java virtual
machine are good candidates for these efforts. Adding these
applications and more to the framework is left for future
work.
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